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Abstract: Maximal Overlap Discrete Wavelet Transform (MODWT) is employed to characterize three-phase current signals for high 

impedance fault (HIF) detection. However, a few vital issues, like the classification of HIF from non-HIF, have not yet been benefited by 

MODWT families and Bi-LSTM. Hence, in this paper, the performance of four families of MODWT, namely, Coiflets (coif), Daubechies 

(db), Fejer-Korovkin (fk), and Symlets (sym) were studied. A radial distribution network was simulated, and three-phase currents were 

taken during HIF and non-HIF conditions. Further, this paper attempts to identify the best of the four MODWT families and the level of 

decomposition required to analyze the current signals. The nine statistical features are extracted from the wavelet coefficients, Kruskal 

Wallis test is carried out to select the best features and fed into the Bi-directional LSTM(Bi-LSTM) classifier. From the results, it was 

found out that the coif attained the highest classification accuracy for all the levels of decomposition. 

Keywords: High Impedance fault, Maximal Overlap Discrete Wavelet Transform, Bi-directional LSTM, Fault detection.  

1. Introduction 

Distribution networks are highly vulnerable to 

interruptions in power quality, primarily resulting from 

three types of operational failures: HIF, voltage 

disturbances, and short-circuit faults. HIF stands out as 

one of the most concerning in this context, primarily 

because the fault current is typically below the threshold 

for overcurrent devices like relays, reclosers, and fuses, 

meaning that it is not usually eliminated by the traditional 

protection system. Furthermore, HIF poses a risk to the 

public due to the potential for electric shock as well as the 

potential for fire because of arcing. 

A high-impedance surface (HIF) is created when an 

electrically charged conductor makes contact with 

something like sand, asphalt, or even tree branches[1]. If 

all the disturbances are examined in the time domain, it 

may be confused for other disturbances like feeder and 

load energizing or capacitor bank switching. On the other 

hand, HIF exhibits unique properties in the frequency 

domain that make them detectable. Multi-resolution 

transforms are more appropriate for analyzing HIF signals 

because they are not stationary. 

The proposed work uses three-phase current signals from 

a radial distribution system. The nine statistical features 

are extracted using MODWT families, the Kruskal wallis 

test is used to select the best features, and then the HIF 

/Non-HIF classification is done using Bi-LSTM.  

 

1.1. Literature review 

In [2],a novel approach to identifying power quality (PQ) 

disturbances, focusing on voltage sags and interruptions 

associated with diverse faults such as transmission line, 

feeder, and transformer faults, is introduced. The method 

employs a MODWT-based PQ detection algorithm that 

accurately pinpoints the initiation and recovery of 

disturbances. The algorithm showcases strong 

performance even without a detection threshold and isn't 

reliant on the sampling frequency of PQ data. To combat 

noise, it transforms pre-processed PQ waveforms into 2D 

binary vectors via space vector transformation. 

Subsequently, a resilient classifier is proposed, employing 

an enhanced stacked sparse denoising autoencoder 

coupled with supervised backpropagation training. The 

technique maintains high detection accuracy, even when 

faced with limited training samples detecting various PQ 

disturbances[17]. 

The[3] paper introduces a time-series-based method 

utilizing maximal overlap discrete wavelet transform 

(MODWT) for detecting and locating diverse power 

quality (PQ) disturbances. Ten different PQ events in 

voltage signals, such as sag, swell, interruption, harmonic, 

spike, notch, etc., are investigated using this wavelet 

transform. Signal decomposition up to the fourth level 
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with MODWT provides coefficients for feature 

extraction, which act as inputs for classifiers like Support 

Vector Machine (SVM) and Decision Tree (DT). In the 

detection phase, signals are decomposed up to four levels 

of refinement, while in the classification phase, signals 

undergo similar decomposition. Comparative analysis 

reveals that DT outperforms SVM in classification 

accuracy across various scenarios, including those with 

and without noise. Furthermore, DT shows satisfactory 

performance with both synthesized and real signals, 

presenting a quicker and more straightforward alternative 

to SVM. 

