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Abstract: This observe proposes a new Convolutional Neural Network (CNN) framework for image category, the usage of both CNN and 

Recurrent Neural Networks (RNNs) for superior characteristic mastering. The technique combines RNNs in CNNs to offer neighborhood 

and temporal correlations can be extracted. Additionally, a new "ShortCut3-ResNet" module, triggered by the ultimate ResNet connections, 

facilitates easy float of data over layers. Moreover, the twin optimization model optimizes cooperatively on the convolutional and fully 

related tiers. This correction is evaluated the use of the CIFAR-10 statistics set. Experiments display the efficiency of the proposed method, 

achieving better overall performance in comparison to existing methods in phrases of accuracy and sample length The study also 

investigates the effect of activation characteristic, sampling strategies, pooling strategies, and dual optimization so, and provides precious 

insights for optimizing CNN overall performance. 
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Introduction 

The explosive boom of picture sharing on cellular gadgets 

and social media has created a giant, untapped reservoir 

of data trapped inside photographs [1]. Unlike text, 

traditional keyword-based retrieval methods fail to unlock 

the meaning and value of these image datasets [2]. This 

necessitates the development of intelligent image 

classification and recognition systems, a challenge 

increasingly addressed by deep learning techniques [3]. 

Traditional methods depended on extracting handcrafted 

functions and matching them to present fashions – a 

shallow technique limiting reputation accuracy [4]. 

However, advancements in deep mastering, mainly 

convolutional neural networks (CNNs), have added about 

breakthroughs throughout numerous fields, including 

photograph recognition [5]. CNNs excel at extracting 

spatial and contextual facts from pics, enabling them to 

examine notably complicated and discriminative 

functions. The deep gaining knowledge of technique 

includes feeding snap shots into the network, using 

forward and backward propagation algorithms to decrease 

blunders, and iteratively updating community weights to 

refine the recognition version [6]. This empowers the 

network to appropriately perceive new snap shots based 

on the learned styles. This shift towards deep learning 

opens exciting opportunities for unlocking the cost hidden 

inside our ever-growing sea of pics [7]. By intelligently 

categorizing and understanding those visible records 

factors, we can unencumber new frontiers in information 

retrieval, content material moderation, and limitless 

different programs. 

This research is dealt with: 

• CNN architecture with RNN integration for 

enhanced feature learning. 

• Introduction of "ShortCut3-ResNet" module for 

efficient information flow. 

• Dual optimization model for improved 

performance. 

• Superior accuracy and smaller model size 

compared to existing methods. 

• Analysis of factors influencing CNN 

performance. 

Theory of Image Recognition Algorithm Based on 

CNN 

A. Recurrent Neural Network 

Recurrent neural networks (RNNs) are powerful tools for 

the tasks of sequential data and contextual understanding 

[8]. Their ability to learn and use prior information makes 

it an asset in tasks as diverse as natural language 

processing, speech recognition, and music generation [9]. 

Recurrent neural networks combine convolution and 

sampling, with uniform weighting the same is generally 

used to reduce the feature dimension level by the level 

[10]. Figure 1 shows its structure. K1 represents the 

number of feature maps output by the first-level network. 

The bottommost feature map is 4 × 4 in size, with each 
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unit representing the acceptance field of 2 × 2 connected 

by weight (w). This process results in a final 2 × 2 size 

feature map. Successive layers undergo a similar process, 

ultimately obtaining a 1 × 1 size feature map. 

 

Fig 1. Mapping the Connections: A Schematic View of a RNN's Structure. 

B. Constructing a New Residual Module 

Traditional ResNets utilize a "ShortCut" feature that skips 

two convolutional layers, aiming to address the vanishing 

gradient problem in deep networks. This paper introduces 

a "ShortCut3-ResNet" module that takes this concept 

further by skipping three layers as shown in Figure 2. 

