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Abstract: Wind speed forecasting is crucial for optimizing wind energy systems, enhancing turbine efficiency, ensuring grid stability, and 

planning energy production. This review critically examines advancements in wind speed forecasting through deep learning algorithms, 

which surpass traditional statistical methods in handling complex, non-linear, and non-stationary wind speed data. It focuses on various 

deep learning models, including CNNs, RNNs, LSTMs, and GRUs, and their ability to capture spatial and temporal dependencies. Essential 

data preprocessing techniques and evaluation metrics like RMSE, MAE, R, R2, and MAPE, are discussed to assess model performance. 

The review also synthesizes recent case studies demonstrating practical applications. Despite progress, challenges such as data quality, 

computational demands, overfitting, and model interpretability remain. Future research directions include improving data collection, 

developing efficient model architectures, enhancing interpretability, and mitigating overfitting. This review provides a concise overview 

of the current state of deep learning in wind speed forecasting, highlighting key methodologies, challenges, and future research 

opportunities. 
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1. Introduction 

Wind speed forecasting is a crucial element in the 

management and optimization of wind energy systems, 

playing a significant role in enhancing the efficiency of 

wind turbines, ensuring grid stability, and planning energy 

production schedules. The inherently intermittent and 

variable nature of wind poses considerable challenges for 

accurate forecasting, necessitating sophisticated modeling 

approaches that can capture its complex behavior[1]. Over 

the past three decades, the global wind energy sector has 

undergone substantial development, marked by significant 

advancements in both theoretical and applied research 

domains. This rapid progress has paved the way for a 

promising future in wind energy technology. As reported by 

the Global Wind Energy Council in the Global Wind Report 

2023, approximately 77.6 GW of new wind power capacity 

was integrated into power grids in 2022, elevating the total 

installed wind capacity to 906 GW—an increase of 9% 

compared to 2021 (as shown in Fig. 1b). The report 

highlights that the top ten markets for new installations in 

2022 include notable contributions from China, which 

accounted for 16% of the new capacity, followed by the 

United States with 11% (as shown in Fig. 1a). Additionally, 

the report forecasts that by 2024, the global installed 

capacity of onshore wind power is expected to surpass 100 

GW for the first time, with offshore wind power capacity 

projected to reach unprecedented levels by 2025[2]. In 

recent years, deep learning algorithms have emerged as 

powerful tools capable of addressing these challenges, 

providing robust frameworks for analyzing and predicting 

wind speed patterns[3]. 

Deep learning (DL), a subset of artificial intelligence (AI), 

leverages neural networks with multiple layers to model 

intricate relationships within large datasets. These models 

have demonstrated superior performance over traditional 

statistical methods, particularly in handling the non-linear 

and non-stationary characteristics typical of wind speed 

data[4]. Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), including Long Short-

Term Memory (LSTM) networks and Gated Recurrent 

Units (GRUs), are among the most commonly employed 

deep learning architectures in this domain. CNNs are adept 

at extracting spatial features from data, making them useful 

for analyzing meteorological patterns, while RNNs excel at 

capturing temporal dependencies, crucial for understanding 

time-series data. 

Several performance metrics are employed to evaluate and 

compare these models, such as accuracy, computing time, 

decomposition techniques, and statistical testing. The 

comparisons consider potential influences from datasets of 

varying sizes, locations, resolutions, weather conditions, 

and periods. This paper aims to identify key factors while 

summarizing pertinent information. 

This review and synthesis of methodologies utilized in wind 

speed highlight the evolution of DL approaches and explore 

new applications within these domains while identifying 
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opportunities for extending current trends in research and 

application. Systematically reorganizing and analyzing 

existing research outcomes allows for identifying superior 

methodologies and valuable experiences, avoiding 

redundant efforts and errors, and innovating novel 

combinations of techniques for broader application. 

Additionally, this review can provide valuable insights and 

stimulate further research directions. 

 

The potential for applications of DL in renewable energy to 

advance significantly and become increasingly mature in 

both technique and cost management is evident, given the 

rapid development of supportive technologies. This 

comprehensive literature review not only offers a critical 

evaluation of existing datasets from prior case studies but 

also serves as an indispensable resource for research in the 

future. Such an evaluation is crucial for exploring the 

effectiveness and efficiency of potential applications in 

various contexts. 

 

 

This review aims to explore the advancements in wind speed 

forecasting using deep learning algorithms. It will discuss 

the various DL models employed, the preprocessing 

techniques critical for enhancing model performance, and 

Nomenclature 

SCADA  Supervisory Control and Data Acquisition SRD Signal-to-Noise Ratio Decomposition 

DWT Discrete Wavelet Transform EWT Empirical Wavelet Transform 

DE Differential Evolution WA Weighted Average 

HELM Hysteretic Extreme Learning Machine NSCE Nonlinear State Estimation 

CWB Central Weather Bureau EFD  Empirical Fourier Decomposition 

OS Optimal Selection NWP Numerical Weather Prediction 

NCL Nonlinear Control Law EWT  Empirical Wavelet Transform 

RELM Regional Extreme Learning Machine IWOA Improved Whale Optimization Algorithm 

SNAP Sentinel Application Platform FWA Firework Algorithm 

GPR Gaussian Process Regression CEEMD 
Complete Ensemble Empirical Mode 

Decomposition 

LASSO Least Absolute Shrinkage and Selection Operator CSNN Convolutional Spiking Neural Network 

BPNN Backpropagation Neural Network SEEMD 
SEEMD: Subsampled Ensemble Empirical Mode 

Decomposition 

STSR Spatio-Temporal State Representation PSO Particle Swarm Optimization 

WCT Wavelet Coherence Transform IPSO Improved Particle Swarm Optimization 

ELM Extreme Learning Machine STL Seasonal and Trend decomposition using Loess 

CEEM 
Complementary Ensemble Empirical Mode 

Decomposition 
SA Simulated Annealing 

WD Wind Direction ASD Amplitude Spectral Density 

RTCN  Recurrent Temporal Convolutional Network QS query selection 

SSA Singular Spectrum Analysis CEEMDAN 
Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise 

ORELM  Online Sequential Extreme Learning Machine PE  Prediction Error 

SVMD Sparse Variational Mode Decomposition FCGRU  Fully Connected Gated Recurrent Unit 

TF  Transformer NW  Numerical Weather 

  KF Kalman Filter 
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the metrics used to evaluate forecasting accuracy. 

Additionally, it will highlight real-world case studies and 

applications, addressing the current challenges and outlining 

future research directions to further improve the efficacy of 

DL models in wind speed forecasting. By examining the 

current state of research and identifying areas for 

improvement, this review seeks to contribute to the ongoing 

development and refinement of DL models in the field of 

wind speed forecasting. 

 

Fig. 1. (a) Top 10 markets for installations in 2023; (b 

)wind power global cumulative capacity, 2018–2022; 

2. Deep Learning Applications of Wind speed 

Wind energy has become an essential source of clean, 

renewable energy. The adoption of DL methods in the 

renewable energy sector has proven to be highly effective. 

These methods provide a feasible approach for modeling 

and predicting linear correlations and complex nonlinear 

dynamic processes. As the exploration and utilization of 

marine energy resources continue to grow[5]. The vast 

potential of wind energy brings numerous possibilities for 

advancement, including energy harvesting, control 

mechanisms, behavioral analysis, movement tracking, 

stability enhancement, and generation efficiency. These 

areas of focus provide ample opportunities for growth and 

innovation within the field of renewable energy[6]. DL 

methodologies, in particular, offer significant potential for 

optimizing these processes, thereby driving forward the 

development and deployment of wind energy systems. By 

addressing these various aspects, researchers and engineers 

can contribute to the broader goal of creating sustainable 

and efficient renewable energy systems, ultimately 

supporting the global transition to cleaner energy sources 

[7]. 

