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Abstract: The use of artificial intelligence (AI) techniques and deep learning based on data analysis for the design and management of 

emerging communication networks is justified by the increasing complexity of communication systems, conditioned by the diversity of 

technologies, services, and use cases with different technical requirements. This study is a documentary review that describes the usefulness 

of artificial intelligence and data analysis to improve both performance and security in information systems, presenting a trend in the 

present day of countless scientific contributions of AI and its application in wireless communication systems. Traditionally, the classical 

way of studying improvement has focused on the performance of wireless transceivers under the paradigm of dividing and conquering 

signals. The paradigm shift comes from artificial intelligence, which has been used to improve real-time wireless communication by 

analyzing previous data and user preferences. In addition to combining information security with its overall capabilities for risk 

management, virus prevention, and intrusion detection, it is intended to establish that by unlocking the potential of a wireless network 

orchestrated by the use of AI, it is possible to maximize resource use and minimize costs, requiring access to and analysis of large amounts 

of network data. Therefore, continuous updating of data is important for building successful and efficient wireless communication systems.  
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1- Introduction  

The recent evolution of services and varied uses of 

information systems that allow the transmission of data 

between devices by electromagnetic waves. In this 

context, it must refer to wireless communication networks 

that have generated complex systems that require careful 

designs and operations to provide an immersive 

experience for users while keeping investment and 

operation costs low. 

The increasing complexity of these networks makes 

planning, optimization, and organization challenging 

tasks. Advances in the modeling of digital and analog 

transceivers, as well as in network functions, have been 

significant, but traditional optimization models fall short 

in the landscape of fifth and sixth generation wireless 

networks (5G and 6G) by not considering overall end-to-

end performance or interactions between processing 

blocks. In this context, artificial intelligence and machine 

learning techniques offer new possibilities by harnessing 

large amounts of data to operate complex systems without 

relying solely on tedious mathematical models and limited 

simulations. Deep neural networks and modern learning 

theories can allow computers to learn models and apply 

more advanced optimizations. 

By virtue of the above, it is crucial that the scientific 

community that addresses the development of information 

systems highlight specific research techniques with useful 

guidance to contribute to the debate on artificial 

intelligence. Setting the goal of rethinking current ideas, 

practices, and assumptions. It is also necessary to explore 

related fields to establish distinctions between previously 

studied and unexplored topics, identify complex issues, 

and leverage the combined body of knowledge across 

disciplines [1]. 

Although these technologies and techniques are 

frequently combined in real-world scenarios, the 

discussion arises about how researchers should focus on 

information systems and discern novel and distinctive 

aspects of artificial intelligence technology in their 

methodologies to be able to separate artificial intelligence 

from analytics, automation, or other technologies. 

Therefore, we start by asking the following questions: 

First, is it still relevant in practice to distinguish artificial 

intelligence from similar technologies and how these 

should be used? Second, what should be the guiding 

objectives, degree of analysis, outcome, context, and 

value of any definition for it to be useful? Third, what 

classifications or levels must the data meet to satisfy the 

requirements of relevance and rigor? Fourth question: 

What proportion of models or algorithms should be 

presented in research based on artificial intelligence for 

addressing information systems? And finally, how can 
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information systems researchers evaluate the results of 

artificial intelligence? 

In this scenario, the compilation of empirical research 

findings on artificial intelligence is needed to 

simultaneously inform the technological and social 

components with theoretical foundations and explain 

these events through studies that provide a convincing 

underlying logic and justification, that is, a theoretical 

scroll [2]. While it is recognized that user behavior (such 

as over-reliance, abuse, or lack of use) also affects system 

performance, it must therefore be interacted with by 

artificial intelligence practices. For example, Teodorescu 

et al. (2021) [3] argue that several key principles of 

classical information systems theories and ideas should be 

reviewed in light of the significant distinctions between 

data-driven techniques and the human-computer 

interaction of conventional code-based information 

systems. 

In support of these statements, the objective of this article 

has been to present the developments of professionals and 

researchers in the area of engineering focused on 

information systems concerning the optimization of 

performance and security in wireless networks through 

the use of artificial intelligence and data analysis as a 

complementary paradigm focused on model building. 

