

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 404–411 | 404

A Transformation-Based Data Migration Method for Public

Sector's through Relational Database

Varun Varma Sangaraju

Submitted:15/05/2024 Revised: 28/06/2024 Accepted: 07/07/2024

Abstract: In this work, a procedure for converting a relational database (RDB) into an XML document is proposed. Database

migration is the process of moving schema and data from a source RDB towards the destination database of XML script, which

makes to achieved and moved through new context. The home schema is semantically enhanced and translated into a target

schema, and the data in the source database is transformed into a target database based on the new schema. The semantic

enrichment procedure is required to create an improved metadata model from the source database and captures key elements

of the destination XML schema, making it appropriate for turning RDB data into an XML document. Algorithms are designed

for constructing the target database based on a set of migration rules to translate all RDB constructions into an XML Schema,

from which RDB data is subsequently transformed. A prototype system has been developed and experimentally assessed by

testing its outcomes, looking at our accomplishments, and commenting on the findings. The recommended remedy is found to

be effective and accurate after the review of the outcomes.

Keywords: relational database, XML document, database, metadata, data transformation.

I. Introduction

Since XML has established itself as a norm for

sharing and disseminating RDB data via the Web, it

is often utilised for e-technologies and non-

traditional applications, such as multimedia, GIS,

and CAD software, among others [1]. Additionally,

this new technology has dominated the field of

information systems because to its productivity,

adaptability, and support for a wide range of unique

ideas, which has allowed it to meet the needs of

sophisticated applications that need a variety of rich

data kinds. However, a significant amount of data is

kept in RDBs, despite their limits in supporting

sophisticated structures and user-defined data types

given by the relatively new XML. These days, XML

serves as both a content-level database and a

hypertext-level standard [2]. As a result, rather than

discarding the enormous quantity of data held in

RDBs, it is preferable to enhance and transform such

data so that it may be utilised by modern systems.

Because it extends simple user-defined tags to

additional layers with intricate structures and

connections like aggregation and inheritance, XML

is a potent paradigm. In addition, XML Schema

language is a standard that offers a complex way to

describe the structures and restrictions of XML

schema and instance documents [3]. It incorporates

ideas from object-based models, like inheritance,

references, data collections, and user-defined data

types, as well as RDB models' characteristics like

integrity restrictions. The limits and issues with

XML-enabled RDBs in managing XML documents

have resulted in the emergence of native XML

databases to manage XML documents, such as

XML-Spy and eXist-db. This is due to the growing

relevance of XML.

The majority of RDB to XML conversion

techniques now in use concentrate on creating a

document type definition (DTD) schema. Because

the XML Schema standard has acquired widespread

adoption in recent years, database migration

solutions must produce target databases in

accordance with this standard.

We provide a method in this article for creating an

XML document from an existing RDB. The initial

step in this conversion is to enrich a source RDB

schema semantically by acquiring as much metadata

information as possible and to produce an enhanced

metadata model known as the Canonical Data Model

(CDM) [4], which encapsulates essential

characteristics of the target XML schema. The CDM

then directs the conversion of RDB schema and data

into the target XML database, ensuring that the

conversion process is carried out with data integrity

and consistency. In more depth, we show a set of

translation rules that are built into algorithms. These

rules translate all of an RDB's structures into an

Independent researcher and senior engineer, Dallas, TX,
USA.
varunvarma93@yahoo.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 404–411 | 405

XML Schema, which is then used to turn the data.

We created a prototype to test the algorithms and

prove the idea, which outputs an XML document. A

source RDB and a target XML document produced

by the prototype were compared in two studies to see

how they varied. The outcomes reveal that the

source and destination databases are identical, and

they also prove that the suggested approach is

technically sound and accurate conceptually [5]. Our

technique is more efficient than previous

alternatives because it generates XML schema and

data depending on user input and takes use of the

sophisticated capabilities given by the XML Schema

standard. The resulting XML documents might be

useful for disseminating and exchanging business

data across disparate platforms.

