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Abstract: Air pollution presents a major environmental challenge, necessitating effective methods for rapid detection of pollution episodes
to protect public health and economic interests. This study proposes a novel method combining Variational Autoencoders (VAES) and
Random Forest classifiers to identify anomalies in multivariate air quality time series data. The analysis focuses on key pollutants (NO2,
PM10, PM2.5, 03, CO, and SO2) and meteorological variables, utilizing data from three monitoring stations over three years. By applying
pre-processing techniques and dataset balancing with SMOTE, the hybrid model's performance is evaluated using various metrics. The
results highlight the model's robustness in detecting air quality anomalies across different scenarios. Moreover, t-SNE visualizations of the
encoded latent space reveal discernible patterns. This study underscores the potential of integrating deep learning with ensemble learning
to improve air quality monitoring systems and suggests avenues for future enhancements in broader environmental monitoring applications.
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1. Introduction

The escalating urbanization in Indian cities exacerbates poor
air quality, negatively impacting residents' well-being [1].
The exceeding of National Ambient Air Quality Standard
(NAAQS) limits by pollutants like particulate matter (PM10
and PM2.5) underscores the importance of air quality
monitoring [2]. Monitoring primarily relies on networks of
devices, often employing low-cost sensors within wireless
sensor networks supported by Internet of Things (loT)
technology [3]. However, limitations in these sensors, such
as variability and drift, challenge the reliability of air quality
data [4].

Multivariate time series data, crucial for monitoring, faces
challenges of missing values post-anomaly removal,
affecting predictive models' performance [5]. Consistent
monitoring aids in identifying abnormalities, crucial for
various systems' integrity [6]. Anomaly detection is vital for
averting unexpected issues across diverse systems [7].

Traditional methods and machine learning approaches may
struggle with complex data, while Variational Autoencoders
(VAEs) offer promise by modeling complex data
distributions [8].
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Recent studies have integrated deep learning layers into
VAEs for effective imputation, leveraging multivariate
dependencies and dynamic characteristics of air quality data
[9]. This study utilizes VAE to detect anomalies in air
quality time series data collected from the Rajasthan State
Pollution Control Board (RSPCB), India, via Continuous
Ambient Air Quality Monitoring Stations (CAAQMS)

2. Literature Review

The literature review covers air quality monitoring and
anomaly detection.

2.1. Air Quality Monitoring

Monitoring air quality is essential for urban areas due to the
detrimental effects of pollution on health and the
environment [10]. Traditional monitoring techniques often
lack the spatial resolution to capture localized pollution
hotspots [11]. Low-cost sensors and machine learning
algorithms have been employed to enhance monitoring
accuracy [12] [13]. Efforts have focused on optimizing
calibration intervals and utilizing 10T systems for precise
monitoring [14].

2.2. Anomaly Detection

Anomalies in air quality data pose significant risks,
necessitating effective detection methods. Anomaly
detection, widely applied across various fields, aims to
identify outliers in data [15]. Anomaly detection can be
conducted in batch or iterative modes, categorizing
anomalies as point, contextual, or collective [16]. Time-
series data may exhibit seasonal patterns, requiring
specialized analysis approaches [17].

Machine learning-based anomaly detection models offer
promising solutions but face challenges in multivariate data
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and spatial correlations [18]. Deep learning methods have
shown remarkable progress in addressing these challenges,
particularly in feature extraction and multivariate time-
series analysis [19].

3. Background

The background section explores air quality time series data
characteristics, common anomalies, and the application of
Variational Autoencoders (VAESs) for anomaly detection.

3.1. Air Quality Time Series Data

The study utilizes real data from Continuous Ambient Air
Quality Monitoring Stations (CAAQMS) in Jaipur, India,
spanning from July 2017 to July 2020 (Rajasthan State
Pollution Control Board,2020). This dataset encompasses
key air quality measures (PM10, PM2.5, NO2, SO2, CO,
0O3) and meteorological factors with hourly temporal
resolution. Data cleaning and preprocessing were conducted
to address errors and missing values [20].