Correspondingly, the organization of the sections is 

described below: Section referring to the research 

methodology, followed by a section that describes the 

state of the art in optimizing performance and security in 

wireless networks through the implementation of artificial 

intelligence. The next section develops data analysis in 

3GPP mobile networks with respect to data-based and 

model-assisted artificial intelligence techniques with 

machine learning, as suggested by [4]. Then, in the 

discussion section, conclusions and relevant references 

are addressed. 

2. Materials and Methods 

This documentary study is the product of content analysis 

based on a systematic review focused on the 

implementation of artificial intelligence techniques and 

data analysis to optimize performance and security in 

information systems, specifically wireless networks. In 

the review, keywords were used to search for publications 

in several databases, including Scopus, Springer, IEEE, 

Google Scholar, Wiley, Science Direct, and ACM. As for 

the keywords, they were defined based on discussions in 

wireless network performance categorization, security, 

artificial intelligence, and data analysis. The submitted 

articles were further examined after the first evaluation. In 

this review, you will find articles related to performance 

optimization strategies in wireless networks based on 

artificial intelligence collected through bibliographic 

searches in digital repositories. This sheds light on the 

development of artificial intelligence and the functioning 

of security in wireless networks. Articles written in 

English were included in this study to examine some 

publications that allow us to understand and capture how 

machine learning works and what additional studies have 

been developed to advance the field. 

3. Literature Review 

This section reflects the developments and contributions 

from researchers in the optimization of wireless networks 

as complex information systems through the 

implementation of artificial intelligence techniques as 

consequences of empirical developments. This fact 

focuses this research on artificial intelligence in 

automated resources that require optimization of 

performance and security, categorizing the various 

technologies according to the application area. By using 

artificial intelligence as a digital agency, or even as a 

computational digital agent, scholars can address social 

connections and repercussions on institutions and 

institutional logics through automation activities or 

processes. 

3.1. Optimization of wireless networks based on 

artificial intelligence 

The traditional approach to improving the performance of 

wireless transceivers is based on the concept of divide and 

conquer. The transceiver is divided into signal processing 

blocks that perform functions such as channel 

equalization, demodulation, and error correction, which 

are optimized independently with limited consideration of 

the interaction between blocks [5]. For the optimization of 

each signal processing block, well-established 

mathematical models are usually used, derived from 

extensive research in information theory, signal 

processing, and statistics in recent years [6], as reflected 

in Table 1. However, some of these models, despite being 

very precise, can be mathematically complex and difficult 

to apply in real time. For example, MIMO detectors and 

precoders can be optimally designed using a maximum a 

posteriori criterion, but this involves solving NP-hard 

problems. Therefore, often only suboptimal techniques, 

such as zero forcing compensation, can be used practically 

[7]. 

Some manageable models may be too simple and 

inadequate to accurately capture all the complexities of 

the wireless propagation medium and the nonlinearities 

and imperfections of the hardware components [4]. 

Overall, the existing block-based transceiver structure 

associated with block-based mathematical optimization 

compromises transceiver performance in terms of 

simplicity and manageability, something that AI-based 

techniques aim to address. In this sense, machine learning 

can be used to directly optimize the overall performance 

of the system by treating it as a black box. This is 
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commonly known in the literature as a purely data-driven 

technique [4]. Therefore, contributions to models to 

optimize the performance of wireless networks in real 

time with capacity parameters in the system to process a 

task in a time of less than 10 milliseconds (ms). And the 

contributions in models to optimize the performance of 

wireless networks in almost real time from 10 

milliseconds to 1000 milliseconds and in the case of 

optimization in system capacity in non-real time with 

more than 1000 milliseconds (see table 2). 

Table 1. Studies that use model-based artificial intelligence techniques to optimize the performance of wireless networks in 

real time (less than 10 ms). 

Author 
Information system 

approach 

Artificial Intelligence 

Technique 

The purpose of the study 

Ye at al.[8] 

Signal detection and symbol 

transmission in orthogonal 

frequency division 

multiplexing systems 

Estimation and detection 

based on deep learning. 

