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Abstract: Recent advancements in deep learning have enabled innovative approaches to analyze large datasets, particularly within the 

healthcare sector. Convolutional neural networks (CNNs) are becoming essential tools for classifying medical imaging data, with increasing 

attention on their application in neuroscience for Alzheimer's disease (AD) classification. Given that Alzheimer’s is the most frequent 

cause of dementia in the aging population, detection at its early stages is critical. Early diagnosis depends on noninvasive imaging 

procedures, namely positron emission tomography (PET) and magnetic resonance imaging (MRI). There is much promise for enhancing 

early and precise AD detection through the analysis of several imaging modalities using CNNs. Furthermore, by combining several models, 

ensemble learning (EL) can greatly improve the performance of machine learning systems. This work presents an ensemble method for 

early AD diagnosis using MRI images using deep learning. The proposed method combines six prominent CNNs into an ensemble model, 

selected through a novel technique called the weighted probability-based deep ensemble learning method (WPBDELM). The study 

involved collecting and preprocessing data, developing individual and ensemble models, and evaluating them using ADNI data. The 

evaluation demonstrated high accuracy rates: 98.57% (NC/AD), 98.37% (NC/EMCI), 98.22% (EMCI/LMCI), 99.83% (LMCI/AD), 

98.72% (three-way classification), and 98.78% (four-way classification). These results not only exceeded those of most reviewed studies 

but also were on par with the best-performing methods. Although individual models were outperformed by ensemble methods, there were 

no discernible differences between the different ensemble techniques. The evaluation outcomes demonstrated that although individual 

models performed less well in practice, the ensemble approach produced reliable and encouraging results. 
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1. Introduction 

Dementia is a group of neurological conditions marked by a steady 

deterioration in cognitive function. Of all dementia cases, 60 to 80 

percent are caused by the most common form, Alzheimer's disease 

(AD) [1, 2]. It is an irreparable neurological disease that advances 

over time and is characterized by memory loss, cognitive decline, 

and difficulties in accomplishing regular tasks [3]. Although the 

precise reason for AD remains unclear, it is associated with brain 

changes that begin years before the disease's symptoms become 

apparent. These variations include the formation of neurofibrillary 

tangles within neurons, leading to neuronal death, and the buildup 

of amyloid plaques between nerve cells, which interferes with 

normal neurotransmitter function [4]. 

Mild cognitive impairment (MCI), a midway phase situated 

between normal cognitive function (NC) and Alzheimer's disease 

(AD), denotes an observable decline in cognitive capabilities 

without any disruption in an individual's everyday life [5]. 

Importantly, not all MCI subjects progress toward the development 

of AD or dementia; however, there is a substantial likelihood but 

there is a high likelihood of this transition occurring. 

Consequently, numerous studies have classified MCI as the 

preliminary phase of AD [6] 

The incidence of age-related conditions like Alzheimer's disease 

has tended to increase within the past years because of the growing 

obligations of global life [7]. While the death rates of 

cardiovascular disease and cancer (prostate) have declined over the 

past two decades, the AD mortality rate has experienced a notable 

increase of 145%, ranking it as the sixth most fatal disease in the 

U.S. [8]. Despite the emergence of certain favorable outcomes in 

recent studies regarding novel pharmaceuticals that target AD, the 

disease remains devoid of an officially endorsed treatment [9]. As 

previously mentioned, the identification of a precise means to 

diagnose AD in its nascent stages can yield numerous advantages, 

including the cessation or reduction of disease progression, 

diminished healthcare expenses, and increased quality of life for 

individuals.  

As far as the authors are aware, AD can be diagnosed in three 

different ways. The first approach, which is widely favored owing 

to its simplicity and cost-effectiveness, involves specialists 

employing clinical data, symptoms, and various criteria, such as 

cognitive assessment scales and questionnaires, to ascertain the 

presence of AD. However, this particular approach has significant 

limitations, including susceptibility to subjective factors and 

suboptimal performance outcomes [7]. The next method involves 

the measurement of clinical biomarkers, namely, the levels of 

amyloid-beta (β) and tau proteins, through the examination of 

cerebrospinal fluid (CSF) or brain autopsy. Although effective, this 

method is invasive and generally not preferred for routine early 

diagnosis [8]. The third approach employs neuroimaging 

techniques, including MRI, fMRI, PET, and DTI to observe the 
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anatomical structure and functionality of the brain. While this 

process offers extensive information in a short time frame, the 

interpretation of the comprehensive details within the images poses 

a considerable challenge for physicians [8]. 