Inspired by VGGNet [11], ShortCut3-ResNet utilizes 3x3 

convolutional kernels throughout the network [12], 

divided into three segments with 2n layers each (where n 

is 3 or more). The number of convolution kernels 

progressively increases within each segment, leading to a 

total of 6n hidden layers excluding the initial and final 

layers. Notably, the last fully connected layer is replaced 

with a global average-pooling layer. This modification 

addresses potential drawbacks of fully connected layers 

such as parameter overload, slow training, and overfitting, 

potentially leading to a more efficient and performant 

network architecture. 

 

Fig 2. ShortCut3-ResNet: the performance gain in image recognition. 

The proposed network employs a ShortCut3-ResNet 

architecture for image recognition, specifically with a 

depth of 20 layers (excluding the initial convolutional and 

final global average-pooling layers). As detailed in Figure 
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3, the network consists of three convolution blocks, each 

containing multiple convolutional layers whose number 

increases with depth. Notably, the number of convolution 

kernels remains constant within each block but 

progressively increases between blocks. The crucial 

differences in shortcut connections are represented by 

dashed and solid lines: solid lines represent direct addition 

of channels, while dashed lines require dimensional 

adjustment through a convolution operation (Ws in 

Equation (1)). This reflects the core principle of residual 

learning, allowing seamless information flow across the 

network. 

𝑦𝑖 = 𝐹(𝑥𝑖 ,𝑊𝑖) +𝑊𝑠ℎ(𝑥𝑖)  Equation (1) 

The core structure of a residual connection within a CNN 

uses an input vector (xi) and transforms it into an output 

vector (xi+1) through a "residual mapping" (F); F = 

W2σ(W1xi). This mapping involves two steps: a linear 

transformation using weights (W1) and activation function 

(f), followed by another linear transformation with 

weights (W2). Additionally, a "cross-layer connection" 

(h(xi)) directly copies the input to the output. Notably, in 

CNNs, the number of convolution kernels often increases 

with network depth [13]. If the dimensions of the residual 

mapping output and the cross-layer connection no longer 

match, a specialized "Ws convolution kernel" is used to 

adjust the dimensions, ensuring the information from both 

paths can be seamlessly added in the residual connection. 

This mechanism allows information to flow more 

efficiently through deep networks, mitigating the 

vanishing gradient problem and improving overall 

performance. 

 

Fig 3. Comparison of ResNet and ShortCut3-ResNet architectures for the 20-layer network. Details include convolution 

parameters, shortcut connections, and activation functions. 

C. Convolutional Neural Network Training Process 

The CNN serves as a mapping function from input to 

output, capable of learning numerous features without 

requiring precise mathematical expressions between input 

and output [14]. It accomplishes the mapping between 

input and output through supervised learning, where the 

sample set comprises vector pairs of input vectors and 

corresponding ideal output vector s. The network training 

process is depicted in Figure 4. To initiate the network, the 

connection weights of various components such as the 

convolutional layer threshold, two-layer convolution 

kernel, network input layer, hidden layer, and output layer 

are initialized using small random numbers of different 

sizes [15]. Simultaneously, the learning rate and 

associated accuracy control parameters are set. As each 

convolutional layer possesses trainable thresholds and 

weights for each convolution kernel, the focus of CNN 

weight update lies in updating these parameters [13]. 

Consequently, the weight update process predominantly 

involves adjusting the convolution kernel weights and 

convolution layer thresholds. 
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Fig 4. A Flowchart of Network Optimization for Image Recognition. 

Methodology  

This paper proposes a novel image classification approach 

that leverages both convolutional and RNNs for enhanced 

deep feature learning. It integrates a RNN within the 

convolutional architecture, enabling parallel extraction of 

image features. Inspired by ResNet's residual connections, 

a new "ShortCut3-ResNet" module is introduced, 

promoting efficient information flow across layers. 