Channel estimation and signal 

detection in OFDM systems through 

the power of deep learning. 

He et al.[9] 

Multiple -Input- Multiple -

Output) technology. 
Model-based deep 

learning (DL). 

Detect MIMO by deploying an 

iterative algorithm and adding some 

trainable parameters using deep linear 

MMSE channel deployment for 

channel equalization. 

Shlezinger et al.[10] 

Symbol detection in digital 

receivers based on channel 

state information (CSI). 

Viterbi algorithm in a 

system that uses deep 

neural networks (DNN) 

based on deep learning. 

Symbol detection using a deep 

learning-based Viterbi algorithm. 

Soltani et al.[11] 
Estimation of channels in 

communication systems. 
Deep learning. 

Channel estimation based on deep 

learning. 

Burse et al.[12] 

Channel estimation. Artificial neural 

networks (ANN) such as 

multilayer perceptron, 

functional linkage ANN, 

radial basis function and 

its variants in modeling 

non-linear channel 

equalization phenomena. 

Systematic review of channel 

equalization using neural networks. 

Wen et al.[13] 

Estimation of channel 

structure from training 

samples. 

Deep learning to 

develop CsiNet 

compressive sensors. 

Deep learning for massive MIMO 

feedback on downlink channel state. 

Yang et al.[14] 

Arnold et al.[15] 

Channel predictions based on 

downlink channel state 

information (CSI). 

Deep learning. 

Deep learning based downlink 

channel prediction for FDD massive 

MIMO system. 

Jiang et al.[16] 
Multi-antenna fading channel 

prediction. 

Artificial neural 

networks. 

AI-powered multi-antenna fading 

channel prediction 

Gruber et al.[17] 

Decoding random and 

structured codes, such as 

short polar codes of speed 1/2 

and block length N = 16. 

Deep learning. 

Channel decoding based on deep 

learning. 

Cammerer et al.[18] 

Resulting non-iterative 

channel decoding algorithm. 

Neural network 

decoding of polar codes 

with belief propagation 

length N = 128. 

Deep Learning-Based Decoding 

Scaling of Polar Codes Across 

Partitions 

He et al.[19] 

Turbo decoding of channels 

in the traditional max -log- 

maximum a posteriori 

(MAP). 

TurboNet model-based 

deep supervised learning 

architecture. 

Model-based DNN decoder for turbo 

codes: Design, simulation, and 

experimental results. 

Blanquez -Casado et 

al.[20] 

Optimal signal-to-noise ratio 

regions for adaptive 
Logistic regression. 

Link adaptation mechanisms based on 

logistic regression models. 
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modulation and coding 

(AMC) over a set of 

correlated subcarriers in 5G 

wireless systems. 

Luo [21] 

Link adaptation, adaptive 

modulation and coding 

(AMC). 

Supervised k-nearest-

neighbors learning and 

support vector machines 

(SVM). 

Supervised learning techniques for 

adaptive modulation and coding 

Liaskos et al.[22] 

Performance in wireless 

communications systems. 
Deep neural networks 

(DNN). 

Design and control the behavior of 

wireless environments in a 

deterministic and programmable way. 

Elbir et al.[23] 

Estimating direct and cascade 

channels in RIS reflective 

intelligent surface-based 

communication. 

Convolutional neural 

network (CNN) 

architecture. 

Deep channel learning for large smart 

surfaces Assisted massive millimeter 

wave MIMO systems. 

Taha et al.[24] 

Coverage and speed of future 

wireless systems in phase 

change design on RIS 

reflective smart surfaces. 

Deep learning 

Enabling large smart surfaces with 

compressive sensing and deep 

learning. 

Thilina et al.[25] 

Binary spectrum sensing for 

cognitive radio networks. 

Unsupervised and 

supervised machine 

learning used for pattern 

classification: K-means 

clustering, Gaussian 

mixture model, support 

vector machine (SVM), 

and K-weighted nearest 

neighbor. 

Machine learning techniques for 

cooperative spectrum sensing in 

cognitive radio networks. 

Wang et al.[26] 

Cooperative deep spectrum 

sensing in a cognitive radio 

network. 