To gradually harness wind energy and expand its 

commercial scale, one of the options is to explore wind 

energy by analyzing its behavior and correlations. Another 

option is summarizing and analyzing various wind energy 

applications across different models. This comprehensive 

analysis can encourage the application of these models in 

optimizing wind energy, enhancing visualization 

techniques, and improving forecasting accuracy. By doing 

so, it can leverage the strengths of different models to 

advance wind energy technology and achieve more efficient 

and reliable energy production. 

Wind speed applications were selected for review and 

discussion in this paper based on recent publications from 

the past few years. A variety of scientific search engines 

were utilized to gather relevant literature Science Direct, 

IEEE, Springer, Google Scholar, and ReseachGate. The 

search keywords included wind energy, wind speed, 

decomposition algorithm, Machine Learning (ML), AI, DL, 

ANN, CNN, RNN, LSTM, GRU, and others. Articles were 

chosen for review based on their publication date (starting 

from 2018) and their relevance to the topic. 

2.1. Forecasting of Wind Energy 

While wind conditions can be forecasted, accurately 

predicting the actual wind power output to meet demand 

remains challenging. This difficulty arises because power 

output is affected by various factors beyond just wind 

conditions. The application of DL structures to prediction 

provides an efficient method for processing large amounts 

of historical data for predictive analysis. Forecasting 

methods have been developed using various approaches, 

such as physical models, traditional statistical methods, AI 

techniques, and hybrid structures. The Classification of 

wind speed forecasting shown in Fig. 2. 

 

Fig.2. Classification of Wind Speed forecasting 

Forecasting wind speed through physical models involves 

using mathematical representations of the atmosphere and 

its processes to predict future wind conditions. These 

models are built on fundamental principles of physics, such 

as fluid dynamics and thermodynamics, and incorporate a 

range of atmospheric variables. The primary objective of 

physical models is to simulate the behavior of the 

atmosphere under different conditions to forecast wind 

speed with a high degree of accuracy. A highly regarded 

physical model for wind speed forecasting is the Weather 

Research and Forecasting (WRF) model. This advanced 

numerical weather prediction system is tailored for both 

atmospheric research and operational forecasting. The WRF 

model incorporates various initial conditions, boundary 

conditions, and physical parameterizations to accurately 

simulate atmospheric phenomena across different scales. By 

resolving fine-scale atmospheric features, the WRF model 

can deliver high-resolution wind forecasts, making it 

particularly valuable for applications in renewable energy, 

including wind power generation[8]. Another example of a 

physical model used for wind speed forecasting is the 

Global Forecast System (GFS) developed by the National 
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Oceanic and Atmospheric Administration (NOAA). The 

GFS is a global numerical weather prediction model that 

runs four times daily, providing forecasts up to 16 days in 

advance. It incorporates data from various sources, 

including satellite observations and ground-based 

measurements, to produce comprehensive wind speed 

forecasts. The GFS model's ability to integrate a wide range 

of observational data helps improve the accuracy of its wind 

speed predictions[9]. The European Centre for Medium-

Range Weather Forecasts (ECMWF) also employs a 

sophisticated physical model known as the Integrated 

Forecast System (IFS). The IFS uses a combination of 

deterministic and ensemble prediction systems to provide 

high-quality weather forecasts, including wind speed. The 

model integrates data assimilation techniques, which 

continuously incorporate observational data to update and 

improve the initial conditions of the forecast. This approach 

helps to reduce uncertainties and enhance the reliability of 

wind speed forecasts [10]. Cassola et al [11]. Proposed a 

Kalman filtering method to improve wind speed forecasts 

from a Numerical Weather Prediction (NWP) model in 

complex terrain. The Kalman filter adjusted the model's 

forecast using wind speed measurements from two 

anemometric stations. The results showed that this approach 

significantly enhanced the accuracy of short-term wind 

speed predictions, with low errors compared to actual 

measurements. This suggests that Kalman filtering is an 

effective tool for improving wind energy forecasting in 

challenging terrains, benefiting applications like short-term 

power prediction in wind farms. Ambach, et al [12]. 

Proposed a high-dimensional time series approach that 

integrates a multivariate seasonal time-varying threshold 

autoregressive model with interactions (TVARX) and a 

threshold seasonal autoregressive conditional 

heteroscedastic (TARCHX) model. This approach allows 

for the inclusion of periodicity, conditional 

heteroscedasticity, variable interactions, and a complex 

autoregressive structure with nonlinear impacts. The 

model’s methodology lies in its use of a high-dimensional 

shrinkage technique and the iteratively re-weighted least 

absolute shrinkage and selection operator (LASSO) method. 

The model improves the accuracy of individual variable 

forecasts and accounts for their interdependencies, 

providing a comprehensive framework that reflects the 

dynamic nature of meteorological processes. 

Statistical methods are crucial in wind speed forecasting by 

using historical data to predict future conditions. 

Techniques like time series analysis, regression models, and 

machine learning algorithms identify patterns and improve 

prediction accuracy. These methods enhance the reliability 

of forecasts, which is essential for optimizing wind turbine 

operations, planning energy production, and integrating 

wind energy into the power grid. Thus, statistical 

approaches are vital for the efficient use of wind energy 

resources. Statistical methods are most commonly used for 

forecasting within a 6-hour timeframe, which can 

significantly aid in wind turbine control and monitoring.  

Cadenas et al [13]. Used wind speed and direction data 

collected by the Instituto de Investigaciones Eléctricas (IIE) 

from 2004 to 2005. Measurements at 10 meters above 

ground were taken with high-accuracy sensors, recording 

data at 1 Hz and averaging wind speeds every 10 minutes. 

Statistical analysis was conducted on the time series data, 

and forecasts were made using the single exponential 

smoothing (SES) method. The SES method, especially with 

an α value of 0.9, proved to be effective and accurate, 

outperforming the ANN method. 

Gendeel et all[14] . Proposed a Variational Mode 

Decomposition (VMD) and weighted Least Squares 

Support Vector Machine (LS-SVM) to enhance wind power 

forecasting. VMD addressed non-stationarity by 

decomposing the wind power series, while weighted LS-

SVM improved model robustness. Dividing the data into 

training, validation, and testing sets, and using a learning 

rate of 0.6, the results showed superior forecasting 

performance with an 80% confidence level. This combined 

approach effectively handled uncertainties, offering more 

reliable and accurate predictions for wind farm operations 

and power system management. 

AI-based models, including back propagation, support 

vector machines (SVMs), fuzzy logic methods, and ANNs, 

have been widely used in various forecasting fields. As their 

use grows rapidly, many different structures of DL networks 

have been developed for different applications. The crucial 

role of wind power forecasting in both electricity grids and 

the energy market has placed a premium on accuracy. This 

has led to a significant shift towards using intelligent 

forecasting models. These models excel at capturing the 

complex relationships between different factors, making 

them superior to traditional statistical or physical methods. 

Recent years have seen a surge in the development and 

application of various deep learning models, including 

CNN, RNN, LSTM, deep belief networks, stacked auto-

encoders, and deep neural networks in general. These 

models with gated recurrent units and the ability to combine 

different architectures (deep hybrid models) have proven to 

outperform traditional statistical and physical models in 

prior research. 

