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Abstract: Air pollution presents a major environmental challenge, necessitating effective methods for rapid detection of pollution episodes 

to protect public health and economic interests. This study proposes a novel method combining Variational Autoencoders (VAEs) and 

Random Forest classifiers to identify anomalies in multivariate air quality time series data. The analysis focuses on key pollutants (NO2, 

PM10, PM2.5, O3, CO, and SO2) and meteorological variables, utilizing data from three monitoring stations over three years. By applying 

pre-processing techniques and dataset balancing with SMOTE, the hybrid model's performance is evaluated using various metrics. The 

results highlight the model's robustness in detecting air quality anomalies across different scenarios. Moreover, t-SNE visualizations of the 

encoded latent space reveal discernible patterns. This study underscores the potential of integrating deep learning with ensemble learning 

to improve air quality monitoring systems and suggests avenues for future enhancements in broader environmental monitoring applications. 
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1. Introduction 

The escalating urbanization in Indian cities exacerbates poor 

air quality, negatively impacting residents' well-being [1]. 

The exceeding of National Ambient Air Quality Standard 

(NAAQS) limits by pollutants like particulate matter (PM10 

and PM2.5) underscores the importance of air quality 

monitoring [2]. Monitoring primarily relies on networks of 

devices, often employing low-cost sensors within wireless 

sensor networks supported by Internet of Things (IoT) 

technology [3]. However, limitations in these sensors, such 

as variability and drift, challenge the reliability of air quality 

data [4]. 

Multivariate time series data, crucial for monitoring, faces 

challenges of missing values post-anomaly removal, 

affecting predictive models' performance [5]. Consistent 

monitoring aids in identifying abnormalities, crucial for 

various systems' integrity [6]. Anomaly detection is vital for 

averting unexpected issues across diverse systems [7]. 

 Traditional methods and machine learning approaches may 

struggle with complex data, while Variational Autoencoders 

(VAEs) offer promise by modeling complex data 

distributions [8]. 

Recent studies have integrated deep learning layers into 

VAEs for effective imputation, leveraging multivariate 

dependencies and dynamic characteristics of air quality data 

[9]. This study utilizes VAE to detect anomalies in air 

quality time series data collected from the Rajasthan State 

Pollution Control Board (RSPCB), India, via Continuous 

Ambient Air Quality Monitoring Stations (CAAQMS) 

2. Literature Review  

The literature review covers air quality monitoring and 

anomaly detection.  

2.1. Air Quality Monitoring 

Monitoring air quality is essential for urban areas due to the 

detrimental effects of pollution on health and the 

environment [10]. Traditional monitoring techniques often 

lack the spatial resolution to capture localized pollution 

hotspots [11]. Low-cost sensors and machine learning 

algorithms have been employed to enhance monitoring 

accuracy [12] [13]. Efforts have focused on optimizing 

calibration intervals and utilizing IoT systems for precise 

monitoring [14]. 

2.2. Anomaly Detection 

Anomalies in air quality data pose significant risks, 

necessitating effective detection methods. Anomaly 

detection, widely applied across various fields, aims to 

identify outliers in data [15]. Anomaly detection can be 

conducted in batch or iterative modes, categorizing 

anomalies as point, contextual, or collective [16]. Time-

series data may exhibit seasonal patterns, requiring 

specialized analysis approaches [17]. 

Machine learning-based anomaly detection models offer 

promising solutions but face challenges in multivariate data 
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and spatial correlations [18]. Deep learning methods have 

shown remarkable progress in addressing these challenges, 

particularly in feature extraction and multivariate time-

series analysis [19].  

3. Background  

The background section explores air quality time series data 

characteristics, common anomalies, and the application of 

Variational Autoencoders (VAEs) for anomaly detection. 

3.1. Air Quality Time Series Data 

The study utilizes real data from Continuous Ambient Air 

Quality Monitoring Stations (CAAQMS) in Jaipur, India, 

spanning from July 2017 to July 2020 (Rajasthan State 

Pollution Control Board,2020). This dataset encompasses 

key air quality measures (PM10, PM2.5, NO2, SO2, CO, 

O3) and meteorological factors with hourly temporal 

resolution. Data cleaning and preprocessing were conducted 

to address errors and missing values [20]. 