As in [4], a practical 400-kV Dual Circuit Transmission 

Line within the Indian network features a newly 

introduced fault diagnosis framework for the 

identification and categorization of cross-country side 

Faults (CCF) with HIF syndrome. This innovative 

approach comprises a three-step procedure involving 

signal preprocessing, detection of high impedance faults 

(HIFs), and subsequent classification using specific fault 

classifier protocols. These protocols are precisely 

determined based on fault coordinates within a normalized 

3D Fault Plane. The effectiveness of this method has been 

successfully demonstrated across various operational and 

switching scenarios, including capacitor bank switching, 

reactor string switching, and load/feeder switching. 

Extensive testing has been conducted to evaluate the 

resilience of the diagnostic scheme against noise, 

nonlinear loads, and light-load conditions[18]. 

Comparative analyses have been performed for both 

common cause faults (CCF) and CCF-HIFs. Notably, the 

proposed scheme demonstrates an operational time within 

five cycles from when a HIF is detected. 

Electroencephalogram (EEG) signal analysis has 

extensively used wavelet transforms for automated 

diagnosis of epileptic seizures[5]. Four cases—normal-

generalized epilepsy (i), normal-focal epilepsy (ii), 

normal-focal-generalized (iii), and normal-epilepsy (iv)—

are used to assess the suggested methodology. The study 

also attempts to define the necessary degree of 

decomposition for EEG signal analysis and identify the 

best wavelet function among seven popular wavelet 

families. The wavelet coefficients are used to extract nine 

statistical features, which are then fed into the support 

vector machine (SVM) classifier. The results of the 

experiments show that, out of all the experimental cases, 

Discrete Wavelet Transform (DWT) with rbio1.1 achieves 

the best classification accuracy. 

2. Methodology adopted 

Step 1: Model the system to be studied – In the study, 

the radial topology of the distribution feeder is modeled 

MATLAB and faults like HIF, Non-HIF ((Line to ground 

(LG), Line to Line (LL), Line to line to ground(LLG) and 

line to line to line to ground(LLLG)) were created.  

Step 2: Data acquisition – By varying the fault 

resistances and ground resistances, different cases of Non-

HIF and HIF were obtained.  

Step 3: Feature Extraction-Four MODWT families 

(coif, db, fk, sym) each were applied to extract the features 

of the faults and statistical features were taken. 

Step 4: Feature Selection- Kruskal Wallis test is done to 

get the best features that can contribute to the classifier for 

better accuracy. 

Step 5: Classifier – Selected features are input to the Bi-

LSTM classifier for discriminating HIF and non-HIF 

events. 

 

 

Fig 1 Flow diagram showing various steps involved. 

2.1 Radial distribution network 

Radial distribution networks are often used to service 

areas with medium and light loads from a single source, 

with good voltage regulation and reliability and reduced 

cable congestion [1]. The drawback of using the radial 

system is if any of the feeders becomes faulty, the entire 

system experiences blackouts that might lead to expensive 

repairs and productivity loss [6], [7]. A power distribution 

network is modeled using a sim-power system block. The 

HIF and Non-HIF conditions are created in the model, and 

fault current waveforms are taken for analysis [8]. The 
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model consists of a grid source 50MVA/138kV, a 

transformer 50MVA, and 138kV/25kV with an integrated 

load facility. The power grid frequency is 50 Hz, and the 

distribution line length is 100 km. The single-line diagram 

of the radial distribution system with the HIF model is 

shown in Fig 2. 

50MVA 138kV/25kV 

HIF 
Model

CB

Three 
Phase 
Fault

 

Fig 2 Single line diagram of radial distribution network. 

The waveforms shown in Fig.3(a) show the time-varying 

current waveforms during normal conditions in which the 

normal three-phase current rating is 175A and the three-

phase voltage 20kV. A total of 1000 cases of faults, 

including HIF, LGF, LLF, LLGF, and LLLGF, were taken 

for the input to feature extraction techniques[9].  