Ömer Ali Karaman[15] proposed a series of multiobjective 

predictive models utilized in wind power prediction 

involving developing multi-objective predictive models 

through advanced machine learning techniques, specifically 

CNN and LSTM networks, to enhance accuracy. Additional 

input parameters, such as air temperature, precipitation, and 

air density, were integrated with wind speed, wind direction, 

active power, and theoretical power data from the SCADA 
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system to improve predictive capabilities. The study 

rigorously analyzed the optimal parameters using input-

output correlation matrices to determine the influence of 

independent variables on the dependent variable. The study 

found that the LSTM model is more successful in estimating 

wind power. Chen et al. [16] employed a combination auto-

encoder of CNN and LSTM to perform 2-D wind plane 

prediction. The dataset used in the case study comprised 

meteorological data from the Wind Integration National 

Dataset by NREL, collected in Indiana, US, from 2010 to 

2012, within a 10 by 10 wind array. The raw data, with a 

resolution of 5-minute time series, was modified to a 2-hour 

time interval, resulting in 1,314,000 data points over the 

three-year period. The data was split into a 4:1 ratio for 

training and testing to evaluate the CNN-LSTM model. 

Yao Liu et al. [17]  proposed a DWT_LSTM prediction 

method that employs a divide-and-conquer strategy. The 

DWT decomposes the original wind power data into sub-

signals, isolating key information. Separate LSTM networks 

are then used to model the temporal dynamic behaviors of 

each sub-signal independently. Three-time series wind 

power datasets from different wind farms were selected for 

experiments in this study. Each time series spanned 12 

months to ensure comprehensive analysis. The data was 

recorded at 15-minute intervals, resulting in a total of 35,000 

data points. 

Ya-Lan et al. [18] proposed a nonlinear hybrid LSTM-DE-

HELM model to achieve highly accurate and stable wind 

speed forecasting results. This model combines an LSTM 

network, HELM, DE, and an LSTM-based nonlinear 

mechanism. In the LSTM-DE-HELM model, three types of 

LSTM networks optimized by the DE algorithm and three 

types of HELM with varying numbers of neurons in each 

hidden layer are used to learn wind speed time series data. 

To demonstrate the effectiveness of this nonlinear hybrid 

model, wind speed data collected at ten-minute and one-

hour intervals from a wind farm in Inner Mongolia, China, 

were used in two case studies. 

Zhongda et al.[19] The proposed wind speed forecasting 

model utilizes VMD and an Improved Whale Optimization 

Algorithm (IWOA)-optimized Echo State Network (ESN). 

VMD decomposes the original wind speed data into several 

stationary components with different frequencies, 

simplifying the modeling process. Each stationary 

component is forecasted using an ESN optimized by IWOA. 

The final forecast is obtained by summing the predictions 

for each component. Case studies were conducted using 

actual ultra-short-term wind speed data with a 15-minute 

sampling period and short-term wind speed data with a 1-

hour sampling period. Zhuoyi et al. [20]Proposed a hybrid 

wind speed forecasting system is developed based on the 

data area division (DAD) method and a deep learning neural 

network the model proposed for short-term wind forecasting 

is based only on the wind speed history data from the 

forecast location and the surrounding locations. The system 

consists of three modules: extraction module, data 

preprocessing module, and forecasting module.  a large 

amount of valid historical data is extracted, filtered, and 

classified and used a complementary ensemble empirical 

mode decomposition for preprocessing while an LSTM 

network optimized by a genetic algorithm is used to forecast 

the decomposed wind speed data and integrate them into the 

final forecast result. Chih-Chiang et al. [21] focused on 

predicting real-time wind and wave changes in coastal 

waters during typhoon periods to prevent damage to 

infrastructure in international ports. The data sources 

included ground station data, buoy data, and hourly radar 

reflectivity images from CWB ground stations. The 

predictive models combined RNN-based GRUs and CNNs 

to forecast wind speeds. These wind speed predictions were 

then used to model wave heights. The dataset included 

information from 21 typhoons that affected Taiwan between 

2013 and 2019. The study predicted and analyzed wind 

speeds and significant wave heights in the coastal waters of 

Keelung and Kaohsiung Ports over lead times of 1 to 6 

hours. 

Yuansheng et al. [22]  proposed a novel model incorporating 

the ensemble empirical mode decomposition (EEMD) 

method along with a combination forecasting approach 

using Gaussian process regression (GPR) and the LSTM 

neural network based on the variance-covariance to enhance 

the accuracy of wind prediction. It collects wind speed data 

from a wind farm of Zhangjiakou, North China, two 

forecasting cases are represented in the case study. The data 

in Dataset A are recorded every 5 min and from 1 January 

2014 to 4 January 2014 while the data in Dataset B are 

recorded every 60 min and from 1 July 2014 to 25 July 2014.  

The proposed model is expected to provide a useful 

reference for the power sector to forecast the short-term 

wind speed. Tian et al. [23] proposed a negative correlation 

learning-based regularized extreme learning machine 

ensemble model (NCL-RELM) integrated with optimal 

variational mode decomposition (OVMD) and sample 

entropy (SampEn) for multi-step ahead wind speed 

forecasting. The wind speed data was recorded at an 

intervals of 10 min and wind speed data for the whole year 

of 2018. Four data sets of 1008 continuous points (one 

week) are chosen for experiments. The RMSE values of the 

proposed OS-NCL-RELM model were 0.102, 0.125, 0.057, 

and 0.177 m/s for the four wind speed datasets, respectively.  

2.1.1. Variations in Datasets Used for Wind Forecasting 

The datasets employed in wind forecasting research are 

notably diverse, underscoring the complexity of this field. 

Typically, forecasting objectives encompass predicting 

wind speed and wind power, frequently utilizing DL 

methodologies. The sources of data for these studies are 
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multifaceted, including historical meteorological records, 

remote sensing data, and geographic information. 

Meteorological datasets furnish essential variables such as 

wind speed, wind direction, temperature, atmospheric 

pressure, and humidity, which are critical for understanding 

atmospheric conditions influencing wind behavior. Remote 

sensing data, derived from satellites or aerial sensors, 

provide spatial and temporal insights into environmental 

conditions, capturing variables like sea surface salinity and 

ocean depth, particularly relevant for coastal and offshore 

wind forecasting. Geographic data supply information on 

terrain features, such as orography, which significantly 

impact wind patterns. 

In addition to these environmental datasets, data from wind 

energy devices, including turbine-specific parameters like 

hub height and pitch angle, are integrated to enhance 

forecast precision. This amalgamation of diverse datasets 

facilitates a comprehensive analysis of the factors affecting 

wind energy generation. Moreover, datasets may encompass 

time series data, essential for capturing temporal dynamics, 

and spatial data, which offer context regarding location-

specific characteristics that influence wind patterns. 

When historical meteorological data are utilized, additional 

computations are often required to convert these data into 

accurate wind power predictions. Key parameters such as 

wind speed, turbine hub height, and blade pitch angle must 

be incorporated to model energy output effectively. This 

comprehensive approach to data integration and analysis is 

vital in enhancing the accuracy and reliability of wind 

forecasting models, particularly those employing advanced 

DL techniques. Consequently, the selection and 

combination of datasets are crucial, reflecting the intricate 

interplay of various environmental and technical factors in 

wind energy forecasting. 