Advancements in computational power and the accessibility of 

publicly accessible Alzheimer's disease datasets have resulted in 

the utilization of machine learning (ML) methodologies within the 

realm of early Alzheimer's disease diagnosis [9]. Deep learning 

(DL), which has garnered considerable attention because of its 

remarkable achievements in diverse fields and medical image 

analysis [10], can effectively extract high-level features that have 

demonstrated greater efficacy than conventional approaches in 

numerous studies [11]. In recent years, DL has become more 

prominent in different fields, especially medicine, in which it has 

become a useful tool for diagnosing AD. For instance, Suk et al. 

[12] conducted an initial study on using deep learning methods for 

Alzheimer’s diagnosis in 2013, utilizing stacked autoencoders 

(SAE) for feature extraction and support vector machines (SVM) 

for classification. We present an overview of several analogous 

studies on DL implementation in early Alzheimer's diagnosis in the 

following paragraphs. 

2. Related Work 

Li et al. [13, 14] focused on diagnosing AD  by examining the 

shape and asymmetry of the hippocampus using cascaded 

convolutional neural networks (CNNs). Their performance was 

slightly lower compared to a previous study [15] that 

accommodated only hippocampal shape features for classification. 

In contrast, Mehmood et al. [16] and Kang et al. [17] employed a 

VGG-based 2D-CNN architecture with transfer learning for early 

AD detection. Kang et al. also integrated a multimodal approach, 

incorporating MRI and DTI data. 

ResNet, which is the highly favored CNN model that is in the 

scholarly literature, featured in studies conducted by Odusami et 

al. [18], Jabason et al. [19], Abrol et al. [6], Shanmugam et al. [20], 

Ramzan et al. [2], and Li et al. [13]. Certain studies have employed 

ResNet along with other deep learning methods for ensemble 

approaches [21] or comparative studies ([14, 18, 20, 22]. An 

attention mechanism-based 3D-ResNet was introduced by Zhang 

et al. [23] to enhance model interpretability for early AD diagnosis. 

Other studies, including those by Zhang et al. [23–26], Ji et al. [27], 

Guan et al. [28], and Liu et al. [29]. VGG and DenseNet were the 

second and third most prevalent CNN designs, respectively, as the 

literature indicates. The majority of research using VGGs has used 

conventional versions, including VGG16 or VGG19; however, 

certain studies, like those by Zhang et al. [23–26] and Yu et al. 

[30], have suggested customized variants. 

Recent research endeavors have utilized DenseNet, an architecture 

that has proven highly successful in early AD diagnosis. Li and Liu 

[13, 31], as well as Liu et al. [32], employed the 3D-DenseNet 

model in their investigations, aiming for high-level feature 

extraction and successfully classifying various phases of AD. In 

their research, Li and Liu [13] employed a patch-based strategy to 

extract features from various brain regions. In contrast, Liu et al. 

[32] and Li and Liu [31] focused exclusively on the hippocampus 

for feature extraction.  

Studies by Islam and Zhang [33], Ruiz et al. [34], Wang et al. [35], 

and others that merged different DenseNet topologies have 

documented several ensemble techniques. Customized 

convolutional neural network topologies have also been proposed 

by several papers examined in this field for the Alzheimer’s 

diagnosis and its prodromal stages, like mild cognitive impairment, 

including the subtypes of early MCI (EMCI) and late MCI (LMCI). 