 

(a) 

 

(b) 

Fig.3 (a) Current waveform at normal conditions,. (b) Faulty condition: current waveform of LL fault in RB phase 

 HIF is a set of power system disturbances that occur in an 

MV distribution system(15kV to 25 kV), which produces 

a low-range fault current(<100A) difficult for 

conventional relays to detect [10]. The fault occurs when 

a charged conductor touches the high grounding 

impedance surfaces such as trees, sand, cement, wet soil, 

etc., or can be due to a broken or unbroken conductor that 

possesses dynamic features like asymmetry, randomness, 

non-linearity, shoulder, build-up and intermittence [9]. 

Modelling HIF is important to exhibit the features of HIF 

characteristics. Many models [11], such as the Emanual 

arc model [12], Mayr's model[13], kizilcay model[14], 

and Matthews's arc model[10] can be used to model HIF, 

of which the Emanual arc model is used for this study.  
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Fig.4 Emmanuel arc model of HIF 

Fig.4 shows the modeling of HIF using the Emmanuel arc 

model [15], having two anti-parallel diodes (Dn, Dp), 

voltage sources(Vn, Vp), and nonlinear resistors (Rn, Rp). 

The diodes mimic the randomness during positive and 

negative half cycles. The voltage source represents the 

arcing voltage between the distribution lines, trees, soil or 

air that produces asymmetry during positive and negative 

half cycles, and the resistors represent the resistance 

offered by the trees or earth resistance.  

The waveform shown in 5(a)&5(b) represents the fault 

voltage and current during HIF inception at 0.1s to 0.45s. 

A total of 1000 HIF cases were taken, creating HIF in 

Phases A, B, and C. The voltage range is 25kV, and the 

current ranges from 5-20A depending on the fault 

resistances varied from 3000Ω-3600Ω.  

 

  

Fig 5(a) & 5(b) HIF current and voltage waveform 

2.2 Maximal Overlap Discrete Wavelet Transform  

The improved version of the DWT that allows for the free 

selection of the beginning point time series signal [1] and 

also a non-orthogonal variation of the traditional DWT is 

MODWT [16]. The DWT filter can be equated to the 

wavelet filter 𝑔̃𝑙 and the MODWT scaling filter ℎ̃𝑙 via (1) 

and (2). 

ℎ̃𝑙 =
ℎ𝑙

√2
     (1) 

𝑔̃𝑙 =
𝑔𝑙

√2
       (2) 

Also, the MODWT filters are given by the equation (3) and 

(4) 

𝑔̃𝑙 = (−1)𝑙+1ℎ𝐿−1−𝑙   (3) 

ℎ̃𝑙 = (−1)𝑙+1𝑔𝐿−1−𝑙                         (4)                                                                                     

where L is the filter width and l = 0, 1, 2,..., L − 1. Along 

with the MODWT scaling coefficients and the input time 

series signal Y (n), the nth element of the first-stage 

wavelet. 

𝑊̃1,𝑛 = ∑ ℎ̃𝑙𝑋𝑛−𝑙
𝐿1−1
𝑙=0   𝑚𝑜𝑑 𝑁  (5) 

𝑉̃1,𝑛 = ∑ 𝑔̃𝑙𝑋𝑛−𝑙
𝐿1−1
𝑙=0   𝑚𝑜𝑑 𝑁  (6) 

Where n= 1, 2, 3,..., N(length of signal in sample) 

𝐴̃1,𝑛 = ∑ 𝑔̃𝑙𝑉̃1,𝑛+𝑙
𝐿1−1
𝑙=0   𝑚𝑜𝑑 𝑁  (7) 

𝐷̃1,𝑛 = ∑ 𝑔̃𝑙𝑊̃1,𝑛+𝑙
𝐿1−1
𝑙=0   𝑚𝑜𝑑 𝑁  (8) 

The first-stage approximations and details can be 

calculated by (7) and (8). The MODWT scaling 

coefficients 𝑉̃𝑗 and 𝑊̃𝑗   wavelet coefficients at the nth 

element of the jth stage are given by the eqns. (9) and (10). 

Fig 4 represents the block diagram of MODWT 

decomposition. 