Xiaoyu  et al. [24] utilized continuous wavelet transforms 

(CWT) to examine the spatial and temporal correlations of 

wind speed, centering on an SC-LSTM network. The 

analysis was based on data from the Buck City wind farm in 

Washington State, USA. The efficacy of the SC-LSTM 

network was evaluated against a conventional back-

propagation model and an SVM through the parameters 

RMSE, MAE, and MAPE. The dataset, derived from the 

wind turbines at the wind farm, encompassed the year 2010 

with a 5-minute temporal resolution, totaling 10,656 data 

points. The data were segmented into training, validation, 

and testing sets in a ratio of 30:2:5 days, respectively. Chen 

et al.[25] Employed a multiperiod-ahead stacked denoising 

autoencoder model, which operates in an unsupervised 

manner and utilizes unlabeled reconstructed data for wind 

speed forecasting. The model leverages these reconstructed 

data inputs to improve prediction accuracy. The training 

dataset consisted of 20,000 samples per wind speed series, 

with intervals spanning from 15 minutes to 24 hours, over a 

six-month period. Jianming et al. [26] proposed a novel 

hybrid model comprising a Quantile Regression Neural 

Network (QRNN) integrated with the Multi-Complete 

Ensemble Empirical Mode Decomposition with Adaptive 

Noise (MCEEMDAN) and Grasshopper Optimization 

Algorithm (GOA) to achieve precise wind speed 

forecasting. One-hour and two-hour wind speed data 

collected from Yumen, Gansu Province, China, were used 

as case studies. The proposed models demonstrated lower 

RMSE and MAPE compared to similar models, indicating 

that these hybrid models are highly competitive for short-

term wind speed forecasting. 

Danxiang et al. [27] proposed a hybrid dual temporal 

information wind speed forecasting system combining 

GRUs and CNNs. The research utilized four wind speed 

datasets with a 10-minute resolution, collected from two 

wind plants: Donggang (42.5°N, 122.5°E) and Dandong 

(40°N, 125°E). Each dataset comprised 1,000 observations 

post-preprocessing and was divided into training (800 

observations), validation (100 observations), and testing 

(100 observations) sets. The proposed system was evaluated 

against benchmark models, including AutoRegressive 

Integrated Moving Average (ARIMA), Support Vector 

Regression (SVR), and CNNs, to assess its ability to extract 

temporal information and enhance forecasting accuracy. 

The experimental results indicated significant 

improvements in MAPE compared to traditional models. 

Huanling et al. [28] present a hybrid model, VMD-DE-ESN, 

which combines VMD, DE, and ESN for accurate wind 

speed forecasting. It combines VMD for data 

decomposition, DE for parameter optimization, and an ESN 

for forecasting the decomposed subseries of wind speed 

data. The dataset comprises wind speed data collected from 

the Sotavento wind farm in Galicia, Spain. The data is 

preprocessed and then divided into training and testing sets 

for model evaluation. The accuracy and stability of the 

VMD-DE-ESN model are validated using this dataset 

through a series of experiments and comparisons with other 

forecasting models. 

Duan et al. [29] proposed an innovative hybrid forecasting 

system that incorporates effective data decomposition 

techniques, RNN prediction algorithms, and error correction 

methods. The system first applies a novel decomposition 

approach to break down the original wind speed series into 

subseries. It then predicts the wind speed using a recurrent 

neural network and subsequently decomposes the error to 

correct the initial predictions. The wind speed data, 

collected from a wind farm in the Ningxia Hui Autonomous 

Region of China, consists of four series with 1,000 samples 

each. These series were divided into training and testing 

sets, with the first 700 samples used for training and the 

remaining 300 for testing. The wind speed was measured at 

a height of 70 meters with a 15-minute sampling interval. 
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Majidi et al. [30] presented a novel wind speed forecasting 

model, integrating Sentinel satellite imagery analysis and 

ML methods. The model operates in two phases using multi-

sensor satellite data. Initially, wind speed and bathymetry 

are analyzed using images from Sentinel-1 (S-1) and 

Sentinel-2 (S-2) satellites, respectively.  

    Table 1. Summary of wind speed forecasting models based on deep learning

. 

Subsequently, a hybrid forecasting model is proposed to 

assess and predict wind speed, utilizing a combination of a 

Generalized Regression Neural Network (GRNN) and 

Whale Optimization Algorithm (WOA). Additionally, the 

model evaluates offshore areas with potential for wind farm 

installation by considering wind speed, bathymetry, and the 

distance of high-scoring (HS) points from the shoreline. The 

method employs S-1 (SAR) and S-2 (optical) satellite 

images, processed using SNAP software and the Radar 

Wind Data (RWD) tool to extrapolate nearshore and 

offshore wind speed and bathymetry around the area of 

interest. The model was tested using S-1 images from 

January 1, 2015, to December 29, 2018, with a case study 

conducted on Favignana Island. Additionally, Zhenhao et al.  

[36] Proposed a Temporal Convolutional Network (TCN) 

model for interval prediction of wind speed. The dataset 

used in the study comprised wind speed data from San 

Francisco in 2012, the data facilitated wind speed interval 

prediction experiments with time horizons varying from 15 

to 90 minutes. Ceyhun et al. [37] Introduced a novel two-

Ref. Model Used Pre-Processing Location Time Step Type 

[15] 
RNN, LSTM, ANN, 

CNN 
Normalization Onshore 1 h - 

[16] CNN + LSTM ELM Onshore 2 h 1–3 h 

[17] LSTM DWT Onshore 15 min Short-Term 

[18] LSTMDE-HELM DE Onshore 10-min/1 h Short term 

[19] VMD+ IWOA-ESN IWOA Onshore 15 min/ 1 h ultra-short-term 

[20] GA+LSTM CEEM Onshore 
10 min, 30 min, 

60 min 
short-term 

[21] CNN + GRU -  Onshore/coast hourly 1–6 h 

[22] EEMD -GPR-LSTM EEMD Onshore 5 min/ 60 min short-term 

[31] CNN - Onshore 24-h short-term 

[23] 
Negative correlation 

learning 
OVMD Offshore 10-min Short term 

[24] SC-LSTM WCT Onshore  5-min 37 days 

[32] LASSO-QRNN WD Onshore 10-min Short-term 

[26] QRNN SRD Onshore 1h-2h Short-term 

[27] GRU+ CSNNs EWT Onshore/offshore 
10-min/ 30-min/1 

h 
Short-term 

[28] ESN VMD-DE Onshore  10-min Short-term 

[29] BPNN-RNN ICEEMDAN Onshore 15-min Short-term 

[33] STSR-LSTM - Onshore/offshore 
monthly/seasonal/ 

annual 
Long-term 

[30] GRNN WOA Offshore - short-term 

[34] GRU WA Onshore - short-term 

[35] DBN IPSO-HHT Onshore 1-min Ultra-short-term 
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step DL method, VMD-CNN, for wind power forecasting. 

Wind power data from a wind farm in southeastern Turkey 

was used to evaluate the performance of this method. The 

dataset, collected between January 1, 2018, and December 

31, 2018, was sampled at hourly intervals, resulting in a total 

of 8,760 data points. It includes sequences of wind power, 

wind speed, and wind direction. 

