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Abstract: This observe proposes a new Convolutional Neural Network (CNN) framework for image category, the usage of both CNN and
Recurrent Neural Networks (RNNs) for superior characteristic mastering. The technique combines RNNs in CNNs to offer neighborhood
and temporal correlations can be extracted. Additionally, a new "ShortCut3-ResNet" module, triggered by the ultimate ResNet connections,
facilitates easy float of data over layers. Moreover, the twin optimization model optimizes cooperatively on the convolutional and fully
related tiers. This correction is evaluated the use of the CIFAR-10 statistics set. Experiments display the efficiency of the proposed method,
achieving better overall performance in comparison to existing methods in phrases of accuracy and sample length The study also
investigates the effect of activation characteristic, sampling strategies, pooling strategies, and dual optimization so, and provides precious

insights for optimizing CNN overall performance.
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Introduction

The explosive boom of picture sharing on cellular gadgets
and social media has created a giant, untapped reservoir
of data trapped inside photographs [1]. Unlike text,
traditional keyword-based retrieval methods fail to unlock
the meaning and value of these image datasets [2]. This
necessitates the development of intelligent image
classification and recognition systems, a challenge
increasingly addressed by deep learning techniques [3].
Traditional methods depended on extracting handcrafted
functions and matching them to present fashions — a
shallow technique limiting reputation accuracy [4].
However, advancements in deep mastering, mainly
convolutional neural networks (CNNs), have added about
breakthroughs throughout numerous fields, including
photograph recognition [5]. CNNs excel at extracting
spatial and contextual facts from pics, enabling them to
examine notably complicated and discriminative
functions. The deep gaining knowledge of technique
includes feeding snap shots into the network, using
forward and backward propagation algorithms to decrease
blunders, and iteratively updating community weights to
refine the recognition version [6]. This empowers the
network to appropriately perceive new snap shots based
on the learned styles. This shift towards deep learning
opens exciting opportunities for unlocking the cost hidden
inside our ever-growing sea of pics [7]. By intelligently
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categorizing and understanding those visible records
factors, we can unencumber new frontiers in information
retrieval, content material moderation, and limitless
different programs.

This research is dealt with:

e CNN architecture with RNN integration for
enhanced feature learning.

e Introduction of "ShortCut3-ResNet" module for
efficient information flow.

e  Dual optimization model for improved
performance.

e  Superior accuracy and smaller model size
compared to existing methods.

e Analysis of factors influencing CNN

performance.

Theory of Image Recognition Algorithm Based on
CNN

A. Recurrent Neural Network

Recurrent neural networks (RNNs) are powerful tools for
the tasks of sequential data and contextual understanding
[8]. Their ability to learn and use prior information makes
it an asset in tasks as diverse as natural language
processing, speech recognition, and music generation [9].
Recurrent neural networks combine convolution and
sampling, with uniform weighting the same is generally
used to reduce the feature dimension level by the level
[10]. Figure 1 shows its structure. K1 represents the
number of feature maps output by the first-level network.
The bottommost feature map is 4 X 4 in size, with each
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unit representing the acceptance field of 2 X 2 connected
by weight (w). This process results in a final 2 x 2 size
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Fig 1. Mapping the Connections: A Schematic View of a RNN's Structure.

B. Constructing a New Residual Module

Traditional ResNets utilize a "ShortCut" feature that skips
two convolutional layers, aiming to address the vanishing
gradient problem in deep networks. This paper introduces
a "ShortCut3-ResNet" module that takes this concept
further by skipping three layers as shown in Figure 2.
Inspired by VGGNet [11], ShortCut3-ResNet utilizes 3x3
convolutional kernels throughout the network [12],
divided into three segments with 2n layers each (where n
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is 3 or more). The number of convolution kernels
progressively increases within each segment, leading to a
total of 6n hidden layers excluding the initial and final
layers. Notably, the last fully connected layer is replaced
with a global average-pooling layer. This modification
addresses potential drawbacks of fully connected layers
such as parameter overload, slow training, and overfitting,
potentially leading to a more efficient and performant
network architecture.
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Fig 2. ShortCut3-ResNet: the performance gain in image recognition.