For the automatic classification of AD and MCI subtypes, Basaia 

et al. [10] suggested a 3D-CNN with 12 convolutional blocks that 

use a rectified linear unit (ReLU) as the activation layer, a fully 

connected layer, and a logistic regression layer as the classifier. To 

achieve the binary classification of prodromal stages of AD, Gorji 

and Kaabouch [36] built a basic 2D-CNN architecture consisting 

of three convolution layers, each followed by a max pooling 

operation, a fully connected layer, and a sigmoid classifier. Gray 

matter (GM) has received much attention in this study since it has 

been shown to influence AD's early onset. To detect AD early, Pan 

et al. [37]  used an ensemble technique based on multiple 2D-CNN 

classifiers. Using single-axial slices of MR images, they produced 

many base CNN classifiers. By selecting the top classifiers on 

every axis, they then built an ensemble model. 

The literature generally shows positive findings, with multiple 

studies showcasing the effectiveness of deep learning models in 

accurately categorizing healthy individuals, Alzheimer's disease 

patients, and patients with mild cognitive impairment. 

Consequently, deep learning may prove useful in the early 

detection of Alzheimer's disease. As such, the rationale for this 

study is based on two primary factors. Initially, since early 

diagnosis of Alzheimer's disease directly improves patient 

outcomes, it is crucial. Early detection of the illness allows for the 

initiation of treatment, which slows the disease's course and 

improves the standard of life for those suffering and their family. 

Second, detection in the early stages can also help reduce 

healthcare costs. 

In Table 1, we will find a summary of the works on using Deep 

CNN models and Ensemble learning for AD classification. While 

numerous studies that were reviewed presented promising 

outcomes, a majority of them  

Table 1: Summary of the literature related to AD classification using Deep CNN models and Ensemble learning 

Author(s) Dataset Modality Classifier(s) Classification Accuracy 

Abrol et al. [6] ADNI MRI CNN + 3D ResNet 3-way (NC/MCI/AD) 83.01% 

Ramzan et al. [2] ADNI fMRI ResNet-18 4-way (NC/EMCI/LMCI/AD) 97.28% 

Odusami et al. [38] ADNI MRI ResNet-18 3-way (NC/MCI/AD) 96.7% 

Shanmugam et al. [20] ADNI MRI ResNet + GoogleNet + AlexNet 3-way (NC/MCI/AD) 95.42% 

Jabason et al. [19] ADNI MRI Ensemble of DenseNet121, 

DenseNet169, DenseNet201, and 

ResNet50 

4-way (NC/EMCI/LMCI/AD) 95.23% 

Liu et al. [29] ADNI MRI CNN from scratch AlexNet 

GoogLeNet 

3-way (NC/MCI/AD) 78.02% 

91.40% 

93.02%, 

Ruiz et al. [34] ADNI MRI 3D DenseNets 4-way (NC/EMCI/LMCI/AD) 96.38% 

Pan et al. [37] ADNI MRI 2D-CNNs 3-way (NC/MCI/AD) 84.0% 

Pexian et al. [39] ADNI MRI Deep Broad Ensemble 3-way (NC/MCI/AD) 91.28% 

Tanveer et al. [40] ADNI MRI Deep Transfer Ensemble 4-way (NC/EMCI/LMCI/AD) 93.34% 

Mujahid et al. [41] ADNI MRI Ensemble model 4-way (NC/EMCI/MCI/AD) 97.35% 

(VGG-16 

+Efficient

Net-B2) 

Raza et al. [42] ADNI MRI CNN from scratch 4-way (NC/MCI/LMCI/AD) 97.84% 
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Savaş  [43] ADNI MRI EfficientNet-B0 EfficientNet-B2 

EfficientNet-B3 

3-way (NC/MCI/AD) 92.98% 

94.42%, 

97.28% 

Rajesh et al. [44] ADNI MRI MobileNetV2 and LSTM 3-way (NC/MCI/AD) 94% 

Fathi et al. [45] ADNI MRI Ensemble Model  3-way (NC/MCI/AD) 

4-way (NC/EMCI/LMCI/AD) 

93.92% 

93.88% 

Al-Adhaileh  [46] ADNI MRI AlexNet 

ResNet50 

3-way (NC/MCI/AD) 94.53% 

58.07% 

Helaly et al. [47] ADNI MRI 2D CNN 

3D CNN 

Fine-tuned VGG-19 

4-way (NC/EMCI/LMCI/AD) 93.61% 

95.17% 

97.0% 

Antony et al. [48] ADNI MRI Random forest 

VGG-16 

VGG-19 

2-way (AD/NC) 68.0% 

81.0% 

84.0% 

AbdulAzeem et al. 