Li et al. [38] proposed a novel hybrid model integrating a 

genetic algorithm (GA), VMD, an improved dung beetle 

optimization algorithm (IDBO), and a Bidirectional Long 

Short-Term Memory network based on an attention 

mechanism (BiLSTM-A) is proposed to achieve superior 

forecasting performance. First, GA is used to select the 

optimal parameters for VMD, effectively extracting 

intrinsic patterns from historical wind speed data. Next, an 

attention mechanism is incorporated into the BiLSTM 

model to mitigate the loss of important information typically 

associated with long time series. Additionally, IDBO, 

enhanced by three strategies, is employed to optimize the 

BiLSTM parameters. Hourly wind speed data from the 

California Irrigation Management Information System were 

used, covering four seasons: spring (February 2021 to April 

2021), summer (May 2021 to July 2021), autumn (August 

2021 to October 2021), and winter (November 2020 to 

January 2021). Furthermore, Fantini et al. [34] A model 

based on GRU was utilized, incorporating a methodology 

that integrates wavelet transforms (WT) with RNNs. The 

study also examined potential errors resulting from 

improper partitioning and processing of training and 

validation data. Wind speed time series data from NASA 

POWER for a specific location in Brazil was analyzed. The 

results indicate that using WT as a preprocessing step for 

GRU input data does not produce significant improvements 

to warrant its application. Liu et al.[35] Introduced a Deep 

Belief Networks (DBN)-Elman hybrid forecasting model 

utilizing Improved Particle Swarm Optimization (IPSO) - 

Hilbert-Huang Transform (HHT), designed to manage the 

nonlinear and nonstationary characteristics of wind-speed 

data. This model integrates DBN with the Elman neural 

network, employing the IPSO algorithm and HHT for 

preprocessing the wind-speed data. The experimental 

dataset comprised wind-speed time series data with a one-

minute temporal resolution, collected from a wind turbine in 

a wind farm in Jingbian, Shanxi, China. The dataset 

included 7200 data points, with 7140 used for training and 

60 for testing the model's forecasting accuracy. 

Different parameters significantly impact prediction 

models, and the choice of dataset can lead to varying 

forecasting results. The diverse weights assigned to each 

variable influence feature extraction and the overall model 

performance. In DL models, variables with smaller weights 

have a lesser impact on predictions. Table 1 summarizes the 

wind forecasting models reviewed in this paper. 

2.1.2. Preprocessing 

Effective pre-processing is crucial for improving the 

accuracy and reliability of wind speed forecasting models. 

Raw data from meteorological stations and wind farms often 

contains noise, missing values, and inconsistencies, which 

can negatively impact forecasting algorithms. Therefore, 

strong pre-processing techniques are needed to prepare the 

data for accurate and efficient model training and prediction. 

• Data Cleaning and Noise Reduction 

The initial step in pre-processing is data cleaning, which 

focuses on removing anomalies and filling in missing 

values. Techniques like interpolation and imputation are 

commonly used to address gaps in the dataset. For noise 

reduction, methods such as moving average smoothing, 

Gaussian filters, and advanced techniques like WT and 

empirical mode decomposition (EMD) can be applied. 

These approaches help isolate the true signal from the noise, 

ensuring that forecasting models are trained on high-quality 

data [39]–[44]. 

• Feature Engineering 

Feature engineering is another vital aspect of pre-processing 

for wind speed forecasting. It involves creating new features 

or modifying existing ones to better capture the underlying 

patterns in the data. Common features derived from wind 

speed data include wind direction, temperature, pressure, 

and humidity. Additionally, temporal features such as time 

of day, day of the week, and seasonal indicators can be 

incorporated to account for periodic variations in wind 

speed. Feature selection techniques, such as correlation 

analysis and principal component analysis (PCA), help 

identify the most relevant features, reducing dimensionality 

and improving model performance [45]–[48]. 

• Normalization and Scaling 

Normalization and scaling are critical pre-processing steps 

that prepare data for ML, and DL algorithms. Wind speed 

data often shows significant variability in magnitude, which 

can lead to biased model training. Techniques such as min-

max scaling[49]–[51], z-score normalization [52], [53], and 

logarithmic transformations [44] are employed to 

standardize the data. This process ensures that each feature 

contributes equally to the model, preventing any single 

feature from disproportionately influencing the predictions. 

• Decomposition Techniques 

To enhance the predictive power of models, decomposition 

techniques can be applied to wind speed time series data. 

Methods such as EMD[54], [55], [56], CEEMDAN[57], 

[58], HHT[35], EEMD[59][60], WT[34], [61], [62], and 

VMD [14], [41], [57], [63] decompose the original time 

series into constituent components. These components, 

including trend, seasonality, and residuals, can be modeled 
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separately, allowing for a more detailed analysis and 

improved forecasting accuracy. 

• Handling Non-Stationarity 

Wind speed data often exhibits non-stationarity, 

characterized by changing trends and seasonal patterns over 

time. Addressing non-stationarity is crucial for accurate 

forecasting. Techniques such as differencing, detrending, 

and seasonal adjustment are employed to transform the data 

into a stationary series. Additionally, more advanced 

methods, such as ARIMA[13], [29], [47] models and their 

extensions, can effectively manage non-stationarity in the 

data. 

In summary, pre-processing is a vital step in the wind speed 

forecasting pipeline, encompassing data cleaning, noise 

reduction, feature engineering, normalization, 

decomposition, and addressing non-stationarity. These steps 

ensure that the data used in forecasting models is of high 

quality, leading to more accurate and reliable predictions. 

Effective pre-processing not only enhances model 

performance but also contributes to the overall robustness 

and efficacy of wind speed forecasting systems. 

2.1.3. Evaluation and Comparison Methods 

CNNs leverage convolutional layers to automatically 

extract features from input data, reducing the need for 

extensive manual feature engineering. By employing layers 

of convolutional filters, CNNs can identify and learn 

important patterns and correlations in wind speed data, 

enhancing predictive accuracy. The structure of CNNs 

enhances their ability to extract features from target 

variables. Typically, CNNs consist of multiple layers and 

are often referred to as "black boxes" due to their complex 

input and output processes. These layers include a padding 

layer, a convolution layer, a pooling layer, a fully connected 

layer (flatten layer), and dropout and activation functions 

(ReLU/Sigmoid). Numerous studies have integrated CNNs 

with other models due to their superior feature extraction 

capabilities, which can also help reduce computing costs to 

some extent. The CNN module functions as a feature 

extractor, translating raw data into intrinsic deep features. 

Through this process, spatial features are extracted using the 

CNN structure. Meanwhile, time series features can be 

captured using models such as RNN, GRU, and LSTM, 

which are equipped with memory gates to record sequential 

data [16]. 

The structure of CNNs can be classified into one-

dimensional, two-dimensional, or three-dimensional 

formats based on the input dataset's feature extraction needs. 

In the existing literature, CNNs are often employed as 

feature extractors because of their exceptional capability to 

extract deep and detailed information, making them an ideal 

choice for applications requiring thorough feature analysis. 

Xinyu et al. [64] employed a one-dimensional CNN on an 

input matrix and convolutional filters, which are typically 

effective at identifying simple patterns and require only a 

few samples in each channel. The input wind speed data can 

be transformed into a two-dimensional format, making it 

adaptable for use in a multistep wind speed and turbulent 

standard deviation combination dataset.  Zhu et al. [65] 

predicted wind power using a CNN model that utilized 

historical wind farm data as input. This study exemplifies 

the application of a CNN with two-dimensional matrix data. 

Fig. 3 explains how the CNN structure works to extract 

features. 

