

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 412–421 | 412

DM-DATA Model with onsite Oracle system and AWS to Migrate

Web Services through Oracle Database

Varun Varma Sangaraju

Submitted:13/05/2024 Revised: 28/06/2024 Accepted: 05/07/2024

Abstract: AWS, or Amazon Web Services, is a cloud computing platform that is adaptable, affordable, and simple to use.

Relational database management systems, or RDBMS, are frequently used in the Amazon cloud. Derive how to set up Oracle

Database on AW and Oracle Database may be operated on Relational Database Service (Amazon RDS). To show how you

can operate Oracle Database on Amazon RDS, as well as to inform you of the benefits of each strategy and how to deploy and

monitor your Oracle database, as well as how to handle scalability, performance, backup and recovery, high availability, and

security in Amazon RDS. In this paper, proposed the DM-DATA Model to establish an Emergency Recovery solution with an

onsite Oracle system and AWS and to migrate your existing Oracle database to AWS. We provide a strategy for designing an

architecture that protects you against hardware failures, datacenter issues, and disasters by using replication technologies stock

market data. In the performance analysis, there are several alternatives are choose to optimize the performance of the propose

infrastructure with Oracle database based on certain metrics like, disk I/O management, sizing, database replicas, etc.

Keywords: sizing, Oracle, architecture, AWS, DM-DATA

I. Introduction

In the 1600s, the East India Company founded the

world's first stock market [1]. A stock exchange was

a place where current and potential investors would

gather to swap shares. On a trading floor, open

outcry was the primary form of communication. It

involves screaming and hand gestures to convey

information about the directives. For centuries, that

model remained mostly unaltered. With the advent

of internet access and more potent computers in the

late 1980s and early 1990s, the drive towards

automation supplanted the remaining vestiges of

open outcry. With the advent of computerized

trading, the trading landscape shifted dramatically in

the early 2000s. About 80% of the cash stock

markets were entirely electronic by the end of 2019

[2].

Modern computer technology has made it possible

to process orders more quickly, reduce human error,

and conduct more thorough market research.

Modern trading relies on constant and incredibly

rapid analysis of extremely large quantities of data

[3], which is frequently in time series consisting of

a date, a unique identifier (such as a stock symbol),

and values observed for an entity on that day. One

such variety is OHLC data, which captures the

Open, High, Low, and Close prices of an instrument

over a specified period.

To derive patterns and trading signals from market

data, OHLC data are particularly crucial. The

rationale for recording these prices rather than all

intra-daily prices is that they have a higher

informative value. OHLC data may be used to define

and anticipate asset price volatility [4] and are

frequently less expensive to get and work with than

high-frequency tick data, which consists of bid and

ask prices aggregated from many exchanges. In fact,

[5] demonstrates that volatility models constructed

using daily OHLC time series data may offer

accuracy comparable to that of models constructed

using high-frequency data. As a result, investors

continue to buy and sell by precise forecasts of

OHLC data [6].

To undertake such studies, a time series

management system or a time series database is

required. Because OHLC data are typically

generated in the application layer by a programmer

(or script) that processes measurements of stock

price movements [7], it is critical to store this data

in a time series database where it is easy and fast to

store, query, and perform operations such as sum,

mean, and median on multiple records of data.

Furthermore, because financial time series databases

may quickly become quite big — there are several
Independent researcher and senior engineer, Dallas, TX,
USA.
varunvarma93@yahoo.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 412–421 | 413

thousand equities listed on the New York Stock

Exchange alone — it is vital to have an efficient

database system capable of doing the needed large-

scale analytics processing. Because standard

database systems, such as Relational Database

Management Systems, are frequently suboptimal

and generally unsuitable for time series data [8].

These time series databases could appear promising,

but they lack the widespread support of SQL

(Structured Query Language) or NoSQL (Not Only

SQL) databases and are sometimes quite

challenging to move to.