[49] 

ADNI MRI CNN from scratch 2-way (AD/NC) 95.60% 

Hazarika et al. [50] ADNI MRI Hybrid model (LeNet + AlexNet) 3-way (NC/MCI/AD) 93.58% 

Rizwan et al. [51] ADNI MRI VGG-16 &  

VGG-19 

4-way (NC/EMCI/MCI/AD) 97.89% 

 

failed to tackle all clinically relevant AD classification stages. 

Moreover, there aren't many thorough comparisons between 

various ensemble methods and individual CNN classifiers. In this 

study, we propose an ensemble deep learning-based technique for 

the early diagnosis of AD based on MR images to address these 

gaps. The weighted probability-based deep ensemble learning 

method (WPBDELM), a novel approach, is the basis for six well-

known convolutional neural networks in the proposed technique. 

The following summarizes the primary contributions of the current 

study: 

1. We present a new ensemble technique called Weighted 

Probability-Based Deep Ensemble Learning Method 

(WPBDELM), which is intended to improve the efficacy of 

individual CNN models in the early detection of Alzheimer's 

disease. 

2. To improve the ensemble method's overall efficiency, a 

comparison study was used to determine the best 

hyperparameters and scenarios for integrating individual 

CNNs. 

3. We applied a domain adaptation (DA) based transfer learning 

approach to significantly boost model performance, surpassing 

results achieved with other parameter initialization methods 

4. We addressed all significant binary and multiclass 

classification groups, providing a comprehensive evaluation of 

the proposed approach across diverse diagnostic scenarios. 

In light of the aforementioned considerations, the primary aim of 

this study was to present was to introduce a novel ensemble method 

named the WPBDELM, which employs various base CNN 

architectures for early diagnosis of AD. The approach stands out 

for two key reasons. Firstly, The study differed from previous ones 

by using six different CNN classifiers, in contrast to earlier studies 

that employed only one or fewer than three categories of base 

convolution neural network classifiers or ensemble methods with 

individual CNN architectures. We carefully selected the quantity 

and types of base classifiers by comparing popular CNN 

architectures. Second, the study added a weight factor for every 

model's prediction, rather than using bagging or simple majority 

voting in the ensemble technique. This variable represents the 

accuracy of every disease class, offering a sophisticated method 

for ensemble decision-making. 

3. Proposed Methodology 

Detecting AD at an early stage is vital to controlling dementia in 

the older population since AD is the primary risk factor for 

dementia in older adults. Early diagnosis is greatly aided by non-

invasive brain imaging procedures like magnetic resonance 

imaging (MRI). With CNNs integrated into the analysis of these 

imaging modalities, AD can be detected more early and precisely. 

Furthermore, by merging many models, ensemble learning (EL) 

has been demonstrated to dramatically improve the performance of 

machine learning systems. This paper suggests a deep learning-

based ensemble method for using MR images to diagnose AD 

early. The weighted probability-based deep ensemble learning 

method (WPBDELM), a novel methodology, compares many 

ensemble scenarios before selecting the ensemble model, which is 

composed of six well-known CNNs. Data collection, 

preprocessing, individual and ensemble model creation, and model 

evaluation using ADNI data were all part of the suggested research. 

Figure 1 shows an overview of the suggested methodology. 

The ADNI1 Complete 2Yr 1.5 T, MP-RAGE sequence 

standardized dataset, which included patient scans taken at six, 

twelve, eighteen, and twenty-four months after diagnosis, was used 

in our study to train our model. All of the sMRI data from the 

ADNI1 collection are used in this investigation. At baseline, 741 

patients in total were included, including 173 AD, 139 EMCI, 156 

MCI, 136 LMCI, and 137 NC. Healthy aging controls who have 

not converted within two years of baseline follow-up visits make 

up the NC class. The period of supervision for the switch to AD 

was eighteen months. Individuals with modest cognitive 

impairments who were nevertheless able to perform daily tasks 

were kept in the MCI class. Patients who are classified as AD at 

baseline and show no evidence of reversal after two years of 

follow-up visits are included in the AD class. The demographic 

information for the 741 participants (173 AD, 139 EMCI, 156 

MCI, 136 LMCI, and 137 NC), whose ages range from 55 to 92 

years, is summarized in Table 2. 