Nazemi et al. [66] proposed a short-term DL-based wind 

speed forecasting approach utilizing a one-dimensional 

(1D)-CNN. This method aggregates weather information 

from the past hour to accurately predict wind speed for the 

next hour. Experimental results demonstrate that this 1D-

CNN-based technique offers precise wind speed 

predictions, confirming its effectiveness for short-term 

forecasting. Abdulrahman et al. [67] proposed a 1D-CNN 

model for wind speed prediction at various heights above 

ground level (AGL). The study demonstrates that using 

wind speed data captured at an 18-meter height for training 

is sufficient for accurately predicting wind speed at higher 

elevations. Nazemi et al. [68] proposed an innovative two-

dimensional (2D)-CNN based technique for hour-ahead 

wind speed prediction. This 2D-CNN model demonstrates 

exceptional performance in overcoming regression and 

prediction challenges, offering a significant advancement in 

wind speed forecasting. Zhu et al. [69] introduced a 

prediction method utilizing coupled feature analysis of wind 

speed behavior. This approach harnesses the advanced 

behavior recognition capabilities of three-dimensional 

(3D)-CNNs for wind speed forecasting. By employing 3D 

convolutions, the model extracts spatiotemporal features of 

wind speed behavior, enhancing prediction accuracy 

through a comprehensive analysis of the temporal and 

spatial characteristics of wind patterns within a wind farm.  

Trebing and Mehrkanoon [70] present a new model utilizing 

CNNs for wind speed prediction. This model applies 

convolutions across multiple dimensions, enabling it to 

capture a wider range of data modalities. Unlike traditional 

CNN-based models, the proposed approach excels in 

characterizing the spatiotemporal evolution of wind data by 

learning the intricate input-output relationships from 

various dimensions of the input data. Utilizing CNNs allows 

researchers to improve the accuracy and reliability of wind 

speed forecasts, thereby facilitating more efficient wind 

energy management and integration into the power grid. The 

ongoing development and application of CNN-based 

models offer significant potential for advancing the field of 

wind speed forecasting. 
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Fig. 3. Sample structure of a CNN 

Recurrent neural networks (RNNs) are extensively applied 

in time-series-sensitive domains such as speech prediction, 

wind speed/power forecasting, audio recognition, and 

weather forecasting. These networks can feed their output 

data back into the model as input for subsequent steps. 

Training is accomplished using backpropagation, evolving 

from a feed-forward network with adjusted weights. Thus, 

RNNs are well-suited for handling temporal dynamics in 

sequential datasets. An RNN’s current input not only takes 

into account the present time series data but also integrates 

features learned from previous steps, embodying the 

concept of "memory" which is distinct from traditional feed-

forward networks[71]. RNNs are essential in wind speed 

forecasting due to their capability to model temporal 

sequences and capture the evolving nature of wind patterns 

over time. Unlike traditional feedforward neural networks, 

RNNs have internal memory states that allow them to retain 

information from previous time steps, making them 

particularly effective for time series analysis. This feature 

enables RNNs to identify patterns and dependencies in wind 

speed data, which is crucial for accurate forecasting[72]. 

The basic components of RNNs include inputs, outputs, 

weights, and biases as shown in Fig. 4. By forwarding 

previous inputs to subsequent hidden layers, RNNs can 

retain and "memorize" the data[72]. This recurrent 

mechanism allows temporal dependencies to be 

incorporated at various stages without losing previously 

learned weights. Backpropagation aids in updating these 

weights during training, enhancing the network’s learning 

capabilities. Combining RNNs with CNNs can further 

improve the efficiency of feature extraction. Shivani et al. 

[73] presented a comparative study of the time series model 

ARIMA and the DL model RNN it aims to minimize the use 

of conventional power plants through unit commitment and 

optimize plant operations via economic dispatch. A novel 

framework proposed by Chuanjin et al [74] to improve the 

forecasting accuracy for wind speed utilized the RNN to 

extract the deeper features and involved in suitable machine 

learning methods for predicting. 

However, RNNs encounter challenges such as the vanishing 

gradient problem, where the gradient diminishes, and 

impairing effective learning and memory retention from 

earlier steps. This limitation often results in RNNs retaining 

only short-term memory. The gradient represents the slope 

of the function, with a steeper slope facilitating faster 

learning. Conversely, if the slope approaches zero, learning 

stagnates. Addressing the vanishing gradient issue can 

significantly enhance RNN performance and preserve its 

memory capabilities. To address these challenges, LSTM 

networks were developed, providing improved convergence 

and performance in RNN architectures. 

 

Fig.4. Simple Structure of RNN 

Long Short-Term Memory (LSTM) networks significantly 

enhance wind speed forecasting by overcoming the 

limitations of traditional RNNs. LSTMs maintain 

information over extended periods, capturing long-term 

dependencies in sequential data. This capability is crucial 

for accurate wind speed predictions, as it enables the 

recognition of patterns and trends over time. Utilizing gates 

to control information flow, LSTMs selectively remember 

or forget data, improving forecast accuracy and reliability. 

Consequently, LSTM-based models outperform 

conventional methods, contributing to more efficient and 

reliable renewable energy management. Numerous studies 

have demonstrated the effectiveness of LSTM-based 

models in enhancing forecast accuracy and reliability 

compared to conventional statistical methods and basic 

neural networks. Numerous studies have demonstrated the 

effectiveness of LSTM-based models in enhancing forecast 

accuracy and reliability compared to conventional statistical 

methods and basic neural networks. 

 

Fig. 6. The Architecture of GRU cell 

Shao et al.[75] Developed a wind speed prediction model 

using a nonparametric LSTM neural network. They 
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optimized the hyperparameters of the LSTM model with the 

firework algorithm, resulting in a reduced RMSE compared 

to traditional empirical parameter estimation methods. Yao 

et al. [76] proposed a model that combines the LSTM 

network with deep learning capabilities and fuzzy-rough set 

theory for short-term wind speed prediction. The LSTM 

neural network facilitates wind speed prediction by learning 

and processing various parameters. Aytaç et al. [53] The 

study also employed an LSTM model combined with a 

decomposition method and an optimizer for wind speed 

forecasting. The model's weights were estimated and 

optimized using Grey Wolf Optimizer (GWO), while the 

data were processed with a Weighted Moving Average 

(WMA) before being input into the model. To address 

missing data, Kalman filters were used for reconstruction, 

and interpolation was applied to prevent accuracy offsets in 

the system. Although the LSTM model addresses overfitting 

and benefits from longer memory retention, it has some 

limitations. Specifically, it requires substantial training time 

and large datasets, and it is sensitive to different weight 

initializations. Prabha et al.[77] Proposed an LSTM network 

for one-hour-ahead wind speed prediction, employing a 

clustering approach to segment the time series data into 

windy and non-windy months. This model is recommended 

for optimizing the scheduling of wind power to ensure 

stability within the power system. Fig. 5 shows the simple 

structure of the LSTM Cell. 

 

Fig. 5. Simple Structure of LSTM 

A Gated Recurrent Unit (GRU) is a recurrent neural network 

architecture that addresses the limitations of traditional 

RNNs, such as the vanishing gradient problem [78]. GRUs 

use update and reset gates to control information flow, 

enabling them to capture long-term dependencies 

effectively. The simple structure of GRU is shown in Fig.6. 

In wind speed forecasting, GRUs excel at modeling 

temporal dependencies in sequential data. They accurately 

predict wind speeds by learning complex patterns from 

historical data. GRUs' efficiency and ability to handle long-

term dependencies make them suitable for both short-term 

and long-term wind speed forecasting. Recent studies, like 

Liu et al.[79], have demonstrated GRUs' robust 

performance in this field, enhancing wind energy 

management and grid integration.  Ding et al. [78] 

introduced a bi-dimensional GRU model designed to 

improve wind power prediction. This model addresses wind 

speed error by using it as a weighting factor, incorporating 

it into the time series as an input to correct wind speed 

forecasts. The performance of the forecasting model was 

evaluated using RMSE and MAE metrics. The bidirectional 

GRU model features two gates: one for integrating new 

input and another for managing previous memory. Sun et al 

[80]. Proposed a CNN-GRU model leveraging 

meteorological data from 2019 to 2021. This model 

combines the strengths of CNN and GRU to create a deep 

convolutional gated recurrent unit network. The GRU 

component is utilized to establish temporal relationships 

between historical time points, while the final wind speed 

predictions are derived based on spatio-temporal correlation 

analysis.  