The paper is organized as follows, the existing

literature is discussed in section 2. The enhancement

of relational database is discussed in section 3 and

the performance analysis based on the proposed one

is detailed in section 4. Finally the proposed system

is being concluded in section 5.

II. Literature Survey

Because of the widespread use of XML in online

commerce, the conversion of RDBs to XML

databases has become increasingly significant [6].

There are two methods for converting RDB to XML.

The first method handles data stored in RDBs

through XML interfaces, while the second method

migrates an RDB into an XML database. The first

method focuses on schema translation, while the

second method entirely migrates both the schema

and the data into the destination database.

Existing work on converting RDBs into XML

documents imposes certain requirements and makes

specific assumptions to simplify the conversion

process, which may be a source of constraints or

vulnerability. Various approaches, for example,

employ data dictionaries and presume well-designed

RDB [7], whilst others use older RDB for migration

into XML documents [19]. Additionally, the

generated XML schemas might be a DTD [7], XML

Schema [19], or another standalone XML language

[4]. Nevertheless, a number of scholars have

suggested approaches for converting UML class

diagrams to XML [8]. We have provided a

comprehensive analysis of translation options for

different directions, as they pertain to database

conversion, in [9].

[11] Describes a suggested way to change an RDB

to an XML flat file. However, the conversion

process doesn't take into account the RDB's logical

limits. Data semantics are abstracted from an RDB

schema into an EER model and then mapped into an

XSD graph according to a technique developed by

Fong and Cheung [12]. In this method, foreign keys

are put into a structure of elements and sub-

elements, which can lead to duplication when an

element is related to more than one other element.

[13] Provided a technique for creating an XML

document from historical RDBs utilising the ER

model as an intermediary step; however, inheritance

and aggregation relationships are not taken into

account. A mapping technique between RDB tables

and DTD components was proposed [14]. However,

the technique does not make use of XML model

characteristics or take into account integrity

restrictions.

RDBs may also be published as XML documents

using certain declarative languages so they can be

transferred over the Web. SEML [10], XPERANTO

[3], and XTABLES [11] are examples of systems

that use this technique. Transforming a relational

database into XML exposes views that can be

queried using XML query languages [15]. The

outcomes of these apps are completely materialized

in XML, but the data inside them is not.

Furthermore, modifying the object view for

expressing XML data in an RDB encounters

constraints such as data collection representations

and tag naming. The SEML is an interpreter with a

markup language for mapping RDBs into XML

documents [16]. When used with (object-) RDBs,

the XPERANTO converts XML-based queries into

SQL [17]. In order to produce XML documents, the

system deconstructs SQL queries. However,

inconsistencies between XML and SQL query

syntax exist, and integrity constraints are not

considered precisely [18]. XTABLES offers a query

language that may be used to query and store XML

documents in RDBs [19].

Research into the conversion of RDBs into XML is

still in its infancy, as shown by our review of the

literature, and as a result, there are a number of areas

that need to be prioritised for future work. We have

observed that the majority of XML model migration

studies have employed source-to-conceptual-to-

target methodologies, concentrating on producing a

DTD schema and/or data. Certain semantics, such as

inheritance and aggregation relationships, are not

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 404–411 | 406

taken into account in certain works. This is primarily

due to their absence of support for such semantics in

source or target data models, such as ER model and

DTD's lack of inheritance support. The XML

Schema supports a far wider range of data types than

DTD and gives strong methods for attributes and

elements' referencing, nesting, and inheritance.

III. Enhancement Of Relational Database

Beginning with the extraction of RDB's metadata,

which includes relation names, attribute

characteristics (such as attribute names, data types,

and whether or not the attribute allows null values),

Primary Keys (PKs), Foreign Keys (FKs), and

Unique Keys (UKs), semantic enrichment of RDB

begins. For this work, we used our technique [20]

for enriching RDBs. We assume that data

dependencies are represented by PKs and FKs, and

that for each FK value, there is an existing, matching

PK value.

The procedure' last stage is locating and creating the

CDM and its associated constructs using a

categorization of the relatedness, traits, and

relationships.