In order to overcome the problem of hardware

failures, datacenter issues, and disasters in the

database, data migration is performed to handle

scalability, performance, backup and recovery, high

availability, and security among the data. The work

contribution is summarized as below,

• DM-DATA framework is establishing an

Emergency Recovery solution with an onsite Oracle

system and AWS and to migrate your existing

Oracle database to AWS, which can handle

scalability, performance, backup and recovery, high

availability, and security in Amazon RDS.

• Transfer an Oracle database from a local installation

to Amazon RDS for Oracle, which can migration

data with fulfilled business goals, such as decreased

downtime migration.

• The automation of file transfers from on-premises to

Amazon RDS for Oracle databases using Amazon

S3, Lambda, and AWS Secrets Manager

• To optimize the performance of the propose

infrastructure with Oracle database based on certain

metrics like, disk I/O management, sizing, database

replicas, etc.

II. Literature Survey

This section first reviews the development of both

relational and non-relational databases and

highlights their respective strengths. Second, it

analyses the outcomes of experiments conducted on

various case studies to assess their individual

performance. Finally, as the main area of interest of

this study is the usage of databases to store and

process large volumes of financial trading data,

usually on a hybrid cloud architecture, this review

explores then their storage costs and the

characteristics of their cloud implementation.

A. Existing Data Modeling:

A new model of data called relational database

where all data are represented in terms of tuples and

attributes, formally described using tabulated [9].

The platforms used to manage these databases are

known as Relational Database Management

Systems (RDBMS). Most of them employ SQL

(Structured Query Language) as their query

language [10]. Relational databases rely on the

ACID (Atomic, Consistent, Isolated, and Durable)

properties to operate efficiently and correctly. This

guarantees data validity despite errors, power

failures and other mishaps.

Relational databases perform best with structured

data, but they have a limited or restricted ability to

represent complex semi-structured or unstructured

data. A study has shown that it is difficult to store

clinical visit data in an RDBMS due to their semi-

structured information and dynamic changing

properties [11]. Indeed, usage of relational databases

for such data leads to creating fields that are mostly

empty resulting in inefficient storage and poor

performance. Moreover, another limitation of

relational databases is their inability to store

increasing volumes of real-time data [12]. As in the

cases of national votes and fingerprints data, the

amount collected increases drastically both in terms

of volumes (Terabytes of data) and velocity (rate of

data generated, in Gigabytes/day), which eventually

requires a large number of tables to accommodate

the growth in data. Actually, the usage of a relational

database in such scenarios becomes inappropriate

because of its inability to scale with the ever-

growing real-time data [83]. Finally, relational

databases cannot take advantage of modern

advancements in distributed computing as they are

not designed to function with data partitioning [13].

The non-relational databases were created as a

means to offer high performance (both in terms of

speed and size) and high availability at a price of

losing the ACID trait of relational databases and

instead offering the weaker BASE (Basic

Availability, Soft state, Eventual consistency)

feature [14]. These databases store semi-structured

and structured data in a non-complex data model

such as key-value pairs, which consists of two parts,

a string which represents the key and the actual data

which is referred to as value. These keys are then

used as indices, making the query process faster than

the RDBMS [15]. Non-relational databases started

becoming popular with the internet boom in the mid-

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 412–421 | 414

1990s as relational databases could not handle the

flow of information demanded by users [16]. Since

then, numerous companies and organisations have

developed their own non-relational databases. Many

studies have shown that non-relational databases

enable better performance in terms of speed and

flexibility. Indeed, availability, real-time response,

advanced data analysis, and the ability to manage

bigdata remain weaknesses which are displayed by

relational databases [17]. Moreover, these

shortcomings are overcome by the latest NoSQL

systems which have been designed to address the

challenges associated with dealing with large

amounts of data. As a consequence, they have

become the option of choice for applications

involving geographically distributed data, large

amounts of data, or scalability requirements [18].

This is particularly the case for services relying on

Internet of Things (IoT) technology. For example, in

a recent case study where IoT enabled sensors

provide measurements to monitor manufacturing

defects in the automobile industry, usage of a

NoSQL database allowed real-time data processing

and, thus, the detection of faults at early stages of the

manufacturing process [19].