The proposed network employs a ShortCut3-ResNet
architecture for image recognition, specifically with a

depth of 20 layers (excluding the initial convolutional and
final global average-pooling layers). As detailed in Figure
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3, the network consists of three convolution blocks, each
containing multiple convolutional layers whose number
increases with depth. Notably, the number of convolution
kernels remains constant within each block but
progressively increases between blocks. The crucial
differences in shortcut connections are represented by
dashed and solid lines: solid lines represent direct addition
of channels, while dashed lines require dimensional
adjustment through a convolution operation (Ws in
Equation (1)). This reflects the core principle of residual
learning, allowing seamless information flow across the

network.
yi = F(x;, Wy) + Wsh(x;) Equation (1)

The core structure of a residual connection within a CNN
uses an input vector (x;) and transforms it into an output

vector (xi+1) through a "residual mapping" (F); F =
Woo(Wixi). This mapping involves two steps: a linear
transformation using weights (W) and activation function
(f), followed by another linear transformation with
weights (W»). Additionally, a "cross-layer connection"
(h(x;)) directly copies the input to the output. Notably, in
CNNs, the number of convolution kernels often increases
with network depth [13]. If the dimensions of the residual
mapping output and the cross-layer connection no longer
match, a specialized "W, convolution kernel" is used to
adjust the dimensions, ensuring the information from both
paths can be seamlessly added in the residual connection.
This mechanism allows information to flow more
efficiently through deep networks, mitigating the
vanishing gradient problem and improving overall
performance.
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Fig 3. Comparison of ResNet and ShortCut3-ResNet architectures for the 20-layer network. Details include convolution
parameters, shortcut connections, and activation functions.

C. Convolutional Neural Network Training Process

The CNN serves as a mapping function from input to
output, capable of learning numerous features without
requiring precise mathematical expressions between input
and output [14]. It accomplishes the mapping between
input and output through supervised learning, where the
sample set comprises vector pairs of input vectors and
corresponding ideal output vector s. The network training
process is depicted in Figure 4. To initiate the network, the
connection weights of various components such as the

convolutional layer threshold, two-layer convolution
kernel, network input layer, hidden layer, and output layer
are initialized using small random numbers of different
sizes [15]. Simultaneously, the learning rate and
associated accuracy control parameters are set. As each
convolutional layer possesses trainable thresholds and
weights for each convolution kernel, the focus of CNN
weight update lies in updating these parameters [13].
Consequently, the weight update process predominantly
involves adjusting the convolution kernel weights and
convolution layer thresholds.
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Fig 4. A Flowchart of Network Optimization for Image Recognition.

Methodology

This paper proposes a novel image classification approach
that leverages both convolutional and RNNs for enhanced
deep feature learning. It integrates a RNN within the
convolutional architecture, enabling parallel extraction of
image features. Inspired by ResNet's residual connections,
a new "ShortCut3-ResNet" module is introduced,
promoting efficient information flow across layers.
Furthermore, a dual optimization model is established to
optimize both the convolutional and fully connected
layers collaboratively. These enhancements are evaluated
using the CIFAR-10 image dataset, a widely used
benchmark comprising 60,000 color images (32x32
pixels) categorized into 10 classes. The dataset is split into
training and test sets, ensuring unbiased evaluation. This
combined description provides a concise overview of the
proposed method, its underlying principles, and the
experimental setup.

Hardware and Software Environment

The experiments were conducted on a machine with the
following specifications:

e  Processor: Intel Socket-v3 i7
e Memory: 128GB
e GPUs: Nvidia GTX 550ti 12GB 4th generation

The TensorFlow framework, an open-source library for
numerical computations using data flow graphs, was used
for the experiments. Data flow graphs are directed graphs
that represent the flow of data through a series of nodes,
each performing a specific operation. Figure 5 illustrates
a data flow graph for the convolution operation. This
TensorFlow data flow diagram represents the journey of
data from a Client to training a machine learning model.
Data starts at the client, enters the Training subgraph for

processing: loading from files, buffering in an Input
queue, and undergoing heavy computation in Work
processes. PS processes manage model parameters,
exchanging information with work processes (gradients
and weights) and potentially sending the trained model
back to the client. While simplified, this offers a core
understanding of data flow within TensorFlow during
training.

Evaluation Criteria
The primary evaluation criteria for the experiments were:

o Test accuracy: The percentage of correctly
classified images on the held-out test set.

e Model size: The size of the trained model in
terms of parameters (weights and biases).