Based on CDM, According to our categorization

system, classes fall into the following groups:

• Regular Strong Class (RST): a class without any

FKs in its PK.

• Secondary Strong Class (SST) is an inherited RST.

• Subclass (SUB): A class that derives from a super-

class but is not descended from by other subclasses.

• Secondary Sub-class (SSC): A sub-class that other

sub-classes inherit from.

• Secondary Relationship Class (SRC): a referred

RRC class, a M:N relationship class with

characteristics, or n-ary relationships, where n is

greater than 2.

• A regular Component Class (RCC) is a weak class

that interacts with other classes as opposed to its

parent class.

• Multi-valued Attribute Class (MAC): A class that

symbolises a multi-valued attribute.

• The Composite Attribute Class (CAC) is a class that

denotes a composite attribute.

• Regular Relationship Class (RRC): a M:N

relationship class without characteristics.

Based on the following procedure of data

abstraction, data attribute & relationship their

unique keys, Construction of CDM are performed.

A. Building the CDM from Relational

Database:

Key matching is used to categorise relations and

their properties, identify links between relations, and

calculate their cardinalities. All of them are

converted into equivalents in the CDM. Following

that, the semantically enhanced CDM may be

translated into the target schema. Each relation R is

classified based on a comparison of its primary key

(PK) with the PKs of other relations and mapped to

one of the nine CDM classifications listed above. If

C.cls:= ("XXX" | "YYY"), it is crucial to determine

whether class C is concrete or abstract after it has

been classed. C is a concrete class (i.e., abs: = false)

when some of its corresponding RDB table rows are

not members of other sub-tables, and abstract

otherwise. The detected qualities of R are mapped to

the recognised attributes of C. To create the Rel of

C relationships, R's keys are utilised. Using this data,

the connections are located, their cardinalities are

established, and these connections are then mapped

into Rel as association, inheritance, or aggregation.

Using matching data, every relationship that R is a

part of is found, mapped into a comparable

relationship rel, and added to Rel.

For example, PKs are italicised, while "*" is used to

denote FKs. Fig. 2 displays (in part) the final CDM

that was derived from the RDB while concealing its

very intricate structure. Each RDB relation is

translated into a CDM class. For instance, the

relation EMP is mapped into the CDM class EMP,

an abstract SST class with the following attributes:

ename, eno, bdate, address, spreno, and dno. Other

characteristics (such as attribute types and default

values) are not shown for space reasons. The EMP

class is 'connected with' the classes DEPT (twice),

WORKS_ON, and with itself (twice). Additionally,

it 'aggregates' the KIDS class and 'inherited by' the

SALARIED_EMP and HOURLY_EMP classes.

Also provided for each class are the cardinality c and

unique keys. Relationships are specified in each

class as RelType (where invAs and dirAs denote

association and aggregation, respectively).

B. Transforming XML Schema from CDM:

The conversion of a CDM into an XML Schema file

(.xsd) is described in this section. A collection of

mapping rules is used to convert CDM constructs

into XML Schema annotations during the translation

process. The XML target schema is defined initially,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 404–411 | 407

and the algorithmic procedures for converting CDM

constructs into their target schema counterparts are

then described. [21] has all the information.

XML Schema - Annotations, element declarations,

and type definitions (XML documents):

Additionally, the document could include additional

elements such as attribute and model groups [21].

The XML Schema language standard defines

identity constraints, which allow relationships and

integrity restrictions to be expressed among related

items. In the root element of the schema, you may

use the key element, the refkey element, and the

unique element to establish unique key constraints,

primary key constraints, and foreign key constraints,

respectively. The XML Schema has a number of

tools for dealing with inheritance relationships,

including derived types, replacement groups, and

abstract type mechanisms. Complex types may be

formed from other types by utilising the extension,

limitation, and choice keywords, which allow a sub-

class complex type to expand its super-class type

complex foundation. Furthermore, a super-class

complex type may be termed abstract if all instances

of its sub-classes inherit all of its instances. With

respect to the number of elements, minOccurs and

maxOccurs are used.

The prospective target XML Schema may be

constructed as two components as a result of this.