Unlike relational databases that can only scale

vertically by adding more resources to the current

server, non-relational databases also support and

embrace horizontal scaling. This is achieved by

adding more machines to the network and then

dividing the workload or in this case distributing the

data among them [20].

Despite this, the latest Database Engine rankings

[21] (based on top searches on various search

engines, Stack Overflow, Google trends, job offers

or number of mentions in social networks) reveals

that relational databases remain prevalent: there are

only three non-relational databases in the top ten and

none of them are in the top four! This is probably

because relational systems have been used

extensively for many decades and are trusted for

maintaining accurate transactional records, legacy

data sources, and many other use cases within

organizations of all sizes. In addition, non-relational

databases lack a standard query language: there are

more than 200 implementations, each providing its

own language and interface that developers and

users must learn. Finally, a major challenge of non-

relational databases is their weak security

mechanisms. Indeed, they were initially designed

without security being considered as an essential

feature. Thus, there have been growing concerns

related to data privacy in NoSQL systems which

results from compromises made for better

performance and scalability [32]. Whereas relational

databases have inbuilt authentication instead of

relying of a middleware application for

authentication or authorization of the data source, by

design, non-relational databases offer limited

security and place more emphasis on data handling.

Indeed, the feature of distributed data, termed as

‘sharding’ [22], which is considered the key of their

success, is associated with a concern on how the

confidentiality and privacy of data is maintained

across systems.

B. Experimental Comparison on Public

Database:

Many experiments have been conducted to compare

characteristics of non-relational and relational

databases including their scalability, performance,

flexibility, power of querying, and security.

Experiments conducted a decade ago proved quite

inconclusive as performance varied significantly

according to the type of operation performed and the

type of data used. Focusing on processing a modest

amount of structured data, it was shown that

MongoDB – a popular non-relational database –

performed at least as well as MySQL with

exceptions of aggregate functions (such as medians,

modes and sums). A more recent study analysing

performance of non-relational databases for spatial

and aggregate functions suggests that the

performance of MongoDB has since improved [3].

Focusing on applications handling large volumes of

data (i.e., terabytes), it was concluded that non-

relational databases were preferable because they

offer flexible architectures which can accommodate

a large variety of data storage needs [68, 70]. Similar

results were obtained in a performance comparison

of various types of non-relational databases against

MySQL [23]. Focused on the storage of

unstructured data of hospital patients during

COVID-19, various forms (Key-value stores, Graph

based, Column-oriented, Document) of non-

relational databases were evaluated based on their

data model, CAP (Consistency, Availability, and

Partitioning) theorem, suitability for being

distributed across multiple servers and other factors.

The authors eventually designed an algorithm able

to suggest the most suitable database type according

to the hospital’s needs. Also targeting a COVID-19

dataset, a recent study investigated data retrieval

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 412–421 | 415

from an unstructured large volume dataset, the

COVID-19 Genome Sequence dataset [17]. It

concluded that non-relational databases outperform

SQL databases in aspect of data load time.

Moreover, it indicated that non-relational queries

were easier to formulate than SQL ones. This has

been further supported by another study of a dataset

of COVID-19 patients, where the NoSQL

MongoDB database showed superior performance

over other databases, demonstrating that it is more

appropriate for processing large amounts of data [8].

In terms of privacy and security, not only do most

non-relational databases not provide encryption

mechanisms to protect user-related sensitive data,

but also by default the inter-node communication is

not encrypted for data in transit [24]. A recent

review of advancements for these databases to

improve the security reported their use of Kerberos

(a computer-network authentication protocol) to

authenticate clients and data nodes. It also proposed

solutions to deal with remaining shortcomings such

as usage of an Identity Provider to authenticate and

communicate where the user needs to login using a

Single Sign-on method [91]. In addition, researchers

have designed a Security-as-a-Service model for

NoSQL databases (SEC-NoSQL) which supports

execution of query over encrypted data with

guaranteed level of system performance.