Additional Considerations

e Data augmentation: To improve the model’s
generalizability and reduce overfitting, data
augmentation techniques such as random
cropping, flipping, and color jittering could be
applied to the training data.

o Hyperparameter tuning: The performance of
the model can be sensitive to the choice of
hyperparameters such as learning
rate, optimizer, and network
architecture. Optimizing these hyperparameters
through techniques like grid search or random
search can lead to significant improvements in
accuracy.

e Regularization: Regularization techniques such
as dropout or L1/L2 regularization can help to
prevent overfitting and improve the model’s
generalizability.
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Fig 5. A TensorFlow data flow graph depicts the relationships between operations and data tensors, showcasing the flow of
information within the model.

Three CNN models were constructed, each using one of
the sampling methods while keeping other parameters
identical. Experiments were conducted with three runs per
model, and the average recognition rate was calculated.

Results and Discussion
Activation Function

The sigmoid function of 1.730% false recognition, Tanh
function of 1.700% false recognition, and ReLU function
of 1.303 false recognition are employed as activation
functions in the network. The results highlighting the
superior performance of the ReLU function. This is
attributed to its ability to force certain function values to
zero, preventing overfitting, accelerating calculation
speed, and effectively addressing the problem of gradient
disappearance compared to the sigmoid and Tanh
functions. Strengths of ReLU:

e  Zero output for negative inputs: This inherent
property helps prevent overfitting by "turning
off" neurons that receive non-positive inputs,
making the model less prone to learning
irrelevant features.

e Faster computation: ReLU requires simpler
calculations compared to sigmoid and Tanh,
leading to faster training and prediction times.

e Mitigation of vanishing gradients: Unlike
sigmoid and Tanh, whose gradients tend to
diminish for large negative inputs, ReLU
maintains non-zero gradients for positive values,
facilitating better network training and parameter
updates.

Sampling Method

To address the issue of dimensionality, each convolutional
layer is connected to a sampling layer to down sample
feature maps and reduce computational complexity.

Maximum sampling of 1.410% false recognition, mean
sampling of 1.305% false recognition, and random
sampling of 1.226% false recognition are considered.
These results indicate the superiority of maximum and
random sampling over average sampling. Considering
computational complexity and recognition accuracy,
maximum sampling is adopted.

This section investigates the impact of different sampling
methods (max sampling, mean sampling, and random
sampling) on CNN performance for image recognition.
Feature maps extracted from convolutional layers are
often high dimensional, a resulting in high-performance
software. Sampling methods address this by reducing
feature map resolution, reducing computational demand.
Random sampling achieved the highest accuracy but also
the most computationally challenging. The accuracy of
sampling was low, but the rate was fast. Maximum
sampling provided a balance between accuracy and
efficiency, making it the method of choice for this study.
All three modeling methods reduced the dimensionality of
the feature maps, solved the "dimension disaster”, and
improved computational efficiency. Each sampling
approach can vary depending on factors such as data set
type, network architecture, and workload requirements.
More advanced sampling techniques, such as adaptive
pooling or learning pooling, can adjust the pooling
function dynamically based on the data, potentially
resulting in additional performance improvements This
experiment highlights the importance of selective
sampling highlighting the appropriate distance for CNNs.
While random sampling provided the maximum. While
random sampling offered the highest accuracy in this case,
max pooling emerged as a favorable choice due to its
balanced performance and efficiency. Considering the
trade-offs between accuracy, computational complexity,
and convergence speed when selecting a sampling method
for the CNN architecture.
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Pooling Method and Size Selection

Comparing pooling methods and sizes on the CIFAR-10
dataset reveals significant differences in performance.
Overall, max pooling achieves the lowest testing error
(28.80%), followed by stochastic pooling (28.10%) and
mean pooling (29.00%). Notably,
consistently exhibits lower testing error regardless of
pooling size, indicating its robustness. Interestingly,
smaller pooling sizes generally lead to better performance,
both in training and testing error, for all methods except
max pooling. However, using a pooling size smaller than
3x3 for stochastic pooling leads to overfitting, suggesting
a trade-off between noise reduction and information loss.
For mean pooling, the smallest size (2x2) shows the worst
performance, highlighting its sensitivity to down
sampling.

max pooling

Figures 6.a and 6.b show the training and testing result of
various pooling sizes. Max pooling with a 2x2 size
emerges as the optimal configuration, balancing noise
reduction with information retention and achieving the
lowest testing error. Max pooling appears to be the most

effective method overall, achieving the lowest testing
error and demonstrating resilience to different pooling
sizes. Stochastic pooling presents a potential alternative
with competitive performance, but its optimal size
requires careful tuning. Mean pooling generally yields the
least favorable results in this comparison.