Furthermore, a dual optimization model is established to 

optimize both the convolutional and fully connected 

layers collaboratively. These enhancements are evaluated 

using the CIFAR-10 image dataset, a widely used 

benchmark comprising 60,000 color images (32x32 

pixels) categorized into 10 classes. The dataset is split into 

training and test sets, ensuring unbiased evaluation. This 

combined description provides a concise overview of the 

proposed method, its underlying principles, and the 

experimental setup. 

Hardware and Software Environment 

The experiments were conducted on a machine with the 

following specifications: 

• Processor: Intel Socket-v3 i7 

• Memory: 128GB 

• GPUs: Nvidia GTX 550ti 12GB 4th generation 

The TensorFlow framework, an open-source library for 

numerical computations using data flow graphs, was used 

for the experiments. Data flow graphs are directed graphs 

that represent the flow of data through a series of nodes, 

each performing a specific operation. Figure 5 illustrates 

a data flow graph for the convolution operation. This 

TensorFlow data flow diagram represents the journey of 

data from a Client to training a machine learning model. 

Data starts at the client, enters the Training subgraph for 

processing: loading from files, buffering in an Input 

queue, and undergoing heavy computation in Work 

processes. PS processes manage model parameters, 

exchanging information with work processes (gradients 

and weights) and potentially sending the trained model 

back to the client. While simplified, this offers a core 

understanding of data flow within TensorFlow during 

training. 

Evaluation Criteria 

The primary evaluation criteria for the experiments were: 

• Test accuracy: The percentage of correctly 

classified images on the held-out test set. 

• Model size: The size of the trained model in 

terms of parameters (weights and biases). 

Additional Considerations 

• Data augmentation: To improve the model’s 

generalizability and reduce overfitting, data 

augmentation techniques such as random 

cropping, flipping, and color jittering could be 

applied to the training data. 

• Hyperparameter tuning: The performance of 

the model can be sensitive to the choice of 

hyperparameters such as learning 

rate, optimizer, and network 

architecture. Optimizing these hyperparameters 

through techniques like grid search or random 

search can lead to significant improvements in 

accuracy. 

• Regularization: Regularization techniques such 

as dropout or L1/L2 regularization can help to 

prevent overfitting and improve the model’s 

generalizability. 
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Fig 5. A TensorFlow data flow graph depicts the relationships between operations and data tensors, showcasing the flow of 

information within the model. 

Three CNN models were constructed, each using one of 

the sampling methods while keeping other parameters 

identical. Experiments were conducted with three runs per 

model, and the average recognition rate was calculated. 

Results and Discussion  

Activation Function 

The sigmoid function of 1.730% false recognition, Tanh 

function of 1.700% false recognition, and ReLU function 

of 1.303 false recognition are employed as activation 

functions in the network. The results highlighting the 

superior performance of the ReLU function. This is 

attributed to its ability to force certain function values to 

zero, preventing overfitting, accelerating calculation 

speed, and effectively addressing the problem of gradient 

disappearance compared to the sigmoid and Tanh 

functions. Strengths of ReLU: 

• Zero output for negative inputs: This inherent 

property helps prevent overfitting by "turning 

off" neurons that receive non-positive inputs, 

making the model less prone to learning 

irrelevant features. 

• Faster computation: ReLU requires simpler 

calculations compared to sigmoid and Tanh, 

leading to faster training and prediction times. 

• Mitigation of vanishing gradients: Unlike 

sigmoid and Tanh, whose gradients tend to 

diminish for large negative inputs, ReLU 

maintains non-zero gradients for positive values, 

facilitating better network training and parameter 

updates. 

Sampling Method 

To address the issue of dimensionality, each convolutional 

layer is connected to a sampling layer to down sample 

feature maps and reduce computational complexity. 

Maximum sampling of 1.410% false recognition, mean 

sampling of 1.305% false recognition, and random 

sampling of 1.226% false recognition are considered. 

These results indicate the superiority of maximum and 

random sampling over average sampling. Considering 

computational complexity and recognition accuracy, 

maximum sampling is adopted. 