One is a global element, which represents the root of

the XML tree as a complicated type encompassing

schema components and restrictions. The second

component is a set containing all global complex

types. Each complex type may be used as a type of

one (or more) elements stated in the root or in other

complex types. Using the extension and base

keywords, an inheritance is expressed.

Algorithm 1: TransXML Schema Algorithm

Input: CDM

Output: XML Schema

Defining the Schema as Root → aR

Setting the GT → aG to denote the complex types

Defining the database Namespace and annotation

 Assign aR as Rn

Tuples nm, mx, Relmn

For Class CDMc belongs to CDM do

 If (CDMc class not belongs (‘NAME’ |

‘XXX’) then

 Ctype → Complex Type {ctn, base,

abst, LE }

 Ctype.(n) → Ccdm.n

 Ctype.abst → Ccdm.abs

 For Each attribute ATT belongs to

Ccdm.attcdm do

 Nm, mx, → ‘1’.

 If AT.n = ‘y’ then

 Mn = ‘0’

 end if

 if (CDMc class not belongs (‘YYY’ | ‘ZZZ’

| ‘AAA’) then

 if AT.t not belongs ‘pf’then

 CT.le → CT.le U {ATT.a,

mapping AT(attribute), mn, mx}

 End if

 Else

 CT.le → CT.le U {ATT.a, mapping

AT(attribute), mn, mx}

 End if

 End for

 // if CCDM.Class not belongs && CCDM.abs then

a.root {Primary Keys (PKs), Foreign Keys (FKs),

and Unique Keys (UKs)} → a.R U {Primary Keys

(PKs), Foreign Keys (FKs), and Unique Keys

(UKs)}CDM

For relationship belongs to ClassCDM.Relationship

do

 Get the master class based on the relationship for

ClassCDM.Relationship

If (relationship → associated && class = ‘XXX’

then

 CT.le → relationship

Else if relationship type → Aggregates then

Relatioship {mn} → Get relationship {Attributes}

 Nm, mx → min and max cardinality rel.c

 If {Class.C = ‘XXX’} then

 // NFK Type

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 404–411 | 408

 Else

 // CT.le → Union

 End if

 End if Relationship type → inherits then

Return

End Algorithm

C. Declare the schema Roots:

According to a tree data model, which comprises

two primary parts, an XML Schema is developed.

The root element is initially declared as a

complicated type that includes a series of elements

and integrity requirements. The definitions of the

complex types of the items defined beneath the root

are included in the second component. The choice of

whether to specify the schema's components locally

or globally is accessible in three typical ways.

Salami-slice, Russian-doll, and Venetian-blind

designs are examples of these strategies [22].

Depending on the needs of the application, any

technique may be used. This article uses the

Venetian Blind design to create the target XML

Schema, which specifies complicated types globally

and elements locally. This allows for the flexible

reuse of components and the nesting of element

declarations inside of type definitions.

The root element of the schema document, aRoot, is

constructed and given the name rootn with the same

name as an existing RDB schema (or an alternative

specified by the user), once the namespace and

annotations have been defined. The collection of

components that make up the root aRoot is

established by the algorithm's future

phases. Describe the set of global complex types

aGT after defining LE and its identity constraints

PKx, FKx, and UKx. From aRoot and aGT, the

target XML Schema document is produced.

D. Converting Attribute relationship and

Constraints:

 An XML Schema specifies layered complicated

kinds or restrictions utilising the key/keyref to

indicate connections between items. On the one

hand, the construction of nested types employs the

parent-child confinement strategy, which often

results in data redundancy even if it may speed up

query processing by eliminating join operations.

Furthermore, layering the parts needs user assistance

during translation. However, creating associations

with key/keyref may lead to a flat document, even if

the documents produced using this method have less

duplication. So, we use both of these methods to

reduce the amount of duplicate information in a

stacked text. Thus, links between core CDM classes

are mapped into identity constraints using the

key/keyref, whilst the MAC, CAC, and RRC classes

are translated as nested elements beneath their

parent elements.