C. Data storage costs and cloud

implementation

Another important aspect when comparing different

types of databases is the costs of running the

database; this is particularly significant for large

organisations which deal with large volumes of data

on a daily basis. Focusing on financial trading data,

four different databases were used for comparison in

[25]. While MongoDB proved the fastest to read and

write end-of-day OHLC (Open, High, Low, Close)

data — the SQL solutions were 1.5 × to 3 × slower

— in terms of costs MongoDB was definitely the

most expensive due to its commercial licensing

costs.

To reduce costs, more and more databases run on

cloud platforms as they offer low-cost servers and

high-bandwidth networks delivering better

reliability, durability, scalability and accessibility of

data. As mentioned before, as scalability is a

particular strength of non-relational databases, their

presence on Cloud allows their growth in a matter of

just a few clicks. Not only do the main cloud

providers support and manage a variety of relational

databases (such as the popular Oracle, MySQL, and

PostgreSQL), but they have also been developing

their own proprietary non-relational databases to

address their own needs, e.g., BigTable by Google

or DynamoDB by AWS (Amazon Web Services)

[25]. Indeed, for example, in 2006, Google needed a

solution for its ever-growing collection of semi-

structured data that was distributed across multiple

data centres worldwide. As the relational model they

had been using was unable to accommodate such a

large pool of data efficiently enough, they created

BigTable, a document-based database. Nowadays, it

handles most of their infrastructure [26].

Advancements in non-relational architecture

motivated Yahoo to develop criteria to

quantitatively evaluate non-relational database

systems. Its Cloud Serving Benchmark is the most

widely used and well-known benchmarking

framework for evaluating NoSQL databases with

varying workloads.

In [27], the author has surveyed non-relational

databases on Cloud and recorded their features in

terms of the storage type (Column, Key-value,

Document or Graph), the license type (Commercial

or Open source) and the programming language

used to develop them. He reported that, out of the 15

cloud databases surveyed, MongoDB, Cassandra

and HBase were the most used.

Show how financial markets have evolved in the last

decade and have become more complex and

interconnected than ever before. One cannot get a

comprehensive view of a portfolio with one source

of data. In the financial markets the volume of the

data grows exponentially: with the growing

capabilities of computers, many companies have

used a fast-increasing amount of historical data to

feed predictive models, forecasts, and trading

impacts. Advances in big storage and processing

frameworks combined with the cloud capabilities

have helped financial services firms to unlock the

value of data, improve their volumes and,

commissions, and reduce the cost-of-trades [28].

Moreover, a recent survey has shown the value of

‘alternative data’, i.e., data originating from non-

financial sources such as social media, GPS, or

sensor data, for predicting stock prices and

discovering new price movement indicators.

Consequently, capital firms need to store and

stream, in various formats, enormous amount of

data, and effectively link the data together to get an

actionable insight. Big data processing frameworks,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 412–421 | 416

which offer parallel and distributed algorithms

running on clusters of servers such as Map Reduce,

Hadoop, Spark, have fulfilled their requirements at

least in terms of carrying out their batch processing

tasks [29] and [30]. With the increase in computing

power and decrease in data storage costs, collecting

and processing large amounts of data has become an

increasingly viable and exercised routine in the

financial industry. Still, it is important for such

organizations to select their database carefully so

that it can, not only store and process big data, but

also handle their growth in the long term.

III. Problem Definition

As previous studies have shown, no database system

provides best performance in all scenarios. On one

hand, relational databases deliver accuracy and

redundancy by following the ACID properties. On

the other hand, non-relational databases support

large and distributed datasets with frequently

changing schemas providing better performance and

flexibility, which makes them particularly attractive

for industries requiring high-performance analytics

capabilities and distributed large data scalability.

Currently, efforts are being made to merge the two

database systems to offer the best of both worlds,

where, for example, a hybrid model would provide

the flexibility that is prevented by the rigid relational

database framework. Most recently, a hybrid

database was implemented where simple requests

(read, insert) were served by MongoDB, while

complex operations, such as joins with filtering the

requests, were forwarded to PostgreSQL. These

hybrid models integrate SQL and NoSQL databases

in one system to eliminate the limitations of

individual systems. Even though they have produced

promising results, their adoption has hardly started.