3.2. Common Anomalies in Air Quality Data 

Anomalies in air quality data, such as spikes, sudden 

changes, and outliers, are vital for understanding 

environmental dynamics and potential hazards. Seasonal 

variations, equipment failures, and data gaps contribute to 

challenges in anomaly detection [21] Data visualization aids 

in identifying anomalies, but existing approaches have 

limitations, including computational expense and the need 

for extensive domain knowledge [22]. 

3.3.  Deep Methods for Anomaly Detection 

Deep learning techniques have advanced significantly, 

particularly in capturing complex time series patterns. 

Various deep anomaly detection models, including 

forecasting and reconstruction-based approaches, 

outperform traditional methods in real-world applications 

[23]. VAEs, introduced in 2014, excel in modeling intricate 

data distributions and are increasingly used for anomaly 

detection tasks in time series data [24] 

3.4. Variational Autoencoders (VAEs) 

VAEs leverage probabilistic latent spaces to capture 

intricate patterns and produce normal data distributions 

during training. By calculating reconstruction loss, VAEs 

determine anomaly scores, making them adept at identifying 

deviations from typical behavior. Their unsupervised 

learning capability enables anomaly detection in scenarios 

with limited labeled data [25]. The study applies VAEs to 

detect anomalies in air quality time series data, leveraging 

their capabilities to enhance anomaly detection in dynamic 

datasets. 

4. Methodology  

  In the methodology section, we detail the VAE architecture 

utilized for anomaly detection, focusing on training 

processes and parameter fine-tuning. 

4.1.  VAE Architecture   

The VAE consists of an encoder and decoder network 

trained jointly to balance reconstruction accuracy and 

encoding compactness [26]. The encoder employs 

convolution operations to map input data to a lower-

dimensional latent space representation, while the decoder 

reconstructs data from the sampled latent space using 

polynomial trend blocks and transposed convolution [27]. 

Anomalies can be addressed by VAEs' probabilistic 

approach, as they predict mean and standard deviation 

parameters in a latent space Gaussian distribution. The 

encoder outputs variance and mean parameters of a 

multivariate normal distribution in the latent space, and 

during sampling, a random noise term is introduced to 

produce the latent vector. The decoder reconstructs input 

data from the sampled latent space, and a loss function, 

comprising reconstruction and regularization terms, guides 

VAE training. The combined loss function minimization 

ensures realistic output generation and meaningful latent 

space representations. This probabilistic approach allows 

VAEs to handle variability in the latent space and achieve 

robust anomaly detection [16, 28]. Fig 1 illustrates the 

structure of the VAE, comprising an encoder network, a 

decoder network, and a latent space sampling mechanism. 

A detailed explanation of each component is presented 

subsequently. 

 

Fig. 1 illustrates the simple Structure of VAE 

4.1.1. Encoder Network 

An input data point is transformed by the encoder into a 

distribution inside the latent space. Typically, it consists of 

several layers of convolutional or fully connected neural 

network units, which progressively reduce the 

dimensionality of the input. The output of the encoder 

represents the variance and mean parameters of a 

multivariate normal distribution in the latent space [29]. 
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4.1.2.  Latent Space Sampling  

Probabilistic dynamics are at play in the latent space of a 

VAE, where input data is not directly mapped to a specific 

point but rather encoded as a probability distribution. The 

encoder yields both the mean (μ) and log variance (log 

(σ^2)) of a multivariate normal distribution [30] .During 

sampling a random noise term (ϵ), drawn from a standard 

normal distribution, is introduced to the mean, the resulting 

latent vector is then calculated as  

μ + ϵ. Exp (0.5 * log (σ^2))                                                         

(1) 

 Introducing stochasticity in the training process. This 

sampling mechanism aligns with the Eq. (2) 

z = µφ(x) + σφ(x) ⊙ ε                                                                 (2) 

Where   

Z: represents the sampled latent vector. 

µ: the mean vector outputted by the encoder network.  

Φ(x): refers to the encoded representation of the input data 

x by the encoder. 