𝑉̃𝑗,𝑛 = ∑ 𝑔̃𝑗,1𝑋̃𝑛−𝑙

𝐿𝑗−1

𝑙=0   𝑚𝑜𝑑 𝑁  (9) 
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𝑊̃𝑗,𝑛 = ∑ ℎ̃𝑗,1𝑋̃𝑛−𝑙

𝐿𝑗−1

𝑙=0
  𝑚𝑜𝑑 𝑁  (10) 

 

Fig 6 Block diagram representation of MODWT decomposition. 

The approximations  𝐴̃𝑗  and the details  𝐷̃𝑗 of the nth 

element of the jth stage MODWT are given by the (11) and 

(12). 

𝐴̃𝑗,𝑛 = ∑ 𝑔̃𝑗,𝑙
0 𝑉̃1,𝑛+𝑙

𝐿𝑗−1

𝑙=0
  𝑚𝑜𝑑 𝑁  (11) 

𝐷̃𝑗,𝑛 = ∑ ℎ̃𝑗,𝑙
0 𝑊̃1,𝑛+𝑙

𝐿𝑗−1

𝑙=0
  𝑚𝑜𝑑 𝑁   (12) 

Using MODWT, the nine statistical features are extracted, 

and the details are shown in Table 1. After feature 

extraction, the Kruskal wallis test is run to get the best 

results, which makes the classification easy for the 

classifier. Table 2 shows the comparison of various 

MODWT families. 

Table 1. Statistical features extracted using MODWT. 

Features Equations 

Min min(Ci) 

Max max (Ci) 

Mean 
𝜇𝑖 =

1

𝑁
∑ 𝑐𝑖

𝑁

𝑖=1
 

 

STD 

𝜎𝑖 = √
1

𝑁
∑ (𝑐𝑖 − 𝜇𝑖)

2
𝑁

𝑖=1
 

 

Kurthosis 
𝑘𝑖 =

(1 𝑁⁄ )∑ (𝑐(𝑖) − 𝜇𝑖)
4𝑁

𝑖=1

𝑁𝜎4
 

 

Skewness 
𝑠𝑖 =

(1 𝑁⁄ )∑ (𝑐(𝑖) − 𝜇𝑖)
3𝑁

𝑖=1

𝑁𝜎3
 

 

Energy 
𝑒𝑖 =

1

𝑁
∑ |𝑐𝑖|

2
𝑁

𝑖=1
 

 

nSTD (Ratio 

between STD and difference of 

min max values) 

𝑛𝜎𝑖 =
𝜎𝑖

𝑚𝑎𝑥𝑖 − 𝑚𝑖𝑛𝑖

 

 

nEnergy (Ratio 

between energy and size of the 

band) 

𝑛𝑒𝑖 =
𝑒𝑖

𝑙𝑒𝑛𝑔𝑡ℎ (𝑐𝑖)
 

 

 

Table 2 Comparison of MODWT families 

Sl.No Family Short 

name        

Order Support 

width 

Filter 

length 

1 Coiflets 

 

coif N = 1, 2, ..., 5 

 

1 2 
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2 Daubechies db or 

haar 

N = 1, 2, ...,45 

 

2N-1 2N 

3 Fejer-

Korovkin 

fk N = 

4,6,8,14,18,22 

2N-1 2N 

4 Symlets 

 

sym N = 2, 3, ... 45                                         6N-1 6N 

 

2.3. Bi-directional Long short-term memory (Bi-

LSTM) 

Bi-LSTM is the name given to a sequence model that 

consists of two LSTM layers, one for processing input 

forward and the other for processing backward. The idea 

behind this strategy is that the model can better 

comprehend the relationship between sequences by 

processing data in both directions. 

 Two unidirectional LSTMs that process the forward and 

backward sequence make up the bidirectional LSTM 

architecture. This architecture can be understood as 

having two independent LSTM networks, one of which 

receives the token sequence in its original order and the 

other in reverse. The combined probability of the two 

outputs from the two networks is the final output, which 

is a probability vector. 