This section investigates the impact of different sampling 

methods (max sampling, mean sampling, and random 

sampling) on CNN performance for image recognition. 

Feature maps extracted from convolutional layers are 

often high dimensional, a resulting in high-performance 

software. Sampling methods address this by reducing 

feature map resolution, reducing computational demand. 

Random sampling achieved the highest accuracy but also 

the most computationally challenging. The accuracy of 

sampling was low, but the rate was fast. Maximum 

sampling provided a balance between accuracy and 

efficiency, making it the method of choice for this study. 

All three modeling methods reduced the dimensionality of 

the feature maps, solved the "dimension disaster", and 

improved computational efficiency. Each sampling 

approach can vary depending on factors such as data set 

type, network architecture, and workload requirements. 

More advanced sampling techniques, such as adaptive 

pooling or learning pooling, can adjust the pooling 

function dynamically based on the data, potentially 

resulting in additional performance improvements This 

experiment highlights the importance of selective 

sampling highlighting the appropriate distance for CNNs. 

While random sampling provided the maximum. While 

random sampling offered the highest accuracy in this case, 

max pooling emerged as a favorable choice due to its 

balanced performance and efficiency. Considering the 

trade-offs between accuracy, computational complexity, 

and convergence speed when selecting a sampling method 

for the CNN architecture. 
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Pooling Method and Size Selection 

Comparing pooling methods and sizes on the CIFAR-10 

dataset reveals significant differences in performance. 

Overall, max pooling achieves the lowest testing error 

(28.80%), followed by stochastic pooling (28.10%) and 

mean pooling (29.00%). Notably, max pooling 

consistently exhibits lower testing error regardless of 

pooling size, indicating its robustness. Interestingly, 

smaller pooling sizes generally lead to better performance, 

both in training and testing error, for all methods except 

max pooling. However, using a pooling size smaller than 

3x3 for stochastic pooling leads to overfitting, suggesting 

a trade-off between noise reduction and information loss. 

For mean pooling, the smallest size (2x2) shows the worst 

performance, highlighting its sensitivity to down 

sampling. 

Figures 6.a and 6.b show the training and testing result of 

various pooling sizes. Max pooling with a 2x2 size 

emerges as the optimal configuration, balancing noise 

reduction with information retention and achieving the 

lowest testing error. Max pooling appears to be the most 

effective method overall, achieving the lowest testing 

error and demonstrating resilience to different pooling 

sizes. Stochastic pooling presents a potential alternative 

with competitive performance, but its optimal size 

requires careful tuning. Mean pooling generally yields the 

least favorable results in this comparison.  

Overall Trends: 

• Max pooling consistently achieves the lowest 

testing error across all pooling sizes. It starts 

with the lowest training error at 2x2 and 

maintains a slight advantage over other methods 

throughout. 

• Mean pooling generally has the highest testing 

error, with performance deteriorating as pooling 

size increases. 

• Stochastic pooling shows a trade-off. It starts 

with a competitive training error at 2x2 but 

experiences overfitting at smaller sizes. Its 

optimal size of 3x3 falls between Max and Mean 

pooling in terms of testing error. 

 

 

Fig 6. a. Training, and b. Testing accuracy are compared across different pooling sizes to identify the optimal choice for this 

image classification task. 
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A. Dual-optimization Analysis 

The training process utilizes the training set samples, 

initializing network weights with a standard deviation of 

0.01 and a Gaussian distribution centered at zero. With 

3000 sample iterations, an initial learning rate of 0.001 for 

weight parameters, and a momentum factor of 0.9, the 

training accuracy of the designed algorithm swiftly 

increases with iteration count and stabilizes over time. 