σ   : The standard deviation vector outputted by the encoder 

⊙: denotes the element-wise multiplication 

ε:  A vector of random samples from a standard normal 

distribution 

4.1.3. Decoder Network 

The input data is reconstructed by the decoder using a 

sample taken from the latent space. It usually consists of 

multiple layers of neural network units that gradually 

increase the dimensionality back to the initial input size, 

much like the encoder [31]. The reconstructed data is 

represented by the decoder's output. 

4.1.4. Loss functions  

A particular loss function, comprising a reconstruction loss 

and a regularization term formula (2), is utilized by the 

VAE. The difference between the input and reconstructed 

data is measured by the reconstruction loss. Binary cross-

entropy and mean squared error are popular options. The 

regularization term pushes the latent space to adhere to a 

particular structure (typically a standard normal 

distribution), and is frequently based on the Kullback-

Leibler (KL) divergence [32]. This guarantees a continuous 

and smooth latent space and helps avoid overfitting. 

Loss function = reconstruction loss + KL divergence loss                                  

(3) 

4.1.5. Training 

The above combined loss function, which takes into account 

the regularization term and the reconstruction loss, is 

minimized by the VAE during training. The decoder learns 

to produce realistic outputs from sampled latent vectors, and 

the latent space learns to encode meaningful representations 

of the input data .The inclusion of a probabilistic approach 

in the latent space sets VAEs apart from conventional auto 

encoders, enabling them to produce a wide range of 

distinctive and meaningful samples. 

5. Experimental Setup  

This section gives a thorough description of the dataset used 

in this research, including details about the data's 

provenance and the attributes that were examined. It 

describes the process for dividing the dataset into separate 

sets for testing, validation, and training. This section also 

lists the different evaluation metrics that were used to 

determine the anomaly detection model's effectiveness, 

providing a clear framework for performance evaluation. 

5.1. Data description 

The experimental dataset, sourced from the Rajasthan State 

Pollution Control Board (RSPCB) in India, was collected 

via Continuous Ambient Air Quality Monitoring Stations 

(CAAQMS) stationed in Jaipur. These stations, situated at 

various locations, automatically monitor air pollutants and 

meteorological data to provide a comprehensive view of air 

quality. The dataset spans from July 1, 2017, to July 1, 2020, 

comprising measurements of PM10, PM2.5, O3, CO, SO2, 

and NO2, alongside meteorological attributes. 

Preprocessing steps, including outlier detection using the 

Interquartile Range (IQR) method and addressing missing 

values through Nearest Neighbor Interpolation, were crucial 

to enhance data quality for subsequent anomaly detection 

with a Variational Autoencoder (VAE). Scaling the data 

between 0 and 1 using normalization concluded the 

preprocessing phase, ensuring suitability for deep learning 

models and improving overall model reliability and 

accuracy. 

5.2.    Implementation Details 

The research utilized Spyder IDE version 5.4.3 and Python 

3.11.5, operating within the TensorFlow framework version 

2.15.0. Essential libraries including Scikit-Learn, NumPy, 

and pandas were also employed. Moreover, to balance the 

datasets, the  Synthetic Minority Over-sampling Technique 

(STOME)  technique was applied within TensorFlow. The 

project was carried out in the Anaconda 3 (2023) 

environment, using Python 3.11.5 (64-bit), with Qt 5.15.2, 

PyQt5 version 5.15.7, on a Windows 10 platform. 

5.3. Data splitting for training, validation, and testing 

The study established a cutoff date ('2019-11-24 13:00:00') 

to divide the dataset, allocating 80% for training and 10% 

for testing purposes. During training, the model adjusts its 

weights and biases to reduce the difference between its 

predictions and the actual observations. This training phase 
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is crucial for the model to identify patterns, with the 

Variational Autoencoder (VAE) being utilized to 

reconstruct data, thereby improving its generalization 

capabilities. To mitigate the risk of overfitting—where the 

model performs well on the training data but poorly on 

unseen data—an additional 10% of the data was reserved for 

validation. This strategy ensures the model's robustness and 

effectiveness in handling new data. 