3.2. Common Anomalies in Air Quality Data

Anomalies in air quality data, such as spikes, sudden
changes, and outliers, are vital for understanding
environmental dynamics and potential hazards. Seasonal
variations, equipment failures, and data gaps contribute to
challenges in anomaly detection [21] Data visualization aids
in identifying anomalies, but existing approaches have
limitations, including computational expense and the need
for extensive domain knowledge [22].

3.3. Deep Methods for Anomaly Detection

Deep learning techniques have advanced significantly,
particularly in capturing complex time series patterns.
Various deep anomaly detection models, including
forecasting and  reconstruction-based  approaches,
outperform traditional methods in real-world applications
[23]. VAEs, introduced in 2014, excel in modeling intricate
data distributions and are increasingly used for anomaly
detection tasks in time series data [24]

3.4. Variational Autoencoders (VAES)

VAEs leverage probabilistic latent spaces to capture
intricate patterns and produce normal data distributions
during training. By calculating reconstruction loss, VAEs
determine anomaly scores, making them adept at identifying
deviations from typical behavior. Their unsupervised
learning capability enables anomaly detection in scenarios
with limited labeled data [25]. The study applies VAEs to
detect anomalies in air quality time series data, leveraging
their capabilities to enhance anomaly detection in dynamic
datasets.

4. Methodology

In the methodology section, we detail the VAE architecture
utilized for anomaly detection, focusing on training

processes and parameter fine-tuning.
4.1. VAE Architecture

The VAE consists of an encoder and decoder network
trained jointly to balance reconstruction accuracy and
encoding compactness [26]. The encoder employs
convolution operations to map input data to a lower-
dimensional latent space representation, while the decoder
reconstructs data from the sampled latent space using
polynomial trend blocks and transposed convolution [27].

Anomalies can be addressed by VAEs' probabilistic
approach, as they predict mean and standard deviation
parameters in a latent space Gaussian distribution. The
encoder outputs variance and mean parameters of a
multivariate normal distribution in the latent space, and
during sampling, a random noise term is introduced to
produce the latent vector. The decoder reconstructs input
data from the sampled latent space, and a loss function,
comprising reconstruction and regularization terms, guides
VAE training. The combined loss function minimization
ensures realistic output generation and meaningful latent
space representations. This probabilistic approach allows
VAEs to handle variability in the latent space and achieve
robust anomaly detection [16, 28]. Fig 1 illustrates the
structure of the VAE, comprising an encoder network, a
decoder network, and a latent space sampling mechanism.
A detailed explanation of each component is presented
subsequently.
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Fig. 1 illustrates the simple Structure of VAE
4.1.1. Encoder Network

An input data point is transformed by the encoder into a
distribution inside the latent space. Typically, it consists of
several layers of convolutional or fully connected neural
network units, which progressively reduce the
dimensionality of the input. The output of the encoder
represents the variance and mean parameters of a
multivariate normal distribution in the latent space [29].
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4.1.2. Latent Space Sampling

Probabilistic dynamics are at play in the latent space of a
VAE, where input data is not directly mapped to a specific
point but rather encoded as a probability distribution. The
encoder yields both the mean (p) and log variance (log
(6”2)) of a multivariate normal distribution [30] .During
sampling a random noise term (€), drawn from a standard
normal distribution, is introduced to the mean, the resulting
latent vector is then calculated as

p+ €. Exp (0.5 * log (6"2))
@)

Introducing stochasticity in the training process. This
sampling mechanism aligns with the Eq. (2)

2= p(x) + 0p(x) O & @)
Where

Z: represents the sampled latent vector.

W the mean vector outputted by the encoder network.