Indeed, not only do they make maintenance more

complex as two different databases must be handled,

but also their associated costs are added. Moreover,

a hybrid interface must be written to bridge the two

databases together. Finally, there is no readily

available solution that an organisation can install

and run like any other database system.

Considering all the limitations of database systems

when dealing with big time-series data and the

requirement to use a system that can scale on-

demand, in the next section we will be proposing a

set of criteria to consider when selecting a database.

We will then use a custom benchmarking tool for

recording the results of our experiments and rating

each database against the criteria to propose the best

performing database.

IV. DM-DATA Model

A. Integrating the Amazon RDS with Oracle

Database:

A relational database in the cloud may be set up, run,

and scaled more easily with the help of Amazon

RDS, a web service. Installation, disc provisioning

and maintenance, patching, minor version updates,

unsuccessful instance replacement, as well as

backup and recovery of your Oracle database are all

automated by Amazon RDS. Amazon RDS also

supports automatic Multi-AZ (Availability Zone)

synchronous replication, allowing you to create a

highly available environment controlled entirely by

AWS. If you want Amazon to administer your

Oracle database on a daily basis, Amazon RDS is the

best option. This allows you to concentrate on

higher-level activities like schema optimization,

query tuning, and application development as in

Figure 1.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 412–421 | 417

Figure 2. DM-DATA Model with data migration with Amazon S3

Either a physical migration strategy or a logical

migration strategy can be used to migrate Oracle

databases. Because duplicating or replicating the

data at the block level provides simplicity and

assurance, a physical migration technique is

frequently used. A data validation exercise is often

not required when using a physical transfer

approach. On the other side, a logical migration

method makes it easier to migrate with less

downtime and between major versions. Validating

data is a vital phase in the migration process and

logical migration may need more time and effort to

validate the procedure. You can use one of these

solutions to migrate from Amazon RDS for Oracle

to Amazon RDS Custom for Oracle. But in this post,

we focus more on the physical migration method.

The logical migration strategy is covered in detail in

the Strategies for Migrating Oracle Databases to

AWS report, which also applies to the transition

from Amazon RDS for Oracle to Amazon RDS

Custom for Oracle.

For physical migration, we utilize RMAN backup to

copy the database between Amazon RDS for Oracle

and Amazon RDS Custom for Oracle. Backups can

be transported from source to target utilising an

Amazon Simple Storage Service (Amazon S3)

bucket, Amazon Elastic File System (Amazon EFS),

or a database connection.

The set-up of Data Guard or automatic log shipping

and application is not supported by Amazon RDS

for Oracle. However, downtime for the migration

can be decreased by transferring and applying

archived logs from the source RDS for Oracle

instance to the target RDS Custom for Oracle

instance until cutover time. Figure 2 depicts the

physical migration utilizing Amazon S3 integration.

You can use different tools for logical transfer, such

as AWS Database transfer Service (AWS DMS),

Oracle Golden Gate, and Oracle Data Pump, to load

the data and replicate events. Reference architecture

for logical migration employing RMAN backup for

initial load and AWS DMS for replication of

continuing transactions is shown in the diagram

below. If a physical migration plan does not fulfill

your business goals, such as decreased downtime

migration, you may use a logical migration approach

to move from Amazon RDS for Oracle to Amazon

RDS Custom for Oracle. The procedure for logical

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 412–421 | 418

migration is covered in Transfer an Oracle database

from a local installation to Amazon RDS for Oracle.

B. Oracle databases' file transfers to

Amazon RDS:

External files are used as input in many integrated

Oracle applications. Oracle databases access such

files via a logical entity known as a database

directory. Oracle databases employ database

directories to access data pump backups, external

tables, reading logs, and more, in addition to

application files. The database administrator must

move the files to be processed from one server to

another in the conventional on-premises client-

server architecture, log in to the database server to

construct an Oracle database directory object, and

use the aforementioned tools. With Amazon

Relational Database Service (Amazon RDS) for

Oracle, some of these jobs are taken care of for you,

as we show throughout this post.