5.4. Evaluation   Metrics 

Three performance metrics—precision, recall, and F1-

score—that are frequently used assessment metrics in 

anomaly detection were employed in the comparison 

studies. Equations. (3) and (4) define the terms precision and 

recall 

Precision = 
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                                                     (4) 

Recall = 
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                                                          (5) 

Where FP denotes false positives, FN denotes false 

negatives, and TP stands for true positives. Where FP 

denotes the number of normal points that are falsely 

predicted as abnormal points, FN denotes the number of 

abnormal points that are predicted to be normal, and TP is 

the number of abnormal points that are correctly detected. 

Accuracy represents the proportion of correctly predicted 

observations to the total predictions for a specific class, 

serving as a metric to assess the predictive quality of a 

model. Recall is defined as the fraction of correctly 

identified predictions out of all actual instances of the same 

category. A higher recall indicates that the model is more 

adept at identifying anomalies, making it a crucial metric. 

Precision, often used alongside recall to gauge model 

performance, can at times present conflicting results. Hence, 

for a more holistic evaluation of anomaly detection 

capabilities, the F1-score is considered. The F1-score, being 

the harmonic mean of precision and recall, offers a balanced 

measure of a model's accuracy and recall, providing a 

comprehensive view of its effectiveness. Equation (5) 

provides the definition of an F1-score. 

F1 = 2 * 
(𝑃∗𝑅)

(𝑅∗𝑃)
                                                                 (6) 

The F1-score value can be calculated by taking the harmonic 

mean of the precision and recall rates. This allows for the 

simultaneous consideration of the model's accuracy and 

recall rates during the detection process. The formula uses P 

to stand for the detection model's accuracy rate and R for the 

detection's recall rate.   

Area under the curve (AUC) (receiver operating 

characteristics (ROC)): Measures the capacity of the model 

to differentiate the classes [33] . The total percentage of 

items correctly classified is known as accuracy. It is 

computed by dividing the total number of predictions by the 

number of correct predictions, making it possibly the most 

straightforward metric. 

6. Result & Discussion 

This study employs Variational Autoencoders (VAE) on 

three years of air quality data from three stations. It focuses 

on six pollutants and additional meteorological variables. 

Synthetic Minority Over-sampling Technique (SMOTE) 

balances class imbalance, enhancing anomaly detection. 

SMOTE, combined with Random Forest classifier, and 

improves model performance, validated by precision, recall, 

and F1-score metrics. This systematic approach ensures the 

classifier is trained on a balanced dataset and optimized for 

detecting anomalies. SMOTE application after threshold 

determination is crucial for addressing class imbalance, 

significantly enhancing anomaly detection in air quality 

data. Anomaly pinpointing in NO2 levels shows varying 

frequencies across monitoring areas. Figures 2 (a, b and c) 

focus on pinpointing anomalies in NO2 levels 

 

( a ) 

 

(b) 

 

(c ) 

Fig. 2 Anomaly Detection in NO2 Levels of (a) Police 

Comm  (b) Science Park And  ( c ) Psy_Center Datasets 
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We utilized t-SNE to visualize latent spaces of datasets 

reduced by VAE, highlighting anomaly detection 

effectiveness and dataset-specific patterns. Figures 3( a,b 

and c) present the t-SNE visualizations for each of the three 

datasets. 

 

(a) 

 

(b) 

 

(c) 

Fig. 3 t-SNE 2D latent space of of  (a) Police Comm  (b) 

Science Park And  ( c ) Psy_Center Datasets 

The results demonstrate VAE's effectiveness with SMOTE 

and Random Forest in detecting anomalies. Police Comm 

Dataset achieved 90.0% accuracy with high precision and 

recall. Science Park Dataset showed balanced precision and 

recall, with 86.27% accuracy. Psy_Center Dataset exhibited 

superior precision and recall, achieving 91.0% accuracy. 

The evaluation metrics for the model's performance across 

all test datasets are summarized in Table 1. 

The suggested method for detecting anomalies examined by 

utilizing ROC curves and the area under the curve (AUC). 

The following graphs displays the ROC for the three 

stations: Police Comm, Science Park, and Psy_Center. 