Convolutional neural 

network (CNN). 

Cooperative spectrum sensing based 

on convolutional neural networks. 

In real time (less than 10 milliseconds), artificial 

intelligence (AI) is essential to optimizing wireless 

network performance. Several of these investigations 

have focused on improving the efficiency and caliber of 

service in wireless systems through access and resource 

utilization. Another assumption relates to how deep 

learning and artificial intelligence are used in wireless 

LAN management to provide dynamic and automated 

optimization.  

Finally, a notable application of artificial intelligence is 

the optimization of wireless network management 

programs through the use of techniques such as neural 

networks and genetic algorithms. 

Table 2. Studies using model-based artificial intelligence techniques to optimize the performance of wireless networks in 

near real-time, between 10 ms to 1000 ms, and in non-real time over 1000 ms. 

Author Information system approach Artificial Intelligence 

Technique 

The purpose of the study 

Ahmed et al.[27] 
Allocation of radio resources in 5G and 

B5G multicellular networks. 
Deep learning 

Deep learning for radio resource 

allocation in multi-cell networks 

Ghadimi et al.[28] 

Optimizing radio transmission power 

and user data rates in wireless systems. 

Near real-time RIC resource allocation. 

learning reinforcement 

learning techniques . 

A reinforcement learning approach 

for power control and rate 

adaptation in cellular networks. 

Sun et al.[29] 

Resource allocation in signal 

processing. 
Deep Neural Network 

(DNN) 

Learning to Optimize: Training 

Deep Neural Networks for 

Interference Management 

Challita et al.[30] 

Long-term evolution (LTE) cellular 

communications in spectrum. 

Deep learning to build 

predictive models on 

spectrum availability 

Proactively manage resources for 

the LTE network in unlicensed 

spectrum. 
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for distributed dynamic 

allocation. 

Bonati et al.[31] 

Disaggregated network architecture 

proposed by the O-RAN Alliance as a 

key enabler of NextG networks. 

Deep reinforcement 

learning. 

Intelligence and learning in O-

RAN for data-driven NextG 

cellular networks. 

Zhou et al.[32] 
Coordination of signal path loss in the 

millimeter wave (mmWave) band. 

Deep learning: Deep 

neural network. 

Interference coordination in dense 

millimeter wave networks. 

Li et al.[33] 

Radio access network and network 

segmentation in the RAN, TN and CN 

domains in an end-to-end (E2E) 

network segmentation system. 

Machine learning for 

end-to-end network 

segmentation. 

End-to-end network segmentation 

into radio access network, 

transport network and core 

network domains. 

Abbas et al.[34] 

Control, manage and monitor resources 

correctly based on fifth generation 

mobile network segmentation. 

Deep learning model, 

the generative 

adversarial neural 

network (GAN), for 

managing network 

resources. 

Segmentation of core network and 

radio access network domains via 

intent-based networking for 5G 

networks. 

Zappone et al.[35] 

Wireless communication networks in 

cell phones given the density of base 

stations. 

Deep learning based on 

artificial neural 

networks. 

Wireless network design in the era 

of deep learning. 

Hammouti et 

al.[36] 

Coverage in random wireless networks 

using stochastic geometry. 

Neural network-based 

prediction of coverage 

probability given base 

station density, 

propagation path loss, 

and correlation model. 

A machine learning approach to 

predict coverage in random 

wireless networks. 

Mulvey et al.[37] 

Detection and compensation of faults in 

cellular networks from an operational 

perspective. 

Supervised learning. 

Cell failure management using 

machine learning techniques. 

 

Artificial intelligence is used to optimize wireless 

networks in non-real time (more than 1000 milliseconds). 

In these circumstances, artificial intelligence can examine 

past data and usage patterns to discover trends and 

optimize network design for better future performance. 

Another point to consider is the importance of artificial 

intelligence to optimize wireless network performance, 

particularly in real time (between 10 milliseconds and 

1000 milliseconds). Artificial intelligence models, such as 

neural networks, are used to understand complicated 

patterns in data and make network configuration 

decisions. Genetic algorithms are used to find the best 

solutions for challenging optimization problems. 