Benefit from a managed service solution with

Amazon RDS for Oracle, which makes it simple to

set up, run, and grow Oracle deployments in the

AWS Cloud. Amazon RDS for Oracle enables you

to access files using database directory objects and

native tools in the same manner that you can with

on-premises Oracle databases. The primary

distinction between Amazon RDS for Oracle and

on-premises Oracle deployments is that Amazon

RDS for Oracle is a managed service, therefore

access to the underlying host is restricted to provide

a completely managed service. Because you can't

access the underlying operating system for your

database in Amazon RDS for Oracle, we need to

create a solution that uses Amazon Simple Storage

Service (Amazon S3) and AWS Lambda to load

files into Amazon RDS for Oracle storage. If the

quantity or amount of files to be moved to your

Amazon RDS for Oracle database is small or

infrequent, you can manually move the files to

Amazon S3, download the files from Amazon S3,

and then load or process the files in the database.

However, when your business logic requires

continuous importing and processing of a large

number of files, automating this process enables IT

organizations to devote their time to tasks that

provide greater value to the company.

The goal of this post is to show how Amazon S3 and

Lambda can be used to automatically move files

from a host (on-premises or in the cloud) to an object

database directory inside an Amazon RDS for

Oracle database local storage.

The automation of file transfers from on-premises to

Amazon RDS for Oracle databases using Amazon

S3, Lambda, and AWS Secrets Manager. After the

files have been posted to S3 buckets, an S3 event

starts a Lambda function that gets the Amazon RDS

for Oracle database keys from Secrets Manager and

copies the files to the Amazon RDS for Oracle

database's local storage. This procedure is depicted

in the Figure 3.

Figure. 2. Oracle databases' file transfers to Amazon RDS

Procedure to perform file transfers from Oracle databases to Amazon RDS

• Create an S3 bucket for file uploads to Amazon RDS

for Oracle database local storage.

• Create a Secrets Manager secret for retrieving

connection credentials to the Amazon RDS for

Oracle database.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 412–421 | 419

• Create AWS Identity and Access Management

(IAM) rules and roles required by the solution to

interface with Amazon RDS for Oracle, Secrets

Manager, Lambda, and Amazon S3.

• Develop a Lambda function for automating file

transfers from Amazon S3 to Amazon RDS for

Oracle local storage.

• Set up S3 events to call the method whenever a new

file is uploaded.

• Validate the answer.

V. Analysis The Perfromance On Dm-Data

Model

There are several alternatives are choose to optimize

the performance of the propose infrastructure with

Oracle database based on certain metrics like, disk

I/O management, sizing, database replicas, etc.

Many variables influence the performance of a

relational database instance on AWS, including the

Amazon RDS instance type, database software

setup, application workload, and, for Oracle

databases operating on Amazon RDS instances,

storage configuration. The choices you have to

optimize the performance of the AWS infrastructure

on which your Oracle database is operating are

described in detail.

A. Instance Sizing:

Increasing the performance of a database requires an

awareness of which of the server's resources is the

performance bottleneck. If the database

performance is constrained by CPU, memory, or

network throughput, you can increase memory,

compute, and network performance by selecting a

bigger instance type. For many clients, improving

the speed of a single database instance is the

simplest approach to improve the entire

performance of their application. One way to do this

is with vertical growth. You accomplish this by

adjusting the instance size to meet the database's

hardware performance requirements. Vertical

scaling in the Amazon RDS and Amazon EC2

environments is relatively simple.

the capability in Amazon RDS to select the instance

type that best suits your workload. Various database

instance classes are supported by Amazon RDS.

They now span the size spectrum from the

incredibly tiny Micro to the High-Memory

Quadruple Extra Large, which has eight virtual

cores, 68GB of memory, and a large I/O capacity.

Regarding CPU, memory, and I/O capacity, the

Amazon RDS instance classes are nearly

comparable to the Micro, Standard, and

HighMemory Amazon EC2 instance kinds.