IV. Performance Analysis

In this Trans XML Schema proposed process,

effective Trans XML Schema proposed is design

and objective of this performance analysis helps to

obtain data reliability with appropriate perception.

Here we have considered the throughput based on

records execution time and searching time based on

Activities and Data source. The existing methods

such as, base line [23] and semi-automated [24] are

compared and analysis is made to represent how the

proposed method outperforms the existing one.

 In Fig. 7, we have calculated the

throughput, which gets improved based on the

variation in the record size as it grows gradually.

While considering the fig. 7, existing method of

baseline has very high variation in the values

compared to other existing method of semi-

automated and proposed one. Here we will find a

slightly different between the exiting semi-

automated and Trans XML Schema proposed.

Finally, the proposed one will outperform the

existing ones and it give improved throughput based

on the variation in the record by considering the

MySQL database.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 404–411 | 409

Fig. 7. Throughput improvement based on Increase in the record size Via MySQL

In Fig. 8, we have calculated the throughput based

on the variation in the record size as it gradually

increases. While considering the fig. 8, existing

method of baseline has very high variation values

gets record below 2500 per Sec values as compared

to other existing method of semi-automated and

proposed one. Here we will find a different between

the exiting semi-automated and Trans XML Schema

proposed as the proposed one gets the record of

30000 per sec values. Finally, the proposed one will

outperform the existing ones and it give enhanced

throughput based on the variation in the record by

considering the PostgreSQL database.

Fig. 8. Throughput improvement based on Increase in the record size Via PostgreSQL

Based on the number of data source, new issue of

search time occurs and there will be increase in the

data source is considered. From the fig. 9, we infer

that there is an increase in the data source where

there will be an increase in the search time. Here we

have considered the data source varies from 0 to 10

to calculate the searching time in millisecond. Here

we have compared the existing method of baseline

and semi-automated which is compared with the

Trans XML Schema proposed. From the fig, 9, we

infer that the proposed system gets variation and

gets better search time even though there is a

variation in the data source and the proposed system

outperforms the existing ones.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 404–411 | 410

Fig. 9. Search Time based on the variation in the data source

In the fig. 9, we have considered the ETL activities

which varies from 20 to 140 and the search time is

calculated. When there is an increase in the number

of ETL activities, then the search time also gets

varies. Here we have compared the proposed DW

ETL process with existing baseline and semi-

Automated method and from, which we infer that

the proposed method gets effective search time and

gives some variation compared to the existing ones.

V. Conclusion

The issue of converting RDBs into XML documents

is addressed in this study. The technique is useful

since it creates not just the XML schema but also

data instance documents. The solution also makes

use of the extensive set of potent capabilities made

available by the XML Schema standard. A prototype

has been created to realise and verify the solution's

algorithms, which are also tested by comparing

query results from the input and output databases.

By comparing the variations between the XML

documents produced by the prototype and the

original RDB, we have carried out two trials to

assess our strategy. The tests assess the prototype's

inputs and outputs in terms of schema structures,

data semantics, integrity requirements, and data

instance equivalents. After analysing the query

results from both databases, it was discovered that

they were identical. As a result, we infer that the

source and target databases are comparable. Also,

the results show that the answer is possible,

effective, and right, both in theory and in practise.

References:

[1] Abdelhafz BM, Elhadef M (2021) January.

Sharding Database for Fault Tolerance and

Scalability of Data. In 2021 2nd International

Conference on Computation, Automation and

Knowledge Management (ICCAKM) (pp. 17–

24). IEEE.

[2] Abourezq M, Idrissi A (2016) Database-as-a-

service for big data: An overview. International

Journal of Advanced Computer Science and

Applications (IJACSA), 7(1).

[3] Agarwal S, Rajan KS (2017) Analyzing the

performance of NoSQL vs. SQL databases for

Spatial and Aggregate queries. In Free and

Open Source Software for Geospatial

(FOSS4G) Conference Proceedings (Vol. 17,

No. 1, p. 4).

[4] Singh et al. Journal of Cloud Computing (2022)

11:53 Page 16 of 17 4. Agarwal T, Quelle H,

Ryan C (2020) Stock Trend Evolution.