Reinforcement learning is used to teach artificial 

intelligence algorithms for decision-making in dynamic 

contexts. These models are capable of performing real-

time data analysis and making decisions to modify the 

network design and increase efficiency and quality of 

service. 

 

Fig. 1. Evolution of wireless communication network technologies to the sixth generation (6G). 

Source: Misbah et al.[38] 
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The diagram in Figure 1 represents the interactions 

between the technologies of the 6G wireless 

communication network. This enables the descriptive 

establishment of interconnectivity between various 

technologies, such as artificial intelligence, RIS, 

photonics and VLC, DICN, cellless mobile and user-

centric networks, ultra-high-speed channel coding, 

terahertz sensing and communication, multiple access to 

new waveforms, and ultramassive MIMO. 

Ultimately, artificial intelligence models can evaluate data 

in real time and make decisions that improve access, 

performance, and resource use in wireless networks, 

which are becoming increasingly sophisticated beyond the 

capacity of traditional engineering. Additionally, these 

models can make judgments about long-term performance 

improvements by analyzing past data and trends to 

forecast future network activity. 

Table 3. Studies that use model-based artificial intelligence techniques to optimize security in wireless networks. 

Author Information system 

approach 

Artificial intelligence 

technique 

The purpose of the study 

Mohamed H. and 

Mohammed A. [39] 

Security in wireless 

sensor networks using a 

hybrid feature 

reduction technique. 

Excess Synthetic Minority 

Technique. Neural network 

algorithm based on deep 

learning. 

Improve the security of wireless 

sensor networks (WSN) by 

identifying and preventing 

cyberattacks. 

Bo Huang et al. [40] Security of wireless 

network transmission 

data. 

Machine learning with 

improved naive Bayesian 

kernel (INBK) estimation. 

Prediction and security risk 

assessment of wireless network data 

transmission based on machine 

learning. 

Misbah et al. [38]  

 

Technological impact 

of the 6G sixth 

generation 

communications 

network. 

The Sixth Generation Wireless 

Communication Network 

enables the specifications of 

artificial intelligence, 

specifically deep learning. 

Evolution of technology in wireless 

networks of the future. 

Sidra et al. [41] 

 

Detect cyberattacks on 

a variety of network 

traffic flows. 

Convolutional neural networks 

(CNN), and recurrent neural 

networks (RNN). 

Evaluation of deep learning variants 

for cyberattack detection and 

multiclass classification in IoT 

networks. 

Saida et al.[42] Anomaly detection in 

IoT (Internet of Things) 

networks. 

Machine learning and deep 

learning. 

Machine Learning and Deep 

Learning Techniques for Anomaly 

Detection in Internet of Things 

Network 

Shaobo et al. [43] Distributed fiber optic 

sensing (DFOS) 

technologies. 

Neural networks, convolutional 

types (ConvNets) and vision 

transformers ( ViT ). 

Deep learning-based intrusion 

detection and impulsive event 

classification for distributed acoustic 

detection in telecommunication 

networks. 

Ciric et al. [44] Modular architecture 

for detecting intrusions 

(cyberattacks) in 

communication 

networks. 

Deep learning. Design and implement a modular 

network intrusion detection 

architecture capable of simulating 

cyberattacks based on real-world 

scenarios. 

Yesodha et al.[45] Wireless sensor 

network (WSN) 

communication. 

Learning (DL) Methods: 

Artificial bee colony (ABC) 

optimization algorithm with 

convolutional neural network 

(CNN) optimized with (FT-

ABC-CNN). 

The intrusion detection system with 

CNN and the optimization of 

artificial bee colonies in wireless 

sensor networks. 

 

According to these scientific contributions, artificial 

intelligence (AI) represents a key component in 

optimizing the security of wireless networks. It is often 

used to analyze large data sets using artificial intelligence 

base models to find trends and anomalies, allowing for 

proactive threat detection and prevention. Artificial 
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intelligence is used to optimize wireless network 

performance, access, and resource usage. This results in 

effective traffic control, prioritizing important 

applications, and improving the user experience. This 

makes it possible to combine effective information system 

security with the full power of artificial intelligence to 

improve risk management, virus prevention, and intrusion 

detection. 