A

A’

x

A

A’

x

A

A’

x

Y

Embedding Layer 

Bidirectional 

LSTM layer 

Fully connected 

Layer 

Output layer 
HIF or Non- HIF 

Y Y

 

Fig.7 Bi-LSTM Architecture  

With a learning rate of 0.001, the optimizer used to update 

the model weights is the Adaptive Moment Estimation 

(Adam) algorithm. For binary classification, the binary 

cross-entropy loss functions are employed. The model 

begins by employing an embedding layer to map inputs to 

their representations, as seen in Fig. 10. After that, it feeds 

the embeddings in two processing directions to the LSTM 

layers: the first moves forward, and the second moves in 

the opposite direction. The model architecture involves 

fully connected layers receiving LSTM outputs, with 

ReLU as the activation function. These fully connected 

layers learn and assemble data from LSTM layers to form 

the final output for classification. To prevent overfitting, a 

dropout probability of 0.2 is applied. Model performance 

is validated using a stratified K-fold cross-validation 

method with K set to 10. The sample percentage for every 

class is guaranteed to be identical to the stratified K-fold 

in every fold. The dataset is divided into K groups after it 

has been shuffled. Next, using K-1 (10-1) folds to fit the 

model, validate it using the Kth folds that are left (9 folds). 

This procedure is repeated until the final K-fold. It 

continues in this manner until each K-fold functions as a 

test set. 

𝐴′
𝑡

⃗⃗ ⃗⃗  ⃗ = 𝐿𝑆𝑇⃗ 𝑀(𝐴𝑡−1, 𝑤𝑡 , 𝑌𝑡−1)  (13) 

𝐴𝑡
⃖⃗ ⃗⃗⃗ =  𝐿𝑆𝑇⃗⃖𝑀(𝐴𝑡+1, 𝑤𝑡 , 𝑌𝑡+1)  (14) 

𝐴𝑡 = [𝐴′
𝑡

⃗⃗ ⃗⃗  ⃗, 𝐴𝑡
⃖⃗ ⃗⃗⃗]    (15) 
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The Input data is represented by Xt, the hidden state is 

represented by At, , Wt represents the equivalent weight 

matrix and the output state of the Bi-LSTM structure is 

represented by Yt. 

3. Results and discussion 

Various MODWT families are run with different levels of 

decomposition, and the best accuracy obtained for each 

case is shown in Table 3. The number of features extracted 

using MODWT families and the number of features 

selected using Kruskal Wallis tests are shown, with the 

time taken by the classifier for classification. From the 

Table, db and coif give the best results at lower levels of 

decomposition, and fk and sym give satisfactory results as 

compared with db and coif. Fig 8 shows some of the 

random results of all the MODWT families. 

 

Table 3 comparison of Performance of various MODWT families with Bi-LSTM  

MODWT 

Family 

Level of 

decomposition Accuracy 

No of 

features 

extracted 

No of 

features 

selected Time elapsed 

db1 Level4 94.59 125 75 22s 

db2 Level8 100 125 135 27s 

db3 Level4 100 125 75 11s 

db4 level 7 97.3 125 120 23s 

db5 level 1 100 125 30 6s 

db6 level 3 100 125 60 12s 

db7 level 4 97.3 125 75 18s 

db8 level 1 100 125 30 8s 

db9 level 5 100 125 90 10s 

db10 level 1 100 125 30 8s 

db11 level 6 94.59 125 105 22s 

db12 level5 100 125 90 19s 

db13 level3 97.3 125 60 15s 

db14 level3 100 125 60 8s 

db15 level2 100 125 45 6s 

db16 level1 100 125 30 5s 

db17 level3 100 125 60 17s 

db18 level2 100 125 45 13s 

db19 level1 97.3 125 30 6s 

db20 level3 100 125 60 10s 

db21 level5 100 125 90 19s 

db22 level1 100 125 30 12s 

db23 level1 94.59 125 30 15s 

db24 level5 100 125 90 11s 

db25 level1 100 125 30 5s 

db26 level2 100 125 45 7s 

db27 level3 100 125 60 7s 

db28 level 4 100 125 75 9s 
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db29 level7 97.3 125 120 10s 

