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Abstract: Investors, analysts, and intellectuals are consistently known for predicting stock movements. Therefore, this research focuses 

on the importance of simplicity, relying solely on stock data that includes open, high, low, close, and volume prices. The objective is to 

forecast stock movements on the Indonesia Stock Exchange (IDX). To achieve the desired result, three well-known Deep Learning 

architectures were used namely, Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Recurrent Neural Networks 

(RNN). Furthermore, the architectures assisted in creating a series of prediction models based on the datasets. The dataset was sourced 

from the index of the Indonesian Stock Exchange, known as the Jakarta Composite Index. Through experimentation, efficiency, reliability, 

and susceptibility to fluctuations in data for each architecture were assessed. Consequently, the results showed that historical data alone 

could be used to create a stock prediction model, particularly when approached correctly. Among the three architectures explored, there 

was an observation that RNN achieved the highest level of prediction accuracy as the research signified the importance of simplicity in 

modeling. Based on the findings, further research could develop streamlined and effective stock prediction models that rely on minimal 

data. 

Keywords: Deep Learning Models, Stock Index Prediction, Jakarta Composite Index, Historical Data 

1. Introduction 

Stock represents ownership in a company and is considered 

a volatile financial instrument. Despite including high risk, 

significant returns are offered when managed carefully in a 

portfolio [1]. By acquiring stock, investors become partial 

owners of the respective company, even when the 

ownership stake is minuscule. The stock market serves as 

the platform where the stock is traded, exchanged, and 

distributed [2]. 

Investing in stock provides several advantages which firstly 

include the potential for capital growth. This implies that the 

stock price of a growing company can increase in no time. 

Secondly, certain stocks yield dividends, signifying the 

earnings distribution of the company to its shareholders. 

Additionally, investing in stock facilitates portfolio 

diversification [3], which helps to mitigate risk. However, 

aside from these benefits, there are inherent risks associated 

with stock investments. [4]. For example, stock prices can 

show instability in short durations, influenced by various 

external factors, including macroeconomic conditions, 

political dynamics, and global events [5][6][7]. 

Consequently, the ability to forecast stock price trajectories 

is crucial for stock market investments [4]. 

Investors, irrespective of experience levels in the stock 

market, consistently pursue ways to improve their chances 

of profit. In the recent digital age, signified by numerous 

data and technological advancements, strategies centered on 

data and using artificial intelligence and machine learning 

are achieving popularity. However, before embarking on 

investments in the stock market, evaluating available 

options and identifying approaches that promise better 

returns is essential [8]. 

In recent decades, predicting stock movements has become 

an engaging activity, driven by the potential for monetary 

profits as well as its complex intellectual challenges. 

Forecasting stocks is a demanding task, prompting 

computer experts to use artificial intelligence to project 

future stock trajectories [9][10]. In addition, modern 

technology, particularly artificial intelligence and machine 

learning, has introduced innovative tools capable of 

addressing these challenges in exceptional ways. 

Indonesia Stock Exchange (IDX) is a dynamic stock market 

experiencing evolution with distinctive characteristics. 

Movements reflect economic growth and geopolitical 

conditions in the region. Therefore, a well-crafted stock 

prediction model for IDX can offer strategic advantages to 

investors and major stakeholders. In this context, 

maximizing profits and improving the market value of 

company remain fundamental business objectives [11]. 

A widely recognized statistical method used in time series 

forecasting, including predictions for stocks, is ARIMA 
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(Auto-Regressive Integrated Moving Average). ARIMA 

combines the strengths of two models, namely Auto-

Regressive (AR) and Moving Average (MA), to show the 

statistical dependency structures inherent in data. While 

ARIMA has proven effective in many instances and is 

widely used in the financial sector, it does have certain 

limitations. Specifically, challenges arise when exchanging 

stock data characterized by substantial noise, non-

stationarity, market downturns, and susceptibility to various 

external influences. 

Through the advent of the big data era and technological 

progression, methods based on machine learning are 

achieving projections in predicting stock outcomes [12]. 

Machine learning is a subset of artificial intelligence that 

enables computers to learn from data without precise 

programming. Furthermore, algorithms such as Random 

Forest, Gradient Boosting, and Neural Networks have been 

used for predicting stocks, yielding encouraging outcomes. 

Deep learning, which is a specialized branch of machine 

learning, shows its capability in modeling difficult time 

series data, primarily through architectures such as RNN 

[13][14], GRU [15][16], and LSTM [17][18]. 

In the historical data analysis for stock prediction, the 

different methods used relied on extensive datasets and 

various features such as technical indicators, fundamentals, 

news, and market sentiment. However, the utilization of 

these strategies often introduces complications in both 

interpretation and computation. In the current research, an 

alternative approach was adopted by focusing on the 

fundamentals and narrowing the scope to historical stock 

data, specifically open, high, low, close, and volume prices. 

Despite this deviation, concerns arise about potential 

omissions, suggesting that essential information within 

historical data may not have been thoroughly exploited. 

This current exploration adopts an unconventional stance, 

describing the significance of historical stock data. To 

assess its potential as a foundation for constructing a strong 

stock prediction model for IDX, Deep Learning 

architectures, including LSTM, GRU, and RNN, are 

leveraged. The primary contribution of the research lies in 

providing an experiential understanding of the most suitable 

architecture for stock predictions found in historical data, 

which is adjusted for IDX by comparing the three 

architectures. Through this method, the research aims to 

bridge existing knowledge gaps in stock prediction and to 

also introduce fresh perspectives on the untapped potential 

of historical data. This approach addresses the limitations of 

traditional strategies and also opens avenues for innovation 

in advancing stock prediction models. 

2. Related Work 

In the current digital landscape, predictions of financial 

indices through machine learning and deep learning 

techniques have gathered significant interest from the 

intellectual community. Numerous explorations have 

wanted to use the capabilities of neural networks for 

forecasting trajectories in the stock market. 

Lin et al., present a groundbreaking approach to forecasting 

stock prices by introducing the use of RNN. The aim is to 

predict the opening and closing prices, as well as the 

difference between prices. Moreover, a significant feature 

of this research is the importance of data pre-processing and 

the adoption of normalized first-order difference method. 

The main focus is on fundamental attributes of stock data, 

particularly the Zero Crossing Rate (ZCR). Additionally, the 

application of this method to indices such as the S&P 500 

and Dow Jones shows a significant improvement in 

predictive precision compared to previous techniques [14]. 

Jarrar and Salim explore the effectiveness of screening 

using the Discrete Wavelet Transform (DWT) and RNN for 

forecasting stock price trajectories in the Saudi Arabian 

context. Recognizing the stock market as a multifaceted and 

dynamic environment, the research aims to improve 

predictive accuracy by using DWT to eliminate noise from 

the dataset. Leveraging RNN training facilitate by the Back 

Propagation Through Time (BPTT) technique. In addition 

to this, the examiners achieve superior predictive outcomes, 

particularly when compared with conventional forecasting 

algorithms such as ARIMA [13]. 

To improve the precision of predictions for stock indices, 

Gupta et al., propose a method that combines deep learning 

modalities with data augmentation to address the challenges 

of overfitting. The team introduces a GRU-anchored 

StockNet framework, divided into two principal modules. 

The first module, named the Injection module, is carefully 

created to counteract overfitting. Meanwhile, the second 

module, named the Investigation module, is modified for 

forecasting stock indices. The paradigm experiences 

validation in the Indian stock market domain, specifically 

CNX-Nifty. This scenario shows a marked decrease in test 

loss compared to alternative models lacking an anti-

overfitting apparatus. The results of this intellectual inquiry 

show the importance of combining advanced techniques in 

deep learning with judicious data augmentation tactics to 

refine the quality of predictions for stock indices [15]. 

Through the evolution of technological paradigms, the Long 

Short-Term Memory (LSTM) technique has become a main 

point of academic analysis. Baek and Kim (2018) worked 

more than the introduction of the standard LSTM method, 

adding complexity through a data augmentation strategy. 

Subsequently, the conceived ModAugNet framework aims 

to improve the accuracy of stock price forecasts by 

enriching the training dataset [19]. Nguyen and Yoon 

explored the potential of Deep Neural Networks, with a 

focus on LSTM, in forecasting short-term stock price 

fluctuations. The findings of the team signify that LSTM 
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possesses superior capability in discerning temporal 

patterns, thereby leading to outstanding improvements in 

predictive accuracy [10]. Similarly, Ji et al. advance the 

communication by introducing a deep learning-centric 

method modified specifically for stock price forecasting. 

The technique distinguishes the situation by an outstanding 

performance compared to existing benchmarking 

paradigms. It is crucial to be aware that the investigation 

further confirms the preeminence of deep learning 

modalities [12].  

Manurung et al. focus on the salience of time series analysis 

in decoding stock market dynamics. Through the algorithms 

and paradigms the dynamics formulated, the exploration 

explains the efficacious deployment of LSTM across 

diverse market scenarios. Furthermore, LSTM shows both 

adaptability and flexibility to fluctuations in data curation 

[1]. Borovkova and Tsiamas made a significant contribution 

through the joint approach of LSTM neural networks. By 

joining insights from diverse LSTM paradigms, the method 

confers distinct benefits in predicting volatility. Moreover, 

this approach provides a more deep understanding of market 

perturbations [20]. Zhang et al. combine two distinct 

technological frameworks, specifically RNN and DBN, 

concluding in a hybrid DBN-RNN model that shows 

superior efficacy in its performance [3]. Luo et al. present 

an artificial intelligence forecasting model for stock market 

returns, using the capabilities of LSTM and strengthening it 

with a Shuffled Frog Leaping Algorithm (SFLA) that 

emulates amphibian behavior. This model is further 

supported with a mutation and crossover rectification 

method and has been subjected to empirical testing on stock 

market datasets [21]. Kim et al. (2019) explain the way 

integrating multiple economic paradigms can improve the 

effectiveness of LSTM [22]. Subsequent research, including 

[23] and [7], offers essential contributions, by explaining the 

effective use of LSTM in stock price forecasting. 

3. Materials and Methods 

3.1. Data 

The research used stock data from the Indonesia Stock 

Exchange (IDX) which included information about the 

opening, highest, lowest, and closing prices of stocks, as 

well as the trading volume throughout a specific period. The 

source of the stock trading data was Yahoo Finance, 

providing data on a daily, weekly, and monthly basis. For 

this finding, the focus was on the Jakarta Composite Index 

(JCI), representing the stock trading index of IDX. The time 

range for the trading data was from January 1st, 2007, to 

December 31st, 2020. Moreover, this dataset included five 

metrics namely opening price, highest price, lowest price, 

closing price, and trading volume. Figure 1 showed the 

closing values of JCI from January 1st, 2000, to December 

31st, 2022. 

 

Fig. 1. JCI close price on January 1, 2000 – December 31, 

2022 

3.2. Data Preprocessing 

Before starting the model training, there was a need to 

preprocess the stock data, including both cleaning and 

normalizing the data. 

3.2.1. Data Cleaning 

Data cleaning performed a crucial role in ensuring the 

quality of the prediction model. Dataset was carefully 

examined for any incomplete data, which were subsequently 

removed. Following this, gaps in data were common during 

stock exchange downtimes on holidays. 

3.2.2. Normalization 

Normalization is a technique used to scale the data in a 

range, which assisted in convergence and stability during 

training. Typically, the aim was to scale the values between 

0 and 1 for optimal performance in learning models. In a 

stock dataset, attributes such as open, high, low, close, and 

volume had different value ranges. These scale differences 

could unintentionally prioritize features, potentially 

affecting model training. To ensure the importance of all 

features during training, normalization was applied as a 

result that these attributes influenced the final predictions. 

In the research, the Min-Max Normalization technique was 

used, adjusting data to be in the range of [0, 1] through a 

specific formula. 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
    (1) 

3.3. Deep Learning Architecture 

This research used three principal deep learning 

architectures namely, LSTM, GRU, and RNN. 

3.3.1. LSTM 

LSTM architecture was fitted to the category of networks 

(RNN), a type of artificial neural network. Introduced in 

1997 by Hochreiter and Schmidhuber, LSTM addressed the 

vanishing gradient problem encountered in RNN during 
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training with data sequences [24]. In this context, LSTM 

proved particularly useful for tasks including data, such as 

datasets related to stocks, due to its ability to retain 

information throughout sequences. 

The basic structure of an LSTM comprised memory cells 

along with three gates namely, the input gate, the forget 

gate, and the output gate [25]. The input gate determined the 

information to be stored in the memory cell, while the forget 

gate decided what information should be discarded, and the 

output gate controlled which value should be passed on to 

the cell. In addition, these three gates worked together 

harmoniously, allowing LSTM to intelligently store, 

modify, or erase information based on the context of each 

data sequence [26]. Figure 2 showed the structure of LSTM 

model. 

 

Fig. 2. LSTM structure [26] 

LSTM architecture had an advantage in recognizing patterns 

in data sequences in certain periods [27]. The distinguished 

factor for LSTM was its ability to retain information from 

previous steps in the sequence, even when that information 

might not have been crucial for models. However, this 

feature positioned LSTM as one of the popular architectures 

in the field of deep learning, specifically when addressing 

problems that require a deep understanding of contextual 

data sequences. 

A significant strength of LSTM remains in its proficiency in 

identifying patterns in data sequences across time intervals 

[27]. This implied that LSTM could preserve information 

from steps in the sequence, which might have been 

disregarded or ignored by models. In addition, this inherent 

capability placed LSTM at the forefront of deep learning 

architectures, particularly when tackling challenges that 

demanded an understanding of data sequences. 

3.3.2. Gated Recurrent Units (GRU) 

Introduced by Cho et al. in 2014, GRU became a variant of 

conventional Recurrent Neural Networks (RNN). The 

beginning of GRU was predicated upon addressing certain 

intrinsic limitations of traditional RNN, specifically the 

famous vanishing gradient dilemma, which impeded the 

capacity of RNN to assimilate long-term dependencies in 

data sequences. While LSTM captured three distinct gates, 

GRU, in its bid for stinginess, combined merely two gates 

namely the update and the reset gate [28]. 

The functionality of the update gate in GRU architecture 

was twofold including ascertaining the proportion of old 

information that should be retained and showing the extent 

to which new information should be combined. Conversely, 

the reset primary role of gate was to determine the 

information quantum from the antecedent time step that 

ought to influence the current data. In a comparative 

analysis with LSTM, GRU boasted a more streamlined 

architecture. This inherent simplicity afforded GRU 

accelerated training speeds and a reduction in the requisite 

parameters [28], as Figure 3 showed a visual representation 

of GRU architecture. 

 

Fig. 3. GRU architecture [29] 

From a comparative perspective, though the architecture of 

GRU was more fundamental, experimental evidence 

proposed that it delivered performance on par with LSTM 

across diverse tasks, particularly when exchanging with 

relatively shorter data sequences. Both frameworks excelled 

in retaining long-term information and adapting to the 

sequential nature of data. However, GRU became a 

computationally efficient alternative, distinguished by its 

reduced complexity and fewer parameters. 

3.3.3. RNN 

RNN possess the essential ability to preserve memory or 

information from earlier steps when analyzing data in 

subsequent time frames. RNN are composed of multiple 

neurons forming a network [30] which are designed 

specifically for managing sequential data. Additionally, this 

architecture provided RNN with a trace of memory about 

prior events in the sequence, distinguishing RNN from other 

neural network architectures such as feedforward networks, 

which treat each input in isolation. 

Traditional RNN faced challenges in learning long-term 

dependencies in data sequences. When tasked with 

remembering information far apart in a sequence, RNN 

often encounter difficulties due to a problem known as the 

vanishing or exploding gradient [31]. However, this showed 
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that information from early time steps frequently got lost 

when reaching more advanced time steps. 

Conventional RNN encountered challenges in 

understanding long-term dependencies in sequential data. 

When these networks had to retain information across 

distant points in a sequence, RNN often struggled with the 

vanishing or exploding gradient problem [31]. Moreover, 

this problem led to the confusion or dilution of information 

from the early time steps as it progressed to later steps. 

RNN served as a foundational architecture for the evolution 

of subsequent models, specifically LSTM and GRU. Both 

LSTM and GRU were conceived to address the inherent 

constraints of traditional RNN, specifically improving the 

capacity of RNN for long-term dependency retention. In 

numerous sequence-processing applications, RNN became 

a crucial component. Therefore, following the operational 

principles of RNN was crucial for comprehending the 

advancements in artificial intelligence modified for 

sequential data as the architecture of RNN was shown in 

Figure 4. 

 

Fig. 4. RNN architecture [32] 

3.4. Model Training 

An approach was adopted to train and validate learning 

models for accurate stock predictions based on historical 

data. The approach included dividing the dataset, tuning 

hyperparameters, and optimizing the models. 

3.4.1. Dataset Segmentation 

In this research, the dataset was divided into three parts 

based on time. The first part was the Training Set, covering 

data from January 1, 2007, to December 31, 2016. This set 

formed the foundation for training the models and 

constituted 70% of the dataset. Furthermore, the second part 

was the Validation Set, including data from January 1, 2017, 

to December 31, 2018. This set was crucial for validating 

the models, allowing adjustments as well as optimization of 

parameters without using the test data and this Validation 

Set represented around 15% of the dataset. Finally, the 

Testing Set was spanning from January 1, 2019, to 

December 31, 2020, which evaluated how well the model 

performed with data. Test datasets were essential for 

assessing the performance of the developed models. 

3.4.2. Tuning Hyperparameters 

For the finding, combinations of hyperparameters were 

experimented with, specifically examining the effects of 

epochs, learning rate, and timesteps. The major metrics used 

to assess the models were MSE, RMSE, and R2-score. 

3.4.2.1. Epochs 

Throughout the findings, different numbers of epochs were 

used for the experiment to determine the optimal duration 

for training the models without encountering overfitting 

issues. The team conducted tests with epoch values ranging 

from 50 to 250. 

3.4.2.2. Learning Rate 

The learning rate played a crucial role in determining how 

quickly the model absorbed information. In the research, the 

team tested various learning rate values, such as 0.0001, 

0.001, 0.01, and 0.1. The aim was to strike a balance 

between convergence and model stability. 

3.4.2.3. Timesteps 

Timesteps were significant in training a stock prediction 

model and throughout the research, the team explored 

timestep values corresponding to trading day intervals. The 

values included 1, 2, 5, 10, and even longer periods such as 

120 days or more, depending on the dataset available at each 

time point considered for analysis. In addition, these 

variations aimed at evaluating how the length of historical 

data influenced the accuracy of predictions made by the 

model. 

3.4.3. Optimization 

In this research, Adam Optimizer method was used because 

it could adjust the learning rate during training, aiding the 

model in converging quickly. Additionally, the team 

decided to use the MSE as the loss function to minimize 

differences between the predictions of the model and the 

actual values. 

3.5. Model Evaluation 

Evaluation constituted a crucial phase in the model 

development lifecycle. This phase aimed to assess the 

performance of the model against unfamiliar data, ensuring 

that the trained model possessed commendable 

generalization capabilities and was not merely repeating the 

training data. In the research, the team used several 

evaluation metrics commonly leveraged in regression 

analysis. 

3.5.1. Mean Square Error (MSE) 

MSE represented the average of the squared differences 

between the original value and the predicted value. The 

mathematical equation was, 
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𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

 (2

) 

where 𝑦𝑖 represented the original value and 𝑦̂𝑖 represented 

the predicted value for the ith sequence in which the MSE 

value reduces, the resulting model increases. 

3.5.2. Root Mean Squared Error (RMSE) 

RMSE was the square root of MSE, providing a calculation 

of prediction error in the same dimensions as the target 

variable. 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸

 (3

) 

A low RMSE value showed that the error between the 

prediction and the original value tended to be small, while a 

large RMSE value indicates otherwise. 

3.5.3. R2-Score 

The R2-score was used to measure how well the variation in 

the target variable could be explained by the model, ranging 

from 0 to 1. An R2 close to 1 showed that the created model 

could explain significant variations in the target variable, 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

 (4

) 

where 𝑦̅ represented the average of the target variable. 

By integrating three evaluation metrics, a comprehensive 

understanding of the performance of the model developed 

in this research when predicting previously unseen data was 

achieved. Furthermore, these metrics collectively ensured 

that the model showed stable and reliable performance. 

3.6. Comparison and Analysis 

At the stage of the research, the performance of three models 

namely LSTM, GRU, and RNN was compared to determine 

the most influential architecture for stock predictions based 

on historical data. 

3.7. Model used 

The model applied followed the steps described in the 

preceding section, as shown in Figure 5. Additionally, the 

architecture of the model was shown in Table 1. 

START

DATASET
Jakarta Composite Index 

Open, High, Low, Close, Volume
January 1, 2000 – December 31, 2020

DATA CLEANING

DATA SPLIT
Training Set: January 1, 2007 – December 31, 2016

Validation Data: January 1, 2017 – December 31, 2018
Testing Data: January 1, 2019 – December 31, 2020 

DATA NORMALIZATION
Min-Max scaler

TRAINING
Long Short Term Memory (LSTM)

TRAINING
Gated Recurrent Unit (GRU)

TRAINING
Recurrent Neural Network (RNN)

HYPERPARAMETER SETTING
Learning rate, epochs, timesteps, optimizer, 

number of neurons, batch, activation function

PERFORMANCE MEASUREMENT
MSE, RMSE, R2

PLOT RESULT
Loss Function, Close Price 

Prediction

END

PREDICT
Next Close Price (Ct+1)

 

Fig. 5. Methodology used in research 

Table 1. Model Architecture 

Model Parameter Value 

LSTM 
Number of Hidden 

Layers 
2 

 Number of neurons 

per layer 
45 and 45 

 Learning rate 0.01, 0.001, 0.0001 

 Epochs 
50, 100, 150, 200, and 

250 

 Timesteps 
1, 2, 5, 10, 20, 30, 40, 

50, 60, 80, and 120 

 Optimizer Adam 
 Batches 64 

GRU 
Number of hidden 

layers 
2 

 Number of neurons 

per layer 
25 and 25 

 Learning rate 0.1, 0.01, 0.001, 0.0001 
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 Epochs 
50, 100, 150, 200, and 

250 

 Timesteps 
1, 2, 5, 10, 20, 30, 40, 

50, 60, 80, and 120 

 Optimizer Adam 
 Batches 64 

RNN 
Number of hidden 

layers 
2 

 Number of neurons 

per layer 
25 and 25 

 Learning rate 0.1, 0.01, 0.001, 0.0001 

 Epochs 
50, 100, 150, 200, and 

250 

 Timesteps 
1, 2, 5, 10, 20, 30, 40, 

50, 60, 80, and 120 

 Optimizer Adam 

  Batches 64 

 

4. Results and Discussion 

In the current era of advancements in computational science, 

predictions about stocks using deep learning models have 

received significant attention among specialists and 

practitioners. Three models which were GRU, LSTM, and 

RNN frequently distinct in academic discussions. This 

research aimed to compare these three models in the context 

of stock predictions, with particular emphasis on forecasts 

for IDX. 

4.1. Model Training Results 

After training, the three models showed convergence, 

although with varying degrees of loss. Based on the 

evaluation, RNN model outperformed the others, 

consistently yielding the highest R2-scores across numerous 

scenarios. While LSTM and GRU also produced 

commendable outcomes in certain conditions, the models 

did not match the prowess of RNN. This section conducted 

tests with diverse variations of epochs, learning rates, and 

timesteps for each model. 

4.1.1. Epoch Variations 

After conducting tests using GRU model with a learning rate 

of 0.001, timesteps of 40, and a batch size of 64, it was 

observed that increasing the number of epochs from 50 to 

100 significantly improved the R2-score from 0.906 to 

0.985. However, further increases to 150 and 250 epochs 

only led to slight improvements. In some cases, extending 

the number of epochs led to a decrease in the R2-score. To 

address this issue, the examiners implemented early 

stopping for epoch values, showing potential overfitting. 

Table 2 showed a sum up of the test outcomes for variations 

in epochs. 

Table 2. Test Results with Varying Epochs 

Model Epoch 
Early 

Stopping 
MSE RMSE R2-score 

GRU 50 
 

0.002074 0.045541 0.906245 

GRU 100 
 

0.000325 0.018039 0.985289 

GRU 150 102 0.000357 0.018907 0.983841 

GRU 250 113 0.000342 0.018491 0.984544 

LSTM 50 
 

0.003447 0.058707 0.844197 

LSTM 100 
 

0.001576 0.039696 0.928765 

LSTM 150 
 

0.000319 0.017863 0.985575 

LSTM 200 
 

0.002949 0.054307 0.866675 

RNN 50 
 

0.000865 0.029405 0.960969 

RNN 100 83 0.000591 0.02432 0.973303 

RNN 150 96 0.000302 0.017381 0.986364 

RNN 250 103 0.000531 0.02305 0.976017 

 

In experiments using LSTM model with an identical 

learning rate, timesteps, and batch size, an increase in the 

number of epochs from 50 to 150 led to an improvement in 

the R2-score from 0.844 to 0.985. However, when the 

number of epochs was adjusted to 200, there was a decline 

in performance. 

Similar patterns were observed in tests conducted with RNN 

model where the R2-score saw an increase when the number 

of epochs was adjusted from 50 to 150. However, further 

increasing the epochs led to a level in performance and these 

findings signified the importance of determining the number 

of epochs. Insufficient epochs could lead to learning by the 

model, while an excessive count might lead to overfitting 

without implementing an early stopping mechanism. 

4.1.2. Variations in Learning Rate 

The learning rate was a critical factor in training artificial 

neural networks, controlling the size of steps taken during 

optimization to update weights. A well-selected learning 

rate sped up convergence and improved prediction 

accuracy. On the contrary, an inappropriate learning rate 

hindered convergence or even led to divergence. The 

outcomes of tests for the three models across different 

learning rates were shown in Table 3. 
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Table 3. Test results with variations in learning rate 

Mod

el 

Learni

ng Rate 

Tim

e-

steps 

MSE RMSE 
R2-

score 

GRU 0.1 40 

0.0222

17 

0.1490

53 

-

0.0043

4 

GRU 0.01 40 0.0005 

0.0223

66 

0.9773

86 

GRU 0.001 40 

0.0004

9 

0.0221

47 

0.9778

28 

GRU 0.0001 40 

0.0006

08 

0.0246

58 

0.9725

14 

LST

M 0.01 40 

0.0200

18 

0.1414

84 

0.0950

83 

LST

M 0.001 40 

0.0012

84 

0.0358

26 

0.9419

77 

LST

M 0.0001 40 

0.0037

67 

0.0613

75 

0.8297

13 

RNN 0.1 40 

0.2078

11 

0.4558

63 

-

8.3804

1 

RNN 0.01 40 

0.0004

08 

0.0202

04 

0.9815

74 

RNN 0.001 40 

0.0004

08 

0.0201

98 

0.9815

85 

RNN 0.0001 40 

0.0003

18 

0.0178

46 

0.9856

25 

 

In experiments with GRU model, a learning rate of 0.0001 

showed performance, although the R2-score did not reach its 

full potential. However, increasing the learning rate to 0.1 

significantly harmed the effectiveness of the model, leading 

to a low R2-score. The hindrance was crucial to avoid using 

an extreme learning rate, as it could hinder the model from 

finding its best solution and eventually degrade 

performance. Standardizing the learning rate to 0.01 

produced outcomes from GRU model, but not at its optimal 

state. The preferable choice for this model seemed to be a 

learning rate of 0.001, leading to an R2-score close to 0.98. 

In the case of LSTM model tests, a learning rate of 0.0001 

produced suboptimal results. Opting for a value such as 0.01 

did not benefit this model, leading to a decreased R2-score. 

However, using a learning rate of 0.001 for LSTM models 

achieved performance with the highest recorded R2-score 

around 0.941977. 

Moving on to RNN model, a learning rate of 0.001 yielded 

outcomes, but there was room for improvement in results. 

Conversely, setting the learning rate at 0.1 led to a 

divergence in RNN performance, as shown by its negative 

R2-score. Therefore, adjusting and fine-tuning with a value 

such as 0.0001 as the learning rate for our RNN models 

yielded performance and significant results. 

The learning rate played a role in determining how a model 

converged without a doubt. Considering this dataset and the 

three models that were assessed, it seemed that a learning 

rate of 0.001 would be the optimal option. Tests were 

essential to be conducted across learning rate values because 

certain models might react strongly to this parameter. 

However, the ideal learning rate could vary depending on 

the properties of the data and specific model architecture 

details. 

4.1.3. Variation of Timesteps 

Timesteps represented the number of preceding days used 

for forecasting stock movements in stock predictions. 

Selecting appropriate timesteps significantly affected model 

performance, determining the extent of historical data 

considered during predictions. Figure 6 showed the 

variation in R2-score values for the three models evaluated, 

plotted against different timesteps. 

 

Fig. 6. Relationship between R2-score and Timestep for 

GRU model. LSTM and RNN 

Using GRU model, a timestep of 40 consistently led to a 

high R2-score, and adjusting the timesteps to 10 or extending 

to 60 produced varied outcomes but still maintained 

commendable performance. This recommended that GRU 

was proficient in discerning patterns across different 

timeframes. However, opting for timesteps of 1 or 2 

significantly reduced the effectiveness of the model, 

showing that revisions were needed for accurate predictions 

in such brief trading durations. Extending timesteps to 80 or 

120 improved the outcomes, with the R2-score proposing the 

proficiency of the model in assimilating information 

throughout extended durations. 

Tests with LSTM model followed a similar trend where a 

timestep of 40 became prudent, delivering an R2-score close 

to 0.986. Modifying timesteps to 10 and 60 maintained 
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strong performances and extending to 80 and 120 reduced 

the R2-score, signifying limited adaptability of LSTM to 

different historical timeframes. 

Experiments with RNN model supported that timestep 

variations influenced predictive outcomes. Using RNN 

model with a timestep of 40 showed the resilience of the 

model to timestep modifications. However, such changes in 

RNN model had minimal impact on the fluctuation of the 

R2-score. 

In total, timestep variations influenced the performance of 

all three models, and excessively brief timesteps were 

needed to provide more information for the model. 

Conversely, excessively extended timesteps might have 

needed to support more with the model and decelerate 

training. For the Jakarta Composite Index dataset, a timestep 

of around 40 struck a harmonious balance between 

sufficient historical data and manageable model complexity. 

4.2. Model Evaluation 

Table 4. Review of the 10 best models tried 

Mod

el 

Learni

ng 

rate 

Tim

e-

step

s 

E-

poc

hs 

MSE 
RMS

E 

R2-

score 

RN

N 

0.001 40 150 0.000

3 

0.017

38 

0.9863

64 

RN

N 

0.0001 40 200 0.000

32 

0.017

85 

0.9856

25 

LST

M 

0.001 40 150 0.000

32 

0.017

86 

0.9855

75 

GR

U 

0.001 40 100 0.000

33 

0.018

04 

0.9852

89 

GR

U 

0.001 20 200 0.000

33 

0.018

18 

0.9852

86 

RN

N 

0.001 50 200 0.000

34 

0.018

36 

0.9846

94 

RN

N 

0.001 30 200 0.000

34 

0.018

55 

0.9845

78 

GR

U 

0.001 40 250 0.000

34 

0.018

49 

0.9845

44 

GR

U 

0.001 30 200 0.000

36 

0.018

9 

0.9839

86 

GR

U 

0.001 40 150 0.000

36 

0.018

91 

0.9838

41 

 

Based on the conducted tests, it was found that RNN model 

performed the best with an RMSE value of 0.01738. LSTM 

model closely followed with an RMSE of 0.01786, and 

GRU model performed slightly worse, with an RMSE of 

0.01804. When considering the R2-score, both RNN and 

LSTM models achieved a score of 0.986, while GRU model 

achieved a lower score of 0.985. Although RNN-based 

model excelled in terms of its R2-score, it was worth noting 

that GRU method showed stability across timestep 

variations. All three models accurately forecasted the 

Jakarta Composite Index in this research. Table 4 showed 

details on the ten models explored during our finding, while 

Figures 7 to 9 visually showed how each evaluated RNN, 

LSTM, and GRU model performed in terms of the loss 

function and optimal JCI prediction outcomes. 

 

(a) 

 

(b) 

Fig 7. (a) Loss Function and (b) JCI Prediction Using RNN 

 

(a) 
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(b) 

Fig. 8. (a) Loss Function and (b) JCI Prediction Using 

LSTM 

 

(a) 

 

(b) 

Fig. 9. (a) Loss Function and (b) JCI Prediction Using 

GRU  

4.3. Discussion 

The research included creating a model using three deep 

learning techniques that used historical stock data, including 

low, close, and volume prices. This data proved valuable for 

predicting stock prices, and providing information for 

forecasts. 

The primary focus of this finding was to analyze and 

compare the performance of three variations of RNN 

namely, GRU, LSTM, and RNN. By evaluating the R2-

score, the metric for assessing performance, distinct trends 

were observed in each performance of the model. In total, 

RNN model performed well, achieving an impressive R2-

score of 0.98 or higher in specific configurations, showing 

its adaptability to the dataset. LSTM model also showed R2-

scores in various setups but indicated more variability in its 

performance. While the model approached an R2-score near 

0.985 in some scenarios, LSTM model lacked performance 

in others. On the other hand, GRU model consistently 

delivered results with an R2-score range between 0.88 and 

0.98, across different conditions. 

Each deep learning architecture explored in this research 

had its strengths and limitations. While RNN became the 

leading model based on the achieved R2-score, it was 

essential not to rely solely on a metric when determining the 

best model. Factors such as model complexity, training 

time, and interpretability of results should also have been 

considered. Based on this discussion, it was crucial to 

acknowledge the limitations of this research, which 

primarily focused on data. Various factors influenced stock 

prices, such as news sentiment analysis, fundamental 

analysis, and macroeconomic indicators. The area of deep 

learning architectures was still largely unexplored and 

combining models through different approaches might have 

produced better results. 

Based on the metrics gathered in this research, it was 

possible to develop a prediction system for stock indices. 

However, investors should have exercised caution because 

built models could occasionally fail to predict sudden 

market shifts or unforeseen events. While this method 

provided a tool, cautious decision-making remained crucial 

in stock investments. 

5. Conclusion and Future Work 

In conclusion, the three models used in this research show 

the ability to predict stock indices effectively. Each model 

provided unique forecasts for the Jakarta Composite Index 

with varying levels of accuracy. Among the models, RNN 

was outstanding as the most adept for JCI predictions, 

closely followed by GRU. Moreover, LSTM seemed less 

optimal for long-term predictions. 

Further than merely comparing different deep learning 

architectures, there was interesting potential in improving 

the dataset with additional features. These could include 

technical indicators, refined stock data, and sentiment 

analysis of market news. Additionally, the introduction of 

regularization techniques, such as dropout and weight 
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decay, could act as effective measures against overfitting. 

Implementing these regularization strategies could further 

improve the ability of the model to generalize. 

The improvements recorded could provide a more thorough 

understanding of the outcomes as well as fundamental 

processes. However, it tended to offer a distinctive context 

regarding the performance of each model, particularly in the 

field of stock predictions using IDX stock dataset. 
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