Overall Trends:

e  Max pooling consistently achieves the lowest
testing error across all pooling sizes. It starts
with the lowest training error at 2x2 and
maintains a slight advantage over other methods
throughout.

e  Mean pooling generally has the highest testing
error, with performance deteriorating as pooling
size increases.

e Stochastic pooling shows a trade-off. It starts
with a competitive training error at 2x2 but
experiences overfitting at smaller sizes. Its
optimal size of 3x3 falls between Max and Mean
pooling in terms of testing error.
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Fig 6. a. Training, and b. Testing accuracy are compared across different pooling sizes to identify the optimal choice for this
image classification task.
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A. Dual-optimization Analysis

The training process utilizes the training set samples,
initializing network weights with a standard deviation of
0.01 and a Gaussian distribution centered at zero. With
3000 sample iterations, an initial learning rate of 0.001 for
weight parameters, and a momentum factor of 0.9, the
training accuracy of the designed algorithm swiftly
increases with iteration count and stabilizes over time.
Both the training set and verification set yield closely

aligned classification results, achieving an accuracy rate
0f 0.985. Concurrently, the objective function's loss value
diminishes rapidly as depicted in Figure 7, converging to
approximately 0.05 after 2500 iterations. This significant
decrease suggests efficient optimization, with a final value
indicating moderate residual error. Although the R? value
of 0.3609 implies moderate correlation, further analysis
considering task specifics and alternative metrics is
recommended for a comprehensive performance
evaluation.

v =-0.0022x + 4.5539
R? =0.3609
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Fig 7. Rapid Loss Convergence: Objective function reaches minimum value quickly, showcasing efficient optimization.

Subsequently, three sets of iterative experiments on full
connection optimization, convolutional optimization, and
dual optimized CNNs were conducted, each varying with
iteration count. Figures 8.a, 8.b, and 8.c illustrate the mean
square error (MSE) curves across different training
batches for these experiments. Across the three sets of
iterative experiments, distinctive convergence patterns
emerge. Notably, in the three-training iterations
experiment, the fully connected optimization algorithm
initially exhibits a higher MSE values; however, its rate of
decline is rapid. The convolution optimization algorithm

7

15

© © © L
w o [t} N}

MSE: Full connection optimization

o
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demonstrates faster decline compared to the original
algorithm and fully connected optimization, without an
initial increase in MSE values observed in the latter.
Additionally, the dual optimization algorithm shows
slightly faster convergence than convolution optimization,
positioning it as the fastest among the three optimization
algorithms. Based on this analysis, dual optimization
emerges as the most efficient method in terms of
achieving faster convergence and lower MSE. However,
further insights might be gained by considering additional
metrics and the context of your specific application.
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Fig 8. a. Full connection optimization, b. Convolutional optimization, and c. Dual optimized CNNs MSE curves at one,
two, and three training batches.

Several existing approaches compared to the proposed
algorithm for image recognition, including AlexNet,
VGGNet, ResNet, Random Forest, HSC, Scatt-Net, and
PCAnet. While AlexNet, VGGNet, and ResNet are well-
known CNN architectures, their specific application to the
CIFAR-10 dataset is not explicitly stated. Random Forest,
a machine learning algorithm, is also mentioned, which is
not typically used for image recognition tasks like CIFAR-
10. HSC, Scatt-Net, and PCAnet are mentioned but
without details on their application to CIFAR-10. Here is

a presentation of results for existing approaches applied to
the CIFAR-10 dataset with the same or smaller model size
than our proposed method. Specifically, we will include a
comprehensive comparison table in our revised
manuscript. Table 1 will list the accuracy rates of previous
methods alongside our proposed method, providing
readers with a clear and detailed comparison of the
different approaches. This addition will significantly
improve the clarity and completeness of our results and
discussions, enhancing the overall quality of our study.