db30 level2 100 125 45 13s 

db31 level1 100 125 30 11s 

db32 level1 100 125 30 12s 

db34 level4 97.3 125 75 16s 

db35 level2 100 125 45 8s 

db36 level1 100 125 30 6s 

db37 level1 100 125 30 5s 

db38 level2 100 125 45 6s 

db39 level6 94.59 125 105 10s 

db40 level4 100 125 75 23s 

db41 level3 100 125 60 16s 

db42 level4 97.3 125 75 10s 

db43 level1 94.59 125 30 7s 

db44 level1 100 125 30 7s 

db45 level2 100 125 30 6s 

coif1 level1 100 125 30 5s 

coif2 level1 100 125 30 16s 

coif3 level 1 100 125 30 6s 

coif 4 level 3 100 125 40 8s 

coif 5 level 1 100 125 39 5s 

fk2 level 2 100 125 45 15s 

fk4 level 4 94.59 125 44 15s 

fk6 level 4 100 125 75 9s 

fk8 level 1 94.59 125 30 6s 

fk14 level 3 94.59 125 60 20s 

fk18 level 8 89.19 125 35 24s 

fk22 level 6 97.3 125 105 24s 

sym2 level 4 100 125 75 8s 

sym3 level 4 100 125 75 17s 

sym4 level 3 100 125 60 19s 

sym5 level 4 100 125 75 8s 

sym6 level 3 100 125 60 7s 

sym7 level 1 94.59 125 90 19s 

sym8 level 5 100 125 55 22s 

sym9 level 6 100 125 105 20s 

sym10 level 3 100 125 60 7s 

sym12 level 4 97.3 125 75 10s 
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sym13 level 1 100 125 30 5s 

sym14 level 1 100 125 30 12s 

sym15 level 6 97.3 125 105 20s 

sym16 level 3 100 125 60 12s 

sym17 level 1 100 125 30 12s 

sym18 level 1 97.3 125 90 9s 

sym19 level 3 100 125 60 8s 

sym20 level 1 100 125 30 6s 

sym21 level 4 100 125 75 17s 

sym22 level 2 100 125 45 13s 

sym23 level 4 100 125 75 10s 

sym24 level 1 91.89 125 30 7s 

sym25 level 3 100 125 60 19s 

sym26 level 2 100 125 45 7s 

sym27 level 4 100 125 75 9s 

sym28 level 2 100 125 45 8s 

sym29 level 4 97.3 125 60 7s 

sym30 level 2 94.59 125 45 12s 

sym31 level 5 75.68 125 90 21s 

sym33 level 2 100 125 45 24s 

sym34 level 1 94.59 125 30 11s 

sym35 level 1 67.57 125 30 7s 

sym36 level 1 94.59 125 40 19s 

sym37 level 1 100 125 30 17s 

sym38 level 1 86.49 125 30 6s 

sym39 level 1 67.57 125 30 19s 

sym40 level 1 97.3 125 30 25s 

sym41 level 1 100 125 30 7s 

 

 

Db3 level 4 

 

Coif 1 level 1 
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Sym 2 level 2 

 

Sym 8 level 8 

 

Db3 level 1 

 

Coif 2 level 3 

 

Coif 3 level 1 

 

Db3 level 5 

 

Fk4 level 4  

Fk22 level 6 

Fig 8 Performance of various MODWT families with Bi-LSTM 

4. Conclusion  

To classify HIF and Non-HIF, the best possible 

combination of three factors—the level of decomposition, 

the mother wavelet, and the wavelet coefficient features—

is studied in this work. The Bi-LSTM classifier obtains 

nine extracted statistical features. The approach is most 

suited for HIF detection analysis, according to the number 

of feature vectors and classification accuracy. The mother 

wavelet coif is determined to be the best wavelet family 

for classifying HIF based on classification accuracy. 

Additionally, selecting the right mother wavelet improves 

the performance of current signal analysis when compared 

to a random choice on the mother wavelet. 
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