Regarding aspects based on optimizing security in 

wireless networks, the operation of machine learning 

systems can face challenges due to the large amount of 

data required and the complex nature of the training 

procedure. Clearly, the scientific contributions to studies 

during the year 2024 are significant (Figure 2). 

 

Fig. 2. General operation of algorithms in machine learning for wireless network security. 

Source: Yazeed et al. [46] 

In communications systems, machine learning methods 

such as secure multi-party computing and federated 

learning can be integrated into component processes to 

preserve data privacy and benefit from cooperative 

security analysis. 

According to extensive reviews [46], machine learning 

algorithms excel at detecting patterns and anomalies in 

data. By exploiting programmability, machine learning-

based anomaly detection techniques can be effortlessly 

incorporated into the network, enabling rapid detection of 

strange activity and potential security breaches. In this 

context, when machine learning techniques are used to 

optimize the security architecture, the network can 

successfully handle a greater number of nodes and data 

flows, allowing for the development and expansion of 

resources. The centralized controller can use machine 

learning-based security algorithms to consolidate 

decision-making processes, resulting in more efficient 

real-time threat detection and response. While 

improvements in machine learning approaches have made 

it easier to discover weaknesses and strengthen nodes' 

defenses against attacks, more study and analysis are 

required. When power or processing capacity is 

insufficient, this wireless network has problems [47]. 

Machine learning algorithms have limitations in 

adequately predicting future events because they learn 

from past data. These programs can increase task 

performance by obtaining new information [48]. 

Therefore, it is necessary to establish a greater number of 

facts as well as determine the additional effort required by 

the machine learning algorithm in light of the limited 

resources available in the context of wireless networks. To 

address this trade-off, machine learning techniques must 

be applied system-wide. Therefore, it can be argued that 

these tactics pose a direct risk to wireless network 

infrastructures [49]. Assuming there may be particular 

challenges when using these strategies in information 

security domains such as authentication and data integrity 

[50]. 

Below is a comprehensive analysis of current research and 

anticipated developments in the telecommunications 

industry regarding the use of artificial intelligence, 

machine learning, and data analytics in 5G 

communication networks at the edge levels, core, and 

RAN. 

3.2. Data analysis and artificial intelligence with 

machine learning in 3GPP mobile networks 

Data analytics and artificial intelligence/machine learning 

(AI/ML) in the context of 3GPP have been critical for 

mobile network operators (MNOs). Traditionally, MNOs 

have relied on collecting subscriber data, such as location, 

data rate, and call drops, to size and plan the network. 

Real-time monitoring of network failures has also been a 

crucial part of the operator's investment model, as it can 

improve anomaly detection and trigger proactive 

maintenance at reduced costs [51]. 

With the advent of smartphones, truly diversified services 

(data and voice) were seen for the first time, creating much 

more complicated data traffic patterns and forcing the 

adoption of data analytics for network management and 

optimization. However, until now, data analysis to 

improve network performance has been primarily 

diagnostic and descriptive, or has simply consisted of 

measuring various KPIs in different locations, which is 

not optimal. 

In 5G and beyond (B5G) networks, not only the services 

offered are heterogeneous, but also the end devices. For 
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example, the low-power Internet of Things (IoT) has very 

different communication requirements and hardware 

limitations than autonomous vehicles [52]. [53] This 

makes E2E optimization and optimal allocation of 

network segments an arduous task with added complexity 

that must be resolved in real time, reinforcing the need for 

big data analytics [51]. 

Proactivity over reactivity would greatly benefit mobile 

network operators in various events, such as possible 

dynamic and sudden load changes (e.g., group mobility), 

upcoming events in outages due to high interference in 

certain areas, network failures, and maintenance. This 

amplifies the need to move from diagnostic and 

descriptive analytics to predictive analytics with an 

associated level of confidence and data-driven control to 

achieve network optimization (Figure 3).

 

 

Fig. 3. Data-driven control and optimization of high-capacity shared network. 