Table 1. Comparison of accuracy rates for existing approaches on CIFAR-10 dataset with same or smaller model sizes than

proposed method
Approach/Method | Accuracy
AlexNet 0.66
VGGNet 0.89
ResNet 0.93
Random Forest 0.51
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HSC 0.93
Scatt-Net 0.98
PCAnet 0.92
This Paper 0.98

Overall Trends:
e Full connection optimization:

o Starts with the highest initial MSE
across all training iterations.

o Generally shows the fastest initial
decline in MSE, suggesting quicker
learning in early stages.

o Reaches plateaus in MSE later in
training, indicating potential limitations
in further improvement.

e  Convolution optimization:

o Starts with slightly lower initial MSE
than full connection, except for two
training iterations.

o Has a slower initial decline in MSE
compared to full connection.

o Generally achieves lower MSE values
than full connection in later training
stages.

e Dual optimization:

o Starts with similar initial MSE to full
connection in one training iteration and
slightly higher in others.

o Shows the fastest decline in MSE
among all algorithms, reaching lower
values than both others.

o Maintains a steady decline even in later
training stages, suggesting no apparent
plateaus.

Iteration-specific Observations:
e  One Training:

o Dual optimization consistently
outperforms both others in terms of
MSE at all iteration points.

o Full connection achieves the lowest
MSE in the very first iteration but
quickly gets surpassed by dual
optimization.

e Two Training:

o The gap between dual optimization and
other algorithms widens with increasing
iterations.

o Full connection sometimes performs
better than convolution optimization
early on but falls behind later.

e Three Training:

o Similar trends as two training
iterations, with ~ dual  optimization
maintaining a clear lead.

o Full connection and convolution
optimization sometimes show similar
performance before divergence later.

Performance Analysis of Image Recognition

Comparing different ResNet topologies with varying
shortcut lengths (2, 3, and 6) reveals no difference in
training time for a 20-layer network (all around 100-115
minutes). This suggests that shortcut length within this
range does not significantly impact training efficiency for
this specific network depth. However, when moving
beyond training time, a different picture emerges. The
proposed algorithm in this paper significantly
outperforms other methods (AlexNet [16], VGGNet [11],
ResNet [17], HSC [18], Scatt-Net [19], and PCAnet [20])
in terms of test accuracy (0.985 vs. 0.658-0.975),
showcasing its effectiveness in feature extraction and
recognition. This improvement comes with the benefit of
a much smaller model size (18.201 M vs. 54.512 M -
95.625 M), demonstrating the algorithm's efficiency and
potential for resource-constrained applications. Notably,
the algorithm surpasses even larger and more complex
architectures like VGGNet and ResNet, highlighting its
ability to achieve high accuracy with fewer parameters.

Overall Trends:

e ResNet shortcut length (within the tested
range of 2, 3, and 6) does not significantly
impact training time for a 20-layer
network. This suggests the choice of
shortcut length might not be critical for
optimizing training efficiency at this
specific depth.

e The proposed algorithm outperforms all
other tested methods (including AlexNet,
VGGNet, ResNet, Random Forest, HSC,
Scatt-Net, and PCAnet) in terms of test
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accuracy. This  trend  highlights  the
effectiveness of the proposed algorithm in
feature extraction and recognition.

e The proposed algorithm achieves its
superior accuracy with a significantly
smaller model size compared to other
methods. This trend emphasizes the
algorithm's efficiency and potential for
resource-constrained
applications, outperforming even larger and
more complex architectures like VGGNet
and ResNet.

Conclusion

Smaller pooling sizes (except for Stochastic
pooling) tend to lead to lower training errors but
higher testing errors. This suggests a risk of
overfitting with aggressive down sampling.

Max pooling exhibits the most consistent
performance across different sizes, indicating its
robustness to the choice of pooling dimensions.
Stochastic pooling requires careful selection of
pooling size to avoid overfitting. Its 3x3
configuration offers a balance between training
and testing performance.

While MSE is a crucial metric, consider also
analyzing final accuracy, training time, and
computational cost for a holistic

comparison.

more

The optimal algorithm choice depends on your
specific task requirements, dataset
characteristics, and computational resources.

While shortcut length within the tested range did
not impact training time in this specific case, the
proposed algorithm shines in terms of overall
performance. Its superior accuracy combined
with a lightweight design makes it a promising
tasks requiring both high
recognition capabilities and efficient resource
utilization.

candidate for

This paper addresses image classification by
proposing a novel convolutional neural network
that combines the strengths of CNNs and RNNs.
It incorporates an RNN alongside the CNN for
parallel feature learning, capturing both high-
level (CNN) and combined low-level features
(RNN).

A ResNet-inspired shortcut module (ShortCut3-
ResNet) is introduced for faster convergence.
Experimental results demonstrate improved
feature extraction and image recognition
compared to standard CNNs.
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