 

3.1 Data Preprocessing 

The ADNI provides images, such as 3D MRI scans, in NIFTI 

format. Data from each brain sMRI were normalized through 

preprocessing. The preprocessing procedure consists of skull-

stripping, contrast enhancement, denoising, bias field correction, 

registration, intensity normalization, and extraction of 2D images 

from 3D MRI volumes. Skull stripping is the elimination of 

nonbrain tissue that serves as noise reducing the CNN 

classification performance. By enhancing pixel value ranges and 

picture border contrast, contrast enhancement raises an image's 

quality and brightness. Denoising is the technique of eliminating 

noise from an image to bring it back to its original 
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Fig.1: Proposed framework of our study 

Table 2: Demographic description of the dataset along with clinical information 

Variable NC EMCI MCI LMCI AD 

Number of participants 137 139 156 136 173 

Gender (male: female) 74:63 72:67 81:75 71:65 89:84 

Age (year; mean, std) 74.3, 5.4 74.5, 7.2 74.2, 7.1 74.8, 7.3 75.12, 7.56 

Weight (kg; mean, std) 73.8, 13.6 77.2,12.7 76.4, 13.7 72.7, 14.3 73.9, 14.6 

MMSE (mean, std) 29.18, 0.96 27.19, 1.71 26.39, 1.21 25.47, 1.84 23.2, 2.0 

CDR (mean, std) 0.00, 0.00 0.50, 0.00 0.50, 0.00 0.50, 0.00 0.75, 0.25 

Total Image Scans 712 667 904 779 1023 

 

quality while keeping crucial information. A 3D Gaussian kernel 

with voxel size (2×2×2) was used to smooth MRIs. Using the 

SimpleITK library, the N4 bias field correction technique was 

applied to fix uneven low-frequency intensity in brain sMRI. We 

take into account an affine regularization using the ICBM space 

template, and a bias regularization of 1e−3 with a full bias width 

at half maximum of 60mm cut-off. The next step was to normalize 

the MRI signal intensity for each image. This involved dividing the 

original value of each voxel by the image's initial maximal value, 

which produced a value between 0 and 1. We used the med2image 

Python package (version 1.1.2) to take 2D slices out of the 3D MRI 

scans that had already been processed. The conversion procedure 

comprised taking 3D MRI volumes and producing 2D slices in 

lossless PNG format. Each 3D MRI scan, with dimensions of 

181×217×181, was re-sliced into three 2D image sets, 

corresponding to the sagittal, coronal, and transverse orientations, 

to meet the requirements of CNN training, validation, and testing. 

The X, Y, and Z axes, which are perpendicular to the 

corresponding planes, are in line with these orientations. Generally 

speaking, the brain's center contains more information than its 

periphery. The slices in the middle have a higher information 

entropy than the remaining ones. Consequently, not every slice will 

be utilized in the training process. Sagittal, coronal, and axial view 

slices all provide complementing data. The middle slices, or the 

80th and 85th slices in each orientation, are known to include 

important anatomical information, thus we extracted slices at 

intervals of five. The number of 2D images produced by this 

method was as follows: 4,272 for NC, 4,002 for EMCI, 5,424 for 

MCI, 4,674 for LMCI, and 6,138 for AD. The center and spatial 

resolution of the scaled image stayed the same, but each 2D slice 

was reformatted to a uniform dimension of 224×224 using edge 

padding and zero filling, making the 2D slice squared. The photos 
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were now comparable in size to those in the ImageNet dataset—a 

popular resource for transfer learning—thanks to this 

normalization. The deep learning system might then employ these 

produced 2D slices for testing, validation, and training. 

 

3.2 Class Imbalance 

We noticed that the dataset we collected had a significant 

imbalance in the instance count across different AD categories. We 

implemented two resampling techniques to tackle the issue: 

oversampling and undersampling. We duplicated instances from 

underrepresented classes, namely, MCI, EMCI, and LMCI in the 

oversampling approach. Conversely, in the undersampling 

approach, we removed instances from overrepresented classes, 

namely, AD and NC. After applying these resampling methods, we 

ensured that all the AD classes contained 5,250 MR images, which 

led to an expanded dataset of 26,250 images. 