The hybrid model trend aims to enhance forecasting 

accuracy by leveraging the strengths of various model 

combinations. Integrating feature extraction methods with 

forecasting models enables effective handling of spatio-

temporal data, thereby improving both efficiency and 

computational costs for forecasting applications. By 

combining different techniques, hybrid models can better 

capture the complexities of data patterns, leading to more 

reliable and precise forecasts. 

Udeship et al.[81] Proposed a hybrid model by combining 

ARIMA and RNN-LSTM for estimating the wind speed. In 

[82], Tonglin Fu proposed a hybrid wind speed forecasting 

model known as VMD-NSCE-LSTM. This model utilizes 

VMD to decompose wind speed time series data into 

Intrinsic Mode Functions (IMFs). The NSCE method is then 

employed to assign weights to the forecasting results of each 

IMF. Finally, this pre-processed data is fed into an LSTM 

network for prediction. The accuracy of short-term wind 

speed forecasting in Huan County, Loess Plateau, China 

was improved by combining these techniques. Moreover, 

San et al. [83] proposed a wavelet decomposition-based 

hybrid DL model (CNN and LSTM) for one-step-ahead 

wind speed prediction. Historical data on wind speed, 

temperature, and relative humidity from Mandalay and 

Meiktila, Myanmar, is first filtered using wavelet 

techniques. These filtered features are then used in a CNN-

LSTM model to forecast wind speed. The proposed hybrid 

model demonstrates superior performance compared to 

other benchmark models, highlighting its effectiveness in 

wind speed prediction.  

Mohapatra et al. [84] proposed a new hybrid model by 

combining ARIMA, Kalman filter and LSTM for estimating 

wind speed. Kumar et al.[85] Introduced a sophisticated 

hybrid model incorporating Empirical Fourier 

Decomposition (EFD), LSTM, and GWO. The wind speed 

time series is decomposed via EFD into multiple sub-series 

and a residual component, which is stationary and thus 

suitable for modeling with an RNN. Each sub-series and 

residual is forecasted using LSTM, while GWO optimizes 
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the predicted outputs. This methodology significantly 

enhances prediction accuracy and stability in wind speed 

forecasting. Additionally, In [18], Hu and Ya-Lan 

introduced a novel nonlinear hybrid model, LSTM-DE-

HELM, designed to enhance wind speed prediction. This 

model integrates a LSTM, HELM, DE, and a nonlinear 

combined mechanism, providing an innovative approach to 

wind speed forecasting. Moreover, in  [86], Nguyen 

introduced a novel hybrid model EEMD 4with a CNN  and 

Bi-LSTM network, optimized through a GA. The model 

leverages GA for hyperparameter optimization to enhance 

forecasting accuracy, while EEMD aids in data 

decomposition to improve model performance. CNN-Bi-

LSTM networks are utilized for feature extraction and 

capturing both historical and future wind speed data. Yin et 

al. [87] and Yang et al. [88] implemented Q-learning to 

achieve model integration in their respective studies. 

Meanwhile, the approaches taken by authors in [89] and 

[90] involved combining multiple models through 

techniques such as weighting and data-adaptive censoring 

strategies. Additionally, Xing et al. [91] and Duan et al. [59] 

focused on data preprocessing by decomposing the raw data 

into its components, predicting each component separately, 

and subsequently integrating these predictions through 

residual correction methods. 

This hybrid approach outperforms single models, 

demonstrating superior forecasting accuracy. Table 2 

provides an overview of the DL models pertinent to wind 

speed forecasting, highlighting their advantages, 

disadvantages, and potential applications.  

 

          Table 2.  Summary of different deep learning models related to Wind Speed Forecasting. 

Model Application Pros. Cons. 

CNN 

• Pre-processing and 

feature extraction in wind 

speed forecasting. 

• Spatial data analysis from 

meteorological sensors. 

• Efficient Feature 

Extraction:  

• Handling 

Multidimensional Data. 

• Robustness to Noise 

• Inability to Capture 

Temporal 

Dependencies 

• High Computational 

Requirements 

• Complex 

Hyperparameter 

Tuning 

• Overfitting 

RNN 

• Short-term wind speed 

forecasting. 

• Sequential data analysis 

in meteorological time 

series. 

• Temporal Data 

Processing: 

• Captures Short-Term 

Dependencies 

• Limited Long-Term 

Performance 

• Complex Training: 

LSTM 

• Long-term wind speed 

forecasting. 

• Modeling and predicting 

extended temporal 

patterns in wind speed 

data. 

• Long-Term 

Dependency Handling. 

• Memory Retention. 

• Complex Architecture 

• Long Training Times 

GRU 

• Time series forecasting 

for wind speed. 

• Error modeling and 

correction in wind speed 

predictions. 

• Simpler and Faster than 

LSTMs.  

• Handles Long-Term 

Dependencies:  

• Mitigates Vanishing 

Gradient Problem 

• Lower Learning 

Efficiency 

• Slower Convergence: 

Hybrid 
• Comprehensive wind 

speed forecasting. 

• High Accuracy.  

• Versatility. 

• Computational 

Complexity 
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• Integration of spatial and 

temporal data for 

enhanced predictions. 

• Power system 

optimization and energy 

management. 

• Flexibility. • Difficult to Tune. 

2.1.4. Performance Evolution Metrics 

The classical metrics used to assess the performance of wind 

prediction, their definitions, equations, and evaluation 

criteria are detailed in Table 3. MAE assesses the average 

absolute differences between two continuous variables, 

providing a straightforward measure of prediction accuracy 

by calculating the average magnitude of the errors in a set 

of predictions, without considering their direction. MAPE, 

on the other hand, evaluates the accuracy of the prediction 

by considering both the error and the ratio of the measured 

values to the predicted values. Meanwhile, RMSE quantifies 

the standard deviation between the predicted outputs and the 

actual observation values, offering insight into the 

prediction model's accuracy by measuring the average 

magnitude of the errors. A lower MAPE value signifies 

better performance, as it indicates a smaller average 

percentage error between the predicted and actual values, 

thereby reflecting the model's precision in relative terms. 

Additionally, the coefficient of determination (R²) measures 

how well the predicted values align with the actual values, 

indicating the proportion of the variance in the dependent 

variable that is predictable from the independent variable. 

An R² value closer to 1 denotes a model with higher 

explanatory power and better fit to the data. Lastly, the 

correlation coefficient (R) evaluates the strength and 

direction of the linear relationship between observed and 

predicted values, with an R value closer to 1 indicating a 

strong positive correlation and better model performance. 

The efficiency and performance of each model are typically 

assessed using a series of indicators, the results of which are 

summarized in Table 4.

 

Table 3. Performance evolution metrics. 