®(x): refers to the encoded representation of the input data
X by the encoder.

o : The standard deviation vector outputted by the encoder
©: denotes the element-wise multiplication

€. A vector of random samples from a standard normal
distribution

4.1.3. Decoder Network

The input data is reconstructed by the decoder using a
sample taken from the latent space. It usually consists of
multiple layers of neural network units that gradually
increase the dimensionality back to the initial input size,
much like the encoder [31]. The reconstructed data is
represented by the decoder's output.

4.1.4. Loss functions

A particular loss function, comprising a reconstruction loss
and a regularization term formula (2), is utilized by the
VAE. The difference between the input and reconstructed
data is measured by the reconstruction loss. Binary cross-
entropy and mean squared error are popular options. The
regularization term pushes the latent space to adhere to a
particular  structure (typically a standard normal
distribution), and is frequently based on the Kullback-
Leibler (KL) divergence [32]. This guarantees a continuous
and smooth latent space and helps avoid overfitting.

Loss function = reconstruction loss + KL divergence loss
(©)
4.1.5. Training

The above combined loss function, which takes into account
the regularization term and the reconstruction loss, is

minimized by the VAE during training. The decoder learns
to produce realistic outputs from sampled latent vectors, and
the latent space learns to encode meaningful representations
of the input data .The inclusion of a probabilistic approach
in the latent space sets VAESs apart from conventional auto
encoders, enabling them to produce a wide range of
distinctive and meaningful samples.

5. Experimental Setup

This section gives a thorough description of the dataset used
in this research, including details about the data's
provenance and the attributes that were examined. It
describes the process for dividing the dataset into separate
sets for testing, validation, and training. This section also
lists the different evaluation metrics that were used to
determine the anomaly detection model's effectiveness,
providing a clear framework for performance evaluation.

5.1. Data description

The experimental dataset, sourced from the Rajasthan State
Pollution Control Board (RSPCB) in India, was collected
via Continuous Ambient Air Quality Monitoring Stations
(CAAQMS) stationed in Jaipur. These stations, situated at
various locations, automatically monitor air pollutants and
meteorological data to provide a comprehensive view of air
quality. The dataset spans from July 1, 2017, to July 1, 2020,
comprising measurements of PM10, PM2.5, O3, CO, SO2,
and NO2, alongside meteorological attributes.
Preprocessing steps, including outlier detection using the
Interquartile Range (IQR) method and addressing missing
values through Nearest Neighbor Interpolation, were crucial
to enhance data quality for subsequent anomaly detection
with a Variational Autoencoder (VAE). Scaling the data
between 0 and 1 using normalization concluded the
preprocessing phase, ensuring suitability for deep learning
models and improving overall model reliability and
accuracy.

5.2.  Implementation Details

The research utilized Spyder IDE version 5.4.3 and Python
3.11.5, operating within the TensorFlow framework version
2.15.0. Essential libraries including Scikit-Learn, NumPy,
and pandas were also employed. Moreover, to balance the
datasets, the Synthetic Minority Over-sampling Technique
(STOME) technique was applied within TensorFlow. The
project was carried out in the Anaconda 3 (2023)
environment, using Python 3.11.5 (64-bit), with Qt 5.15.2,
PyQt5 version 5.15.7, on a Windows 10 platform.

5.3. Data splitting for training, validation, and testing

The study established a cutoff date ("2019-11-24 13:00:00")
to divide the dataset, allocating 80% for training and 10%
for testing purposes. During training, the model adjusts its
weights and biases to reduce the difference between its
predictions and the actual observations. This training phase
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is crucial for the model to identify patterns, with the
Variational Autoencoder (VAE) being utilized to
reconstruct data, thereby improving its generalization
capabilities. To mitigate the risk of overfitting—where the
model performs well on the training data but poorly on
unseen data—an additional 10% of the data was reserved for
validation. This strategy ensures the model's robustness and
effectiveness in handling new data.