B. Database Replicas:

Spreading the burden of database queries over

numerous instances is one way to get better

performance. Scaling out or horizontal scalability

are two terms used to describe this method. Amazon

RDS presently does not support Oracle read-

replicas. To boost database throughput, expand

vertically (use bigger instance types). As an

alternative, you may "shard" your database, which

divides it horizontally among many Amazon RDS

servers. Data might be shared based on real-world

parameters (for example, product category and

consumer region), or it could be distributed among

different shards using a hashing technique.

VI. Conclusion

In order to overcome the problem of hardware

failures, datacenter issues, and disasters in the

database, data migration is performed to handle

scalability, performance, backup and recovery, high

availability, and security among the data. The work

contribution is summarized as below, DM-DATA

framework is establishing an Emergency Recovery

solution with an onsite Oracle system and AWS and

to migrate your existing Oracle database to AWS,

which can handle scalability, performance, backup

and recovery, high availability, and security in

Amazon RDS. Transfer an Oracle database from a

local installation to Amazon RDS for Oracle, which

can migration data with fulfilled business goals,

such as decreased downtime migration. The

automation of file transfers from on-premises to

Amazon RDS for Oracle databases using Amazon

S3, Lambda, and AWS Secrets Manager

To optimize the performance of the propose

infrastructure with Oracle database based on certain

metrics like, disk I/O management, sizing, database

replicas, etc. AWS offers two deployment options

for Oracle databases as Amazon RDS. We have

covered performance, high availability, monitoring,

and security management for both settings in this

whitepaper. You will gain from the benefits of using

Amazon Web Services (AWS), including Oracle

instances and storage that may be provisioned

quickly and easily on AWS with no capital outlay

and Oracle Database on AWS, a service provided by

Amazon Web Services (AWS) as High security,

durability, and availability, as well as low cost Pay-

per-use pricing.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 412–421 | 420

References:

[1]. Abdelhafz BM, Elhadef M (2021) January.

Sharding Database for Fault Tolerance and

Scalability of Data. In 2021 2nd International

Conference on Computation, Automation and

Knowledge Management (ICCAKM) (pp. 17–24).

IEEE.

[2]. Abourezq M, Idrissi A (2016) Database-as-

a-service for big data: An overview. International

Journal of Advanced Computer Science and

Applications (IJACSA), 7(1).

[3]. Agarwal S, Rajan KS (2017) Analyzing the

performance of NoSQL vs. SQL databases for

Spatial and Aggregate queries. In Free and Open

Source Software for Geospatial (FOSS4G)

Conference Proceedings (Vol. 17, No. 1, p. 4).

[4]. Singh et al. Journal of Cloud Computing

(2022) 11:53 Page 16 of 17 4. Agarwal T, Quelle H,

Ryan C (2020) Stock Trend Evolution. University of

Arizona.

[5]. Ahmad AAS, Andras P (2019) Scalability

analysis comparisons of cloudbased software

services. Journal of Cloud Computing 8(1):1–17

[6]. Ahmad K, Alam MS, Udzir NI (2019)

Security of NoSQL database against intruders.

Recent Patents on Engineering 13(1):5–12

[7]. Compose, An IBM Company. Alba, L.,

November 2016. Building OHLC Data in

PostgreSQL. Available from

https://www.compose.com/articles/building-ohlc-

data-in-postgresql/. Accessed 26 Oct 2021.

[8]. Antas J, Rocha Silva R, Bernardino J

(2022) Assessment of SQL and NoSQL Systems to

Store and Mine COVID-19 Data. Computers

11(2):29

[9]. Bagui S, Nguyen LT (2015) Database

sharding: to provide fault tolerance and scalability

of big data on the cloud. International Journal of

Cloud Applications and Computing (IJCAC)

5(2):36–52

[10]. BalaMurali A, Sravanthi PS, Rupa B

(2020) January. Smart and Secure Voting Machine

using Biometrics. In 2020 Fourth International

Conference on Inventive Systems and Control

(ICISC) (pp. 127–132). IEEE.