Fountain: Kibria et al.[51] 

In essence, data analysis and its applications in the control 

and optimization of next-generation wireless 

communications systems. Systematic exploitation of big 

data greatly helps in making the system intelligent and 

facilitates efficient and cost-effective operation and 

optimization. 

Data-centric AI is a new paradigm that highlights the 

importance of continuously updating data at scale to 

create successful and efficient AI-based information 

systems. This unique paradigm adds to current model-

centric AI, which focuses on increasing the performance 

of AI-based systems by changing the model using a fixed 

set of data [54].

3.3. Implementation of artificial intelligence with 

machine learning according to telecommunications 

industry standards 

The initial rollout of 5G focused on improving mobile 

broadband (eMBB) connectivity, but the full potential of 

5G and beyond lies in supporting services with lower 

latency and higher capacity for devices (UE) per area. 

Two new use cases, ultra-reliable and low-latency 

communications (uRLLC) and massive machine-type 

communications (mMCC), open opportunities in various 

sectors such as healthcare, manufacturing, automotive, 

ports, and retail [55]. 

Mobile edge computing and network slicing are key 

enablers in delivering personalized services to these 

sectors. For example, British Telecom has managed to 

increase its revenue by 30% and reduce operating 

expenses by 40% by using a single physical infrastructure 

with network segmentation instead of developing separate 

physical networks for different services. With complete 

network slicing into a standalone 5G network, you can 

have more granular control over network resources, 

allowing portions of capacity to be offered to verticals and 

individual customers for short periods of time. This also 

impacts RAN orchestration, allowing for better overall 

performance [55]. The complexity of such a system 

requires comprehensive automation in different 

geographic areas. 

3.4. Federated learning 

A distributed machine learning approach known as 

federated learning allows you to train artificial 



  

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 705–719  |  713 

intelligence models on multiple servers or devices without 

having to exchange the original data. The global model, 

which is returned to be trained with data that must be 

managed under the principle of privacy, is a crucial 

requirement to maintain security and privacy. Until a 

convergence constraint is satisfied, this process is 

repeated recursively. Google pioneered federated 

learning, which has demonstrated impressive 

performance in word prediction. It is not the same as other 

distributed learning techniques, such as split learning, 

where clients with low processing power train only the 

initial layers in DNN deep neural networks and forward 

the features that are recovered to a gateway or cloud for 

finalization  the computationally intensive part of the 

training process. 

This type of learning works very closely with the 

centralized baseline technique and is used to anticipate 

popular video material for edge caching. The different 

functions at the 5G core network level can be seen as 

learners that collect information and locally train machine 

learning models on certain analytical events, such as 

mobility, communication, and EU management. 

In this regard, the study [56] investigated the idea of 

federated learning in a wireless access network (RAN), 

where a gNB base node serves as a server and the end 

users are represented by the user equipment. The gNB 

optimizes the allocation of radio resources to a subset of 

user equipment that is experiencing favorable channel 

conditions to reduce errors in the received model 

parameters. Analog transfers of model parameters from 

end devices to the server could also be useful in the 

context of federated learning in the RAN. By using all 

available bandwidth to connect to the server, any end 

device in the analog world can contribute to model 

updates, thus decreasing the time required for the model 

to converge [57]. 

It is crucial to understand that in federated learning, the 

server does not care about the individual parameters 

calculated by each end device but rather the total sum of 

these parameters, which is comparable to the 

superposition of the analog signals received at the server. 

For more details on federated learning in the context of 

Mobile Edge Computing (MEC), see [58], while [59] 

discusses open research problems and possible future 

paths. For federated learning in 6G communication 

networks. 

4. Discussion 

The field of artificial intelligence (AI) has recently seen a 

lot of upheaval, with the advent of fundamental models as 

a new paradigm for the development of artificial 

intelligence systems [60]. Base models are large-scale AI 

models that have been pre-trained using a significant 

amount of generic data and can be fine-tuned for future 

applications. This method of pre-training and adaptation 

accelerates the creation of new AI-based products and 

services, as well as the availability of high-performance 

artificial intelligence solutions in a variety of sectors [61]. 