5.4. Evaluation Metrics

Three performance metrics—precision, recall, and F1-
score—that are frequently used assessment metrics in
anomaly detection were employed in the comparison
studies. Equations. (3) and (4) define the terms precision and
recall

Precision = ) (4)
_ TP
Recall = T 5)

Where FP denotes false positives, FN denotes false
negatives, and TP stands for true positives. Where FP
denotes the number of normal points that are falsely
predicted as abnormal points, FN denotes the number of
abnormal points that are predicted to be normal, and TP is
the number of abnormal points that are correctly detected.

Accuracy represents the proportion of correctly predicted
observations to the total predictions for a specific class,
serving as a metric to assess the predictive quality of a
model. Recall is defined as the fraction of correctly
identified predictions out of all actual instances of the same
category. A higher recall indicates that the model is more
adept at identifying anomalies, making it a crucial metric.
Precision, often used alongside recall to gauge model
performance, can at times present conflicting results. Hence,
for a more holistic evaluation of anomaly detection
capabilities, the F1-score is considered. The F1-score, being
the harmonic mean of precision and recall, offers a balanced
measure of a model's accuracy and recall, providing a
comprehensive view of its effectiveness. Equation (5)
provides the definition of an F1-score.

(P*R)

Fl=2%*
(R+P)

(6)

The F1-score value can be calculated by taking the harmonic
mean of the precision and recall rates. This allows for the
simultaneous consideration of the model's accuracy and
recall rates during the detection process. The formula uses P
to stand for the detection model's accuracy rate and R for the
detection's recall rate.

Area under the curve (AUC) (receiver operating
characteristics (ROC)): Measures the capacity of the model
to differentiate the classes [33] . The total percentage of
items correctly classified is known as accuracy. It is
computed by dividing the total number of predictions by the

number of correct predictions, making it possibly the most
straightforward metric.

6. Result & Discussion

This study employs Variational Autoencoders (VAE) on
three years of air quality data from three stations. It focuses
on six pollutants and additional meteorological variables.
Synthetic Minority Over-sampling Technique (SMOTE)
balances class imbalance, enhancing anomaly detection.
SMOTE, combined with Random Forest classifier, and
improves model performance, validated by precision, recall,
and F1-score metrics. This systematic approach ensures the
classifier is trained on a balanced dataset and optimized for
detecting anomalies. SMOTE application after threshold
determination is crucial for addressing class imbalance,
significantly enhancing anomaly detection in air quality
data. Anomaly pinpointing in NO2 levels shows varying
frequencies across monitoring areas. Figures 2 (a, b and c)
focus on pinpointing anomalies in NO2 levels

Anomalies Highighted in Test Data

Anomalies Highlighted in Test Data

(b)

()

Fig. 2 Anomaly Detection in NO2 Levels of (a) Police
Comm (b) Science Park And (¢ ) Psy_Center Datasets
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We utilized t-SNE to visualize latent spaces of datasets

reduced

by VAE, high

lighting anomaly detection

effectiveness and dataset-specific patterns. Figures 3( a,b
and c) present the t-SNE visualizations for each of the three

datasets.
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Fig. 3 t-SNE 2D latent space of of (a) Police Comm (b)
Science Park And (c) Psy_Center Datasets

The results demonstrate VAE's effectiveness with SMOTE
and Random Forest in detecting anomalies. Police Comm
Dataset achieved 90.0% accuracy with high precision and
recall. Science Park Dataset showed balanced precision and
recall, with 86.27% accuracy. Psy_Center Dataset exhibited
superior precision and recall, achieving 91.0% accuracy.
The evaluation metrics for the model's performance across
all test datasets are summarized in Table 1.

The suggested method for detecting anomalies examined by
utilizing ROC curves and the area under the curve (AUC).
The following graphs displays the ROC for the three
stations: Police Comm, Science Park, and Psy_Center.