University of Arizona.

[5] Ahmad AAS, Andras P (2019) Scalability

analysis comparisons of cloudbased software

services. Journal of Cloud Computing 8(1):1–

17

[6] Ahmad K, Alam MS, Udzir NI (2019) Security

of NoSQL database against intruders. Recent

Patents on Engineering 13(1):5–12

[7] Compose, An IBM Company. Alba, L.,

November 2016. Building OHLC Data in

PostgreSQL. Available from

https://www.compose.com/articles/building-

ohlc-data-in-postgresql/. Accessed 26 Oct

2021.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 404–411 | 411

[8] Antas J, Rocha Silva R, Bernardino J (2022)

Assessment of SQL and NoSQL Systems to

Store and Mine COVID-19 Data. Computers

11(2):29

[9] Bagui S, Nguyen LT (2015) Database sharding:

to provide fault tolerance and scalability of big

data on the cloud. International Journal of

Cloud Applications and Computing (IJCAC)

5(2):36–52

[10] BalaMurali A, Sravanthi PS, Rupa B (2020)

January. Smart and Secure Voting Machine

using Biometrics. In 2020 Fourth International

Conference on Inventive Systems and Control

(ICISC) (pp. 127–132). IEEE.

[11] Gartner Bala R, Gill B (2021) Magic Quadrant

for Cloud Infrastructure and Platform Services.

Available from

https://www.gartner.com/doc/reprints?id=1-

271OE4VR&ct=210802&st=sb. Accessed 26

Oct 2021.

[12] Balusamy B, Kadry S, Gandomi AH (2021)

NoSQL Database. Big Data: Concepts,

Technology, and Architecture, Wiley, pp. 53–

81.

[13] Beaulieu A (2009) Mary E Treseler (ed.).

Learning SQL (2nd ed.).Sebastopol, O’Reilly.

ISBN 978–0–596–52083–0.

[14] GitHub Singh B (2021) Cloud based evaluation

of databases. Available from

https://github.com/handabaldeep/cloud-based-

evaluation-of-databases. Accessed 26 Oct

2021.

[15] Bhatti HJ, Rad BB (2017) Databases in cloud

computing. Int J Inf Technol Comput Sci

9(4):9–17

[16] Cao Z, Dong S, Vemuri S, Du DH (2020)

Characterizing, modeling, and benchmarking

rocksdb key-value workloads at facebook. In

18th {USENIX} Conference on File and

Storage Technologies ({FAST} 20) (pp. 209–

223).

[17] Chakraborty S, Paul S, Hasan KA (2021)

January. Performance Comparison for Data

Retrieval from NoSQL and SQL Databases: A

Case Study for COVID-19 Genome Sequence

Dataset. In 2021 2nd International Conference

on Robotics, Electrical and Signal Processing

Techniques (ICREST) (pp. 324–328). IEEE.

[18] Chauhan VP (2019) Google Big Table: A

Change to Data Analytics. International Journal

of Information Security and Software

Engineering 5(1):5–9

[19] Chawathe SS (2019) September. Cost-Based

Query-Rewriting for DynamoDB: Work in

Progress. In 2019 IEEE 18th International

Symposium on Network Computing and

Applications (NCA) (pp. 1–3). IEEE.

[20] Chen JK, Lee WZ (2019) An Introduction of

NoSQL Databases based on their categories and

application industries. Algorithms 12(5):106

[21] Codd EF (1970) A Relational Model of Data for

Large Shared Data Banks. Commun ACM

13(6):377–387

[22] Cooper BF, Silberstein A, Tam E,

Ramakrishnan R, Sears R (2010)

Benchmarking cloud serving systems with

YCSB. In Proceedings of the 1st ACM

symposium on Cloud computing (pp. 143–154).

[23] DB-Engines. DB-Engines Ranking 2021.

Available from https://db-

engines.com/en/ranking. Accessed 8 Oct 2021.

[24] Dean J, Ghemawat S (2008) MapReduce:

simplifed data processing on large clusters.

Commun ACM 51(1):107–113