 

3.3 Data Augmentation 

Deep neural networks (DNNs) enhance model performance, 

especially when trained with larger datasets. Data augmentation is 

a technique that involves generating more images to expand the 

original dataset. Introducing modifications to the images boosts a 

model's ability to classify more accurately. As a result, the model 

can become more generalized and less prone to overfitting. 

Effective training of deep neural networks requires a vast dataset. 

However, when the dataset is not sufficiently large, such as in the 

case of MRI, data augmentation techniques can significantly 

diversify the data for neural network training. There are various 

data augmentation techniques including translation, gamma 

correction, scaling, random affine transformation, random noise 

addition, and rotation. In our study, we compiled a dataset of 

images from 741 patients. Unfortunately, the dataset was 

insufficient for practical deep neural network training and optimal 

performance. To address this issue, we used image rotation (90°, 

180°, and 270°), flipping/reflection (both horizontal and vertical 

flipping), and zooming in and out data augmentation techniques to 

expand the dataset. The original training dataset was supplemented 

with augmented data to provide a suitably big sample size. Data 

augmentation was also employed to address the original dataset's 

imbalance, with the number of augmented slices generated varying 

by class. As a result of implementing these techniques, we enlarged 

the dataset from 26,250 to 52,500 images. Subsequently, the 

dataset was divided into three sets for training (70%), validation 

(15%), and testing (15%). A summary of the dataset used in our 

research is given in Table 3. 

Table 3: Description of the training, validation, and test datasets 

Class Label NC EMCI MCI LMCI AD Total 

Image count 10500 10500 10500 10500 10500 52500 

Train set 7350 7350 7350 7350 7350 36750 

Validation set 1575 1575 1575 1575 1575 7875 

Test set 1575 1575 1575 1575 1575 7875 

 

3.4 Cross-Validation 

Cross-validation is a technique used to assess the performance of 

a model by splitting the dataset into three subsets. One subset is 

used for testing the model, while the other subsets are used for 

training and validation. A 10-fold stratified cross-validation is 

frequently used for classification tasks to make sure that the 

distribution of classes in every fold is consistent with the 

distribution of the entire dataset. This strategy helps in identifying 

the optimal hyperparameters for the classification model. Training 

and testing subsets are distinct sets, meaning they do not share any 

sample, to prevent double dipping. The findings are calculated as 

the average of 10 evaluations over the course of 10 folds, and this 

process is repeated for each of the 10 folds. Estimating the 

generalization error is the primary goal of cross-validation, which 

guarantees that comparable outcomes will be produced on fresh 

unseen data (i.e., the least generalization error). Since the models 

created during the training phase are computed using k-1 folds 

rather than all the training sets, in practice, this inaccuracy will 

always lead to an overestimation of the true prediction error. This 

overestimation decreases as k grows and is dependent on the 

classifier's learning curve slope. 

 

3.5 The Proposed Model 

The preprocessing steps involved normalizing intensities, resizing 

all slices to a default dimension of 256x256, and selecting 

informative slices. A slice-based method was then applied by the 

suggested deep learning-based ensemble technique for early 

Alzheimer's disease detection. This approach is favored for its 

simplicity, low complexity, and alignment with the study's end-to-

end structure. Furthermore, Furthermore, the transformation of 3D 

images into 2D slices, the dataset was expanded, addressing 

concerns about overfitting and enhancing model generalizability. 

The method proposed in this study utilizes CNN architectures, with 

a focus on combining multiple classifiers for enhanced AD 

detection. ix base classifiers were selected, drawing inspiration 

from established CNN architectures, which have demonstrated 

strong performance in previous studies. These architectures 

include DenseNet12, DenseNet201, DenseNet169, VGG-19, 

ResNet-50, and Inception-ResNet V2. By altering the last few 

layers of the architecture, each classifier was customized to the 

current study setting. 