 

(a) 

 

(b) 

 

(c) 

Fig.4 ROC curve for   (a) Police Comm  (b) Science Park 

And  ( c ) Psy_Center Datasets 

The ROC-AUC results reveal the VAE's robust anomaly 

detection across datasets. Specifically, the AUC for the 

Police Comm dataset reached 0.95, as depicted in Figure 

4(a). Likewise, Figure 4(b) illustrates the Science Park 

dataset's AUC at 0.94, while Figure 4 (c)  indicates the 

Psy_Center dataset's AUC at 0.93. These metrics 

underscore the VAE's efficacy, especially evident in the 
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Police Comm dataset, where it outperformed others 

marginally. Furthermore, a deeper dive into anomaly 

detection involves examining classification thresholds, false 

positive rates (FPR), and true positive rates (TPR). Notably, 

the Police Comm dataset's ROC curve exhibits a balanced 

trade-off between TPR and FPR, maintaining FPR below 

0.077 while achieving TPR exceeding 0.82 across various 

thresholds. This behavior signifies a well-calibrated model 

adept at distinguishing anomalies from normal data points. 

Similarly, ROC curves for Park and Psy_Center stations 

demonstrate a balanced TPR and FPR, showcasing the 

model's accuracy in detecting anomalies at different 

thresholds. For instance, the Park dataset boasts an 85% 

TPR and 0.14 FPR, indicating efficient anomaly detection 

with a reasonable false alarm rate. Similarly, the Psy_Center 

dataset showcases a 95% TPR and 0.3 FPR, implying 

effective detection of genuine anomalies with minimal false 

positives. 

Additionally, the precision-recall curve's area under the 

curve (PR AUC) serves as a quantitative measure of the 

model's anomaly detection across datasets. High PR AUC 

values of 90%, 96%, and 98% for Police Comm, Science 

Park, and Psy_Center datasets, respectively at Figures 5 ( 

a,b and c) reflect the model's ability to detect anomalies 

accurately while minimizing false positives, validating its 

resilience and flexibility in diverse environmental 

conditions. 

 

(a) 

 

(b) 

 

(c) 

Fig .5 RP curve for   (a) Police Comm  (b) Science Park 

And  ( c ) Psy_Center Datasets 

7. Challenges and Limitations  

 In the study on air quality anomaly detection, challenges 

emerged, emphasizing areas for further research. Ensuring 

data quality and completeness was paramount. Selecting 

relevant features amid environmental data complexity posed 

another hurdle. Imbalanced data between normal instances 

and anomalies hindered model training and evaluation. 

Resource-intensive advanced models prolonged 

computations. Determining optimal anomaly detection 

thresholds was complex, affecting model performance. 

Future improvements entail testing on diverse datasets, 

adjusting hyper parameters, reducing computational 

demands, and employing advanced feature engineering. 

Broadening evaluation metrics and enabling continuous 

learning would enhance models' adaptability and 

effectiveness in environmental monitoring and public health 

applications 

Table 1 The evaluation metrics for the model's performance across all test dataset

Anomaly Detection 

 

Model 

 

Datasets 

Anomaly Detection  Metrics 

Precision Recall F1 Accuracy 

Class 0  Class 1 Class 0 Class 1 Class 0 Class 1  

90.0% VAE Police Comm 0.94 0.80 0.92 0.83 0.93 0.81 
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Science Park 0.81 0.90 0.86 0.86 0.84 0.88   86.27% 

Psy_Center 0.75 0.94 0.70 0.95 0.72 0.95 91.0% 

8. Conclusion and Future Work  

This study presents a robust anomaly detection framework 

for air quality monitoring, showcasing the efficacy of 

VAEs, Random Forest classifiers, and SMOTE. Future 

research could explore alternative deep learning 

architectures like CNNs and RNNs for better spatial-

temporal pattern capture. Incorporating more environmental 

variables may enhance model accuracy. Real-time anomaly 

detection implementation promises proactive environmental 

hazard responses. Practical application could lead to 

automated, intelligent air quality monitoring systems. These 

findings offer a foundation for improving anomaly detection 

across sectors like finance and healthcare, underscoring the 

model's adaptability and efficiency in diverse contexts. 
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