Receiver Operating Characteristic (ROC) Curve
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Fig.4 ROC curve for (a) Police Comm (b) Science Park

And (c) Psy_Center Datasets

The ROC-AUC results reveal the VAE's robust anomaly
detection across datasets. Specifically, the AUC for the
Police Comm dataset reached 0.95, as depicted in Figure
4(a). Likewise, Figure 4(b) illustrates the Science Park

dataset's AUC at 0.94, while Figure 4 (c)
dataset's AUC at 0.93. These metrics

Psy_Center

indicates the

underscore the VAE's efficacy, especially evident in the
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Police Comm dataset, where it outperformed others
marginally. Furthermore, a deeper dive into anomaly
detection involves examining classification thresholds, false
positive rates (FPR), and true positive rates (TPR). Notably,
the Police Comm dataset's ROC curve exhibits a balanced
trade-off between TPR and FPR, maintaining FPR below
0.077 while achieving TPR exceeding 0.82 across various
thresholds. This behavior signifies a well-calibrated model
adept at distinguishing anomalies from normal data points.

Similarly, ROC curves for Park and Psy_ Center stations
demonstrate a balanced TPR and FPR, showcasing the
model's accuracy in detecting anomalies at different
thresholds. For instance, the Park dataset boasts an 85%
TPR and 0.14 FPR, indicating efficient anomaly detection
with a reasonable false alarm rate. Similarly, the Psy_Center
dataset showcases a 95% TPR and 0.3 FPR, implying
effective detection of genuine anomalies with minimal false
positives.

Additionally, the precision-recall curve's area under the
curve (PR AUC) serves as a quantitative measure of the
model's anomaly detection across datasets. High PR AUC
values of 90%, 96%, and 98% for Police Comm, Science
Park, and Psy_Center datasets, respectively at Figures 5 (
a,b and c) reflect the model's ability to detect anomalies
accurately while minimizing false positives, validating its
resilience and flexibility in diverse environmental
conditions.

Precision-Recall Curve
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Fig .5 RP curve for (a) Police Comm (b) Science Park
And (c) Psy_Center Datasets

7. Challenges and Limitations

In the study on air quality anomaly detection, challenges
emerged, emphasizing areas for further research. Ensuring
data quality and completeness was paramount. Selecting
relevant features amid environmental data complexity posed
another hurdle. Imbalanced data between normal instances
and anomalies hindered model training and evaluation.
Resource-intensive advanced models prolonged
computations. Determining optimal anomaly detection
thresholds was complex, affecting model performance.
Future improvements entail testing on diverse datasets,
adjusting hyper parameters, reducing computational
demands, and employing advanced feature engineering.
Broadening evaluation metrics and enabling continuous
learning would enhance models' adaptability and
effectiveness in environmental monitoring and public health
applications

Table 1 The evaluation metrics for the model's performance across all test dataset

Anomaly Detection

Anomaly Detection Metrics

Model Datasets Precision

Recall F1 Accuracy

Class 0 Class 1

Class0 | Class1 | Class0 | Class 1

VAE Police Comm 0.94 0.80

0.92 0.83 0.93 0.81 90.0%
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Science Park 0.81 0.90

0.86 0.86 0.84 0.88 86.27%

Psy_Center 0.75 0.94

0.70 0.95 0.72 0.95 91.0%

8. Conclusion and Future Work

This study presents a robust anomaly detection framework
for air quality monitoring, showcasing the efficacy of
VAEs, Random Forest classifiers, and SMOTE. Future
research could explore alternative deep learning
architectures like CNNs and RNNs for better spatial-
temporal pattern capture. Incorporating more environmental
variables may enhance model accuracy. Real-time anomaly
detection implementation promises proactive environmental
hazard responses. Practical application could lead to
automated, intelligent air quality monitoring systems. These
findings offer a foundation for improving anomaly detection
across sectors like finance and healthcare, underscoring the
model's adaptability and efficiency in diverse contexts.
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