Both the training set and verification set yield closely 

aligned classification results, achieving an accuracy rate 

of 0.985. Concurrently, the objective function's loss value 

diminishes rapidly as depicted in Figure 7, converging to 

approximately 0.05 after 2500 iterations. This significant 

decrease suggests efficient optimization, with a final value 

indicating moderate residual error. Although the R2 value 

of 0.3609 implies moderate correlation, further analysis 

considering task specifics and alternative metrics is 

recommended for a comprehensive performance 

evaluation. 

 

Fig 7. Rapid Loss Convergence: Objective function reaches minimum value quickly, showcasing efficient optimization. 

Subsequently, three sets of iterative experiments on full 

connection optimization, convolutional optimization, and 

dual optimized CNNs were conducted, each varying with 

iteration count. Figures 8.a, 8.b, and 8.c illustrate the mean 

square error (MSE) curves across different training 

batches for these experiments. Across the three sets of 

iterative experiments, distinctive convergence patterns 

emerge. Notably, in the three-training iterations 

experiment, the fully connected optimization algorithm 

initially exhibits a higher MSE values; however, its rate of 

decline is rapid. The convolution optimization algorithm 

demonstrates faster decline compared to the original 

algorithm and fully connected optimization, without an 

initial increase in MSE values observed in the latter. 

Additionally, the dual optimization algorithm shows 

slightly faster convergence than convolution optimization, 

positioning it as the fastest among the three optimization 

algorithms. Based on this analysis, dual optimization 

emerges as the most efficient method in terms of 

achieving faster convergence and lower MSE. However, 

further insights might be gained by considering additional 

metrics and the context of your specific application. 
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Fig 8. a. Full connection optimization, b. Convolutional optimization, and c. Dual optimized CNNs MSE curves at one, 

two, and three training batches. 

Several existing approaches compared to the proposed 

algorithm for image recognition, including AlexNet, 

VGGNet, ResNet, Random Forest, HSC, Scatt-Net, and 

PCAnet. While AlexNet, VGGNet, and ResNet are well-

known CNN architectures, their specific application to the 

CIFAR-10 dataset is not explicitly stated. Random Forest, 

a machine learning algorithm, is also mentioned, which is 

not typically used for image recognition tasks like CIFAR-

10. HSC, Scatt-Net, and PCAnet are mentioned but 

without details on their application to CIFAR-10. Here is 

a presentation of results for existing approaches applied to 

the CIFAR-10 dataset with the same or smaller model size 

than our proposed method. Specifically, we will include a 

comprehensive comparison table in our revised 

manuscript. Table 1 will list the accuracy rates of previous 

methods alongside our proposed method, providing 

readers with a clear and detailed comparison of the 

different approaches. This addition will significantly 

improve the clarity and completeness of our results and 

discussions, enhancing the overall quality of our study. 

Table 1. Comparison of accuracy rates for existing approaches on CIFAR-10 dataset with same or smaller model sizes than 

proposed method 

Approach/Method Accuracy 

AlexNet 0.66 

VGGNet 0.89 

ResNet 0.93 

Random Forest 0.51 
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HSC 0.93 

Scatt-Net 0.98 

PCAnet 0.92 

This Paper 0.98 

Overall Trends: 

• Full connection optimization: 

o Starts with the highest initial MSE 

across all training iterations. 

o Generally shows the fastest initial 

decline in MSE, suggesting quicker 

learning in early stages. 

o Reaches plateaus in MSE later in 

training, indicating potential limitations 

in further improvement. 

• Convolution optimization: 

o Starts with slightly lower initial MSE 

than full connection, except for two 

training iterations. 

o Has a slower initial decline in MSE 

compared to full connection. 

o Generally achieves lower MSE values 

than full connection in later training 

stages. 

• Dual optimization: 

o Starts with similar initial MSE to full 

connection in one training iteration and 

slightly higher in others. 

o Shows the fastest decline in MSE 

among all algorithms, reaching lower 

values than both others. 

o Maintains a steady decline even in later 

training stages, suggesting no apparent 

plateaus. 