DenseNets utilize a foundational structure known as the dense 

block, where each layer is directly linked to every other layer. This 

design improves information flow and addresses the vanishing 

gradient problem. Standard DenseNet architectures generally 

consist of four dense blocks, five transition layers, one fully 

connected layer, and a Softmax layer for classification. The 

number of layers and structure of the dense blocks differ 

throughout DenseNet versions, such as DenseNet201 and 

DenseNet169. The proposed DenseNet architectures for this study 

are illustrated in Fig. 2. 

We changed the final layer of the conventional DenseNet 

architecture, as shown in Fig. 2. The last layer now consists of a 

Softmax layer, a dropout layer with a dropout rate of 0.3, a fully 

connected layer with 32 neurons, and a batch normalization layer. 

ResNet was used to reduce the vanishing gradient issue and speed 

up model convergence by using shortcut connections between 

layers, much like DenseNet. Our study's modified ResNet design, 

which was modeled after ResNet-50, has four stages with three, 

four, six, and three residual blocks in each step. To further enhance 

the architecture's performance, additional layers similar to those 

found in the final layers of DenseNet were incorporated at the end 

of the model (refer to Figure. 3). This configuration aims to 

leverage the strengths of ResNet while incorporating elements of 

DenseNet to optimize the model's effectiveness for our specific 

application. The arrangement of residual blocks at different stages, 

as shown in Fig. 3, is consistent in terms of the number of layers 

but differs in terms of the number of kernels.  

Combining the best features of two important developments in 

deep learning, the Inception architecture and residual connections 

(ResNet), Inception-ResNet V2 is a potent and incredibly effective 

deep convolutional neural network architecture. The Inception-

ResNet V2 model merges the multi-scale processing capability of 

the Inception architecture with the identity mapping features of 

residual networks. The Inception modules enable the network to 

analyze visual information at multiple scales simultaneously, 

capturing both fine and coarse details from the input images. 

Conversely, residual connections enable gradients to pass through 

the network directly during backpropagation, which helps to lessen 

the effects of the vanishing gradient issue. This feature makes it 

easier to train considerably deeper networks—which are essential 

for identifying the complex patterns required for precise 

categorization. We modified the Inception-ResNet V2 standard 

version as an additional unique architecture that adds to the 

ensemble model. Fig. 4 shows the Inception-ResNet's reduced 

structure. 
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VGG19 was the last individual architecture in the ensemble model 

that was suggested. The modified architecture, as shown in Fig. 5, 

only uses the first six layers of the conventional version to reduce 

the number of parameters and computational costs, accelerate 

convergence, and lessen the possibility of overfitting. In addition, 

the model included two dropout layers, two fully linked layers, two 

batch normalization layers, and one Softmax layer. 

 
Fig.2. Proposed DenseNet architecture 

 
Fig.3. Proposed ResNet architecture 

 

 
Fig.4. Proposed Inception-ResNet architecture 

 

 
Fig.5. Proposed VGG architecture 

 

3.6 Ensemble Learning 

We suggest an ensemble method that is divided into two stages. 

Using the same training and test datasets, we first trained and 

assessed each base classifier. To integrate these classifiers in the 

second phase, we used an ensemble method based on weighted 

probability. Figure 6 depicts our model's flow. 

In the first phase, each classifier’s accuracy served as its weight in 

the final ensemble model. Essentially, classifiers with higher 

accuracy had a greater influence on the overall ensemble model. 

The probabilistic value of each class in each classifier was 

multiplied by its associated weight to get the output of the model. 

The sum of these weighted probabilities was then processed 

through a Softmax function, yielding the class with the highest 

probability as the final output. This step ensured that the ensemble 

method effectively combined the strengths of the individual 

models, further enhancing the overall classification accuracy. 

These steps can be summarized as follows: 

𝐶𝑞 =  ∑ 𝑤𝑝 
6
𝑝=1 ×  𝛼𝑞

𝑝
 𝑤ℎ𝑒𝑟𝑒 𝑝 = 1, … ,6 𝑎𝑛𝑑 𝑞 =  1, . . ,4   (1) 

The classifier index p is used to represent each classifier, whereas 

i is used to represent each class. The weight (accuracy) of the pth 

classifier is represented by 𝑤𝑝 , and the probability value of the qth 

class in the pth classifier is represented by 𝛼𝑞
𝑝

. Additionally, 𝑆𝑞 

represents the weighted probabilities sum for the qth class. The 

output of the model is derived from: 

𝑆 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐶𝑞) 𝑤ℎ𝑒𝑟𝑒 𝑞 = 1, … ,4    (2) 

 

𝐸 = 𝑎𝑟𝑔𝑀𝑎𝑥(𝑆𝑞) 𝑤ℎ𝑒𝑟𝑒 𝑞 = 1, … ,4    (3) 

where S stands for the Softmax function's outcome and E for the 

ensemble method's final output. 

 
Fig.6. The general framework of the proposed model 

3.7 Transfer Learning with Fine Tuning 

To improve the efficiency of our proposed model and speed up the 

training process, we employed a method of transfer learning based 

on domain adaptation, along with fine-tuning. The source and 

destination datasets are in the same domain even if they differ from 

one another. Our approach involved initially training the deep 

model using a randomized initialization method for the NC/AD 

binary classification group. The remaining classification groups 

then employed the parameters from this initial model, utilizing a 

two-stage transfer and fine-tuning procedure as follows. The pre-

trained NC/AD classification model's initial convolutional blocks 

and layers were locked throughout the transfer phase to avoid 

additional training, allowing only the custom layers to be trained. 

The model was retrained using the new categorization group at a 

learning rate of 0.001, yielding the transferred version of the 

model. All of the transferred version's layers and convolutional 

blocks were unlocked at a lower learning rate of 0.0001 during the 

next step, known as tuning. To get the final, refined (fine-tuned) 

version, the model was retrained once again. 

 

3.8 Performance Analysis 

Upon completing the training phase, the models underwent 

evaluation using different performance metrics such as accuracy, 

sensitivity, and specificity. These calculations were based on Eq. 

(4) – (6). To ensure a fair evaluation, the data was split into training 

(70%), validation (15%), and testing (15%) sets. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)   (4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (5) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)  (6) 

 

Where, 

True positive (TP): Positive occurrences that were accurately 

predicted. 

True Negative (TN): Negative occurrences that were accurately 

predicted. 

False positive (FP): Positive occurrences that were incorrectly 

predicted (Type I error). 

False Negative (FN): Negative occurrences that were incorrectly 

predicted (Type II mistake). 

 

We used the ROC curve, in addition to the performance metrics 

mentioned above, to assess and compare how well our ensemble 

model performed compared to the individual models. 

4. Experimental Results 

We conducted a comprehensive evaluation and comparison of the 

ensemble model and its individual components, examining their 

performance on a range of binary and multiclass classification 

groups such as NC/AD, NC/EMCI, EMCI/LMCI, LMCI/AD, and 

4-way (NC/EMCI/LMCI/AD). 

 

4.1 Hyperparameter selection 

After extensively exploring our data and studying the relevant 

literature, we confidently determined the ideal values for our 

hyperparameters. As shown in Table 4, we selected the appropriate 

hyperparameters. 

Table 4: Selection of hyperparameter values 

Parameter Value 

Learning rate 0.001, 0.0001 

Loss function Cross-entropy 

Optimization Algorithm Adam 

Batch size 32, 64 

Epoch count 50,100,200,300,350 

Applied in deep learning models are several optimization 

algorithms like root mean squared propagation (RMSProp), 

Adadelta, stochastic gradient descent (SGD), Adagrad, and Adam, 

the current literature favors Adam and SGD [52]. Therefore, in our 

study, we opted for Adam because it remains the cheapest 

computational choice compared with other algorithms. 

Furthermore, it has been demonstrated that cross-entropy performs 

better in classification models with a Softmax output layer, even 

though the mean square error (MSE) and cross-entropy are the 

most often utilized loss functions in the existing literature. During 

the initial training phase, we used the Keras framework's default 

learning rate of 0.001. Subsequently, we had to lower the learning 

rate to 0.0001 for fine-tuning the parameters. We originally set the 

batch size to 64 to expedite training, but after running into an out-

of-memory (OOM) problem, we reduced it to