[11]. Gartner Bala R, Gill B (2021) Magic

Quadrant for Cloud Infrastructure and Platform

Services. Available from

https://www.gartner.com/doc/reprints?id=1-

271OE4VR&ct=210802&st=sb. Accessed 26 Oct

2021.

[12]. Balusamy B, Kadry S, Gandomi AH

(2021) NoSQL Database. Big Data: Concepts,

Technology, and Architecture, Wiley, pp. 53–81.

[13]. Beaulieu A (2009) Mary E Treseler (ed.).

Learning SQL (2nd ed.).Sebastopol, O’Reilly. ISBN

978–0–596–52083–0.

[14]. GitHub Singh B (2021) Cloud based

evaluation of databases. Available from

https://github.com/handabaldeep/cloud-based-

evaluation-of-databases. Accessed 26 Oct 2021.

[15]. Bhatti HJ, Rad BB (2017) Databases in

cloud computing. Int J Inf Technol Comput Sci

9(4):9–17

[16]. Cao Z, Dong S, Vemuri S, Du DH (2020)

Characterizing, modeling, and benchmarking

rocksdb key-value workloads at facebook. In 18th

{USENIX} Conference on File and Storage

Technologies ({FAST} 20) (pp. 209–223).

[17]. Chakraborty S, Paul S, Hasan KA (2021)

January. Performance Comparison for Data

Retrieval from NoSQL and SQL Databases: A Case

Study for COVID-19 Genome Sequence Dataset. In

2021 2nd International Conference on Robotics,

Electrical and Signal Processing Techniques

(ICREST) (pp. 324–328). IEEE.

[18]. Chauhan VP (2019) Google Big Table: A

Change to Data Analytics. International Journal of

Information Security and Software Engineering

5(1):5–9

[19]. Chawathe SS (2019) September. Cost-

Based Query-Rewriting for DynamoDB: Work in

Progress. In 2019 IEEE 18th International

Symposium on Network Computing and

Applications (NCA) (pp. 1–3). IEEE.

[20]. Chen JK, Lee WZ (2019) An Introduction

of NoSQL Databases based on their categories and

application industries. Algorithms 12(5):106

[21]. Codd EF (1970) A Relational Model of

Data for Large Shared Data Banks. Commun ACM

13(6):377–387

[22]. Cooper BF, Silberstein A, Tam E,

Ramakrishnan R, Sears R (2010) Benchmarking

cloud serving systems with YCSB. In Proceedings

of the 1st ACM symposium on Cloud computing

(pp. 143–154).

[23]. DB-Engines. DB-Engines Ranking 2021.

Available from https://db-engines.com/en/ranking.

Accessed 8 Oct 2021.

[24]. Dean J, Ghemawat S (2008) MapReduce:

simplifed data processing on large clusters.

Commun ACM 51(1):107–113

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 412–421 | 421

[25]. DeCandia G, Hastorun D, Jampani M,

Kakulapati G, Lakshman A, Pilchin A,

Sivasubramanian S, Vosshall P, Vogels W (2007)

Dynamo: Amazon’s highly available key-value

store. ACM SIGOPS operating systems review

41(6):205–220

[26]. Deka GC (2013) A survey of cloud

database systems. It Professional 16(2):50–57

[27]. ElDahshan KA, AlHabshy AA, Abutaleb

GE (2020) Data in the time of COVID-19: a general

methodology to select and secure a NoSQL DBMS

for medical data. PeerJ Computer Science 6:e297

[28]. Erraji A, Maizate A, Ouzzif M (2021)

Toward a Smart Approach of Migration from

Relational System DataBase to NoSQL System:

Transformation Rules of Structure. In The

Proceedings of the International Conference on

Smart City Applications (pp. 783–794). Springer,

Cham.

[29]. Fang B, Zhang P (2016) Big data in fnance.

In Big data concepts, theories, and applications (pp.

391–412). Springer, Cham.

[30]. Fiess NM, MacDonald R (2002) Towards

the fundamentals of technical analysis: analysing the

information content of High. Low and Close prices

Economic Modelling 19(3):353–374.