Iteration-specific Observations: 

• One Training: 

o Dual optimization consistently 

outperforms both others in terms of 

MSE at all iteration points. 

o Full connection achieves the lowest 

MSE in the very first iteration but 

quickly gets surpassed by dual 

optimization. 

• Two Training: 

o The gap between dual optimization and 

other algorithms widens with increasing 

iterations. 

o Full connection sometimes performs 

better than convolution optimization 

early on but falls behind later. 

• Three Training: 

o Similar trends as two training 

iterations, with dual optimization 

maintaining a clear lead. 

o Full connection and convolution 

optimization sometimes show similar 

performance before divergence later. 

Performance Analysis of Image Recognition 

Comparing different ResNet topologies with varying 

shortcut lengths (2, 3, and 6) reveals no difference in 

training time for a 20-layer network (all around 100-115 

minutes). This suggests that shortcut length within this 

range does not significantly impact training efficiency for 

this specific network depth. However, when moving 

beyond training time, a different picture emerges. The 

proposed algorithm in this paper significantly 

outperforms other methods (AlexNet [16], VGGNet [11], 

ResNet [17], HSC [18], Scatt-Net [19], and PCAnet [20]) 

in terms of test accuracy (0.985 vs. 0.658-0.975), 

showcasing its effectiveness in feature extraction and 

recognition. This improvement comes with the benefit of 

a much smaller model size (18.201 M vs. 54.512 M - 

95.625 M), demonstrating the algorithm's efficiency and 

potential for resource-constrained applications. Notably, 

the algorithm surpasses even larger and more complex 

architectures like VGGNet and ResNet, highlighting its 

ability to achieve high accuracy with fewer parameters.  

Overall Trends: 

• ResNet shortcut length (within the tested 

range of 2, 3, and 6) does not significantly 

impact training time for a 20-layer 

network. This suggests the choice of 

shortcut length might not be critical for 

optimizing training efficiency at this 

specific depth. 

• The proposed algorithm outperforms all 

other tested methods (including AlexNet, 

VGGNet, ResNet, Random Forest, HSC, 

Scatt-Net, and PCAnet) in terms of test 
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accuracy. This trend highlights the 

effectiveness of the proposed algorithm in 

feature extraction and recognition. 

• The proposed algorithm achieves its 

superior accuracy with a significantly 

smaller model size compared to other 

methods. This trend emphasizes the 

algorithm's efficiency and potential for 

resource-constrained 

applications, outperforming even larger and 

more complex architectures like VGGNet 

and ResNet. 

Conclusion  

• Smaller pooling sizes (except for Stochastic 

pooling) tend to lead to lower training errors but 

higher testing errors. This suggests a risk of 

overfitting with aggressive down sampling. 

• Max pooling exhibits the most consistent 

performance across different sizes, indicating its 

robustness to the choice of pooling dimensions. 

• Stochastic pooling requires careful selection of 

pooling size to avoid overfitting. Its 3x3 

configuration offers a balance between training 

and testing performance. 

• While MSE is a crucial metric, consider also 

analyzing final accuracy, training time, and 

computational cost for a more holistic 

comparison. 

• The optimal algorithm choice depends on your 

specific task requirements, dataset 

characteristics, and computational resources. 

• While shortcut length within the tested range did 

not impact training time in this specific case, the 

proposed algorithm shines in terms of overall 

performance. Its superior accuracy combined 

with a lightweight design makes it a promising 

candidate for tasks requiring both high 

recognition capabilities and efficient resource 

utilization. 

• This paper addresses image classification by 

proposing a novel convolutional neural network 

that combines the strengths of CNNs and RNNs. 

It incorporates an RNN alongside the CNN for 

parallel feature learning, capturing both high-

level (CNN) and combined low-level features 

(RNN).  

• A ResNet-inspired shortcut module (ShortCut3-

ResNet) is introduced for faster convergence. 

Experimental results demonstrate improved 

feature extraction and image recognition 

compared to standard CNNs. 
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