Index Definition Equation 

MAE Mean absolute error  𝑀𝐴𝐸 =  
1

𝑁
∑|𝑋𝑖 − 𝑋𝑖|

𝑁

𝑖=1

 

MAPE Mean absolute percentage error 𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑋𝑖 − 𝑋𝑖

𝑋𝑖

|

𝑁

𝑖=1

 

MAPE Mean absolute percentage error  𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑋𝑖 − 𝑋𝑖

𝑋𝑖

|

𝑁

𝑖=1

× 100% 

RMSE Root mean square error 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑋𝑖 − 𝑋𝑖)

2

𝑁

𝑖=1

 

R correlation coefficient 𝑅 =
∑ (𝑋𝑖 − 𝑋𝑖)

𝑁
𝑖=1 (𝑃𝑖 − 𝑃𝑖)

√∑ (𝑋𝑖 − 𝑋𝑖)
2𝑁

𝑖=1 ∑ (𝑃𝑖 − 𝑃𝑖)2𝑁
𝑖=1

 

R2 Coefficient of determination (R2) 𝑅2 = 1 −
∑ (𝑋𝑖 − 𝑋𝑖)

2𝑁
𝑖=1

∑ (𝑋𝑖 − 𝑋𝑖)
2𝑁

𝑖=1
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Table 4. Summary of wind speed forecasting models based on deep learning. 

Ref. Models MAE MAPE RMSE R R2 Lead Time 

[64] CNN-LSTM 0.3 0.4285 0.3925    

[55] NWP-EMD-LSTM 0.1447  0.1603   50-min 

[82] VMD-NSCE-LSTM 0.0720 2.52% 0.0940    

[86] 
EEMD-GA-CNN-Bi-

LSTM 
0.039 2.235 0.028    

[18] LSTM-DE-HELM 1.133 1.000 1.100 0.93031   

[92] 
EWT-Q-LSTM-DBN-

ESN 
0.716 0.960 0.9327    

[19] VMD + IWOA-ESN 0.7452 10.2424% 0.8544  0.9287  

[75] FWA-LSTM 0.46 30.05% 0.64    

[37] VMD-CNN 0.0376  0.0499 0.9744  1h 

[20] DAD- CEEMD-GA-LSMT 0.4585 6.1188% 0.6233    

[25] single SDAE-ELM 0.68  0.89   15-min 

[69] 3D-CNN 0.0745  0.681    

[28] VMD-DE-ESN 0.1065 2.016% 0.1384   1h 

[27] GRU-CSNN  4.80% 0.2297 99.40%  1h 

[1] SEEMD-LSTM 0.0504  0..0656  0.9353 1-min 

[93] EEMD-VMD-GRU-PSO 0.116   
0.148  

 
 0.966 1-min 

[81] ARIMA-RNN-LSTM 0.097  0.124    

[35] IPSO-HHT-DBNElman 0.3864 0.0693 0.4416  0.88  

[94] 
STL-VMD-CNN-LSTM-

SA 
0.52566 0.13084 0.68537 0.97335  6 h 

[85] EFD-LSTM-GWO 0.465 15.0% 0.617  0.837  

[95] ASD+RTCN 0.2257 3.77% 0.2862   1h  

[96] 
SSA-VMD-LSTM-

ORELM 
0.2385 2.3388% 0.3079    

[97] SVMD-TF-QS 0.5598  0.7645  0.9217 1h 

[98] CEEMDAN-CNN-LSTM 0.3452 13.4191% 0.4046    

[99] VMD-PE-FCGRU 0.199 2.45% 0.030 0.996   

[100] NW-LSTM  3.322 1.0215    

[84] ARIMA-KF-LSTM 1.68  2.09    

[101] SSA-VMD-TCN-GWO 0.1062  0.1363  0.9935 10-min 
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3. Challenges and Future Directions 

Forecasting wind speed and wind power faces major 

challenges because of the inherently stochastic and non-

linear nature of wind patterns. The difficulty of precisely 

forecasting these trends is further complicated by the impact 

of several environmental and geographical factors. While 

deep learning (DL) models are capable of capturing these 

complex relationships, their performance can be 

inconsistent, particularly when dealing with diverse datasets 

and rapidly changing weather conditions. 

The quality of training model data is crucial. Errors, noise, 

and missing values in meteorological and wind farm data 

may decrease forecasting model accuracy. Despite modern 

preprocessing algorithms like WT, EMD, and VMD, data 

cleaning and preparation are challenging to ensure reliable 

predictions. The interpretability of deep learning models, 

especially hybrid models that combine different algorithms 

such as LSTM, RNN, CNN, and ANN, decreases as their 

complexity increases. Additionally, these complex models 

often require extensive computational resources, which can 

be a barrier to their widespread adoption. Overfitting is a 

common issue in deep learning models, characterized by a 

model's ability to perform well on training data but unable 

to generalize to unknown data. This issue is especially 

significant in predicting wind speed, since models may 

excessively adapt to particular situations or datasets. 

Ensuring the generality of models across various wind farms 

and geographic locations remains a challenging task. Due to 

the decreasing correlation among data point in wind speed 

data points over extended periods, making it harder for 

models to capture long-term dependencies and trends 

accurately, so achieving high accuracy in long-term wind 

speed predictions remains difficult, unlike short-term 

forecasting. 

Future research might prioritize the seamless integration of 

heterogeneous information, such as a combination of 

meteorological data with remote sensing and turbine-

specific metrics. This integration would enable the 

development of more holistic models that consider a wider 

array of elements which affect wind speed and the 

generation of power. Developing hybrid models that 

combine deep learning and statistical approaches. These 

models can leverage the strengths of different approaches. 

These models can use LSTM networks' temporal pattern 

recognition and CNNs' spatial analysis to increase 

prediction accuracy. In the future, one of the most important 

areas of study will be the development of algorithms that 

will make deep learning models more interpretable. Among 

these options are the development of tools or frameworks 

that offer insights into the process by which models create 

predictions, as well as the creation of models that manage a 

balance between complexity and transparency. 

Regularization, cross-validation, and the use of larger, more 

diverse datasets can reduce deep learning models 

overfitting. Additionally, exploring ensemble methods that 

combine multiple models could improve generalization and 

reduce the likelihood of overfitting. Future research should 

prioritize improving long-term wind speed forecasting by 

developing models that better capture long-term 

dependencies. As the use of deep learning models in wind 

speed forecasting becomes more widespread, there will be a 

rising need to guarantee that these models are scalable and 

can be implemented in real-time environments. To make 

these models more widely applicable in the energy sector, it 

will be necessary to do research on how to reduce the 

amount of processing that these models require without 

compromising their accuracy. 

4. Conclusion  

In this study, a comprehensive summary and organization of 

research on DL-based wind speed prediction that was 

carried out between the years 2018 and 2024 is presented. It 

focuse on important steps like the preparation of data, the 

extraction of features, the learning of relationships, and the 

optimization of parameters. Provided a comprehensive 

analysis as well as a discussion of the most important 

technologies and models that are involved in the essential 

process.  

Data preprocessing is essential for handling anomalies and 

identifying patterns in wind speed data. This process 

includes detecting outliers and using decomposition 

methods to manage abnormal data points and reveal trends. 

Identifying the main features and eliminating unnecessary 

features can be done through Feature extraction, whether by 

traditional statistical techniques or neural networks. 

Relationship learning which connecting input features to 

wind speed or power output, using models like nonlinear 

regression, tree-based methods, deep learning (DL), or 

hybrid approaches that combine multiple methods. By fine-

tuning hyper-parameters, parameter optimization, which is 

often accomplished via intelligent algorithms, enhances the 

model's performance. In large-scale or real-time 

applications, computational cost and efficiency must be 

balanced. Metrics such as MAE, MAPE, RMSE, R, and R² 

are crucial for assessing model accuracy and reliability. 

This review paper focuses on the recent challenges in DL-

based wind prediction and suggests future directions for 

increasing accuracy to improve the performance of DL 

models in predicting wind speed. The review helps wind 

speed forecasting experts enhance DL technology by 

studying and analyzing these challenges and trends. 
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