Basic models have impressive capabilities for 

understanding, producing, and modifying material in a 

variety of domains: software debugging [62], creative 

generation [63], [47], and cross-modal outputs such as 

text-to-image developments [64]. The range of 

applications that a single model can perform without the 

need for more training data or adjustments increases with 

scaling, making basic models increasingly better suited to 

perform tasks for which they were not specifically trained 

[65]. When necessary, rapid or efficient engineering 

methods can be used to further improve the performance 

of specific tasks. Both have much lower costs than 

creating a new model from scratch. [67] 

Core models bring about a paradigm shift that changes the 

way AI applications are designed and implemented. These 

large-scale basic models, including their newly developed 

capabilities, promote industry convergence in artificial 

intelligence, resulting in an increasing number of 

proprietary modifications of a small number of basic 

models that are used in applications of artificial 

intelligence in a few companies and trained using a 

limited number of data sets [60]. 

This standardization has significant potential to drive 

advances in artificial intelligence in various fields. 

However, it also raises issues including economic 

linkages, monopoly power arrangements, and the 

potential propagation of weaknesses in model 

construction into various downstream applications [68]. 

The dynamics of value creation and accumulation in the 

AI industry can be expected to change as core models 

become established as the cornerstone of cutting-edge AI 

advancement. In an era where high-performance, cross-

functional AI solutions are widely available, 

organizations may be forced to reconsider how they can 

differentiate their AI products and services. Finally, the 

move from fragmented models to a fundamental approach 

challenges current AI governance techniques as the design 

and control of artificial intelligence systems are 

distributed across an increasingly contributing [69] 

ecosystem. [70] 

The emergence of core models will influence the direction 

of research for AI developments by changing 

preconceived notions about development, management, 

and governance promoted by machine learning 

algorithms. This will present important challenges and 

possibilities for the area of research in computer science, 

business and information systems engineering, and 

information technology [56], [61], and [71]. In addition to 

outlining a socio-technical point of view [2] on the 
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complex ramifications of this new paradigm for the 

development and implementation of artificial intelligence 

systems, our objective with this short article was to deepen 

our knowledge of the fundamental concepts on the subject 

and the recent contributions. 

5. Gaps in research 

In certain areas, research is still lacking on the application 

of artificial intelligence and data analysis to improve the 

security and performance of information systems. These 

include the absence of guidelines for assessing the 

security of AI-powered systems, the requirement to create 

more reliable techniques for identifying anomalies, and 

the scarcity of high-quality data for training AI models. In 

addition to being able to handle the moral dilemmas posed 

by the increasing autonomy of AI systems, which raises 

concerns about liability for errors or mishaps, 

6. Conclusions 

The traditional approach to improving the performance of 

wireless transceivers is based on dividing the transceiver 

into signal processing blocks that perform functions such 

as channel equalization, demodulation, and error 

correction. However, the simplicity and manageability of 

the transceiver are compromised by this limited focus. As 

a result, research has been conducted using artificial 

intelligence methods to improve wireless network 

performance instantly, paying special attention to deep 

learning, radio resource allocation, and interference 

management. Additionally, artificial intelligence is used 

to examine historical data and user behavior to optimize 

network architecture and improve performance in the 

future. 

Communication system optimization is necessary to meet 

various technological requirements efficiently, and AI-

based network orchestration using machine learning is 

essential. Dynamic resource management is necessary 

since it is wasteful to implement dedicated networks in 

each sector. The main tools to optimize current and future 

networks are machine learning, artificial intelligence, 

network monitoring, and data collection. 

Current topics of interest focus on creating methods for 

deep learning systems to explain their suggestions and use 

the benefits of deep learning to increase performance with 

less pre-processing code. Future studies in this area will 

be guided by the evolution of mobile network architecture 

and characteristics, as well as the difficulties in using 

machine learning techniques in an operational 

environment. The development of network design has 

given rise to new areas of research in data storage, edge 

computing, virtualization, and network complexity 

management. Limiting the exploratory behavior of active 

machine learning systems in an active network and 

increasing awareness of contextual issues are some of the 

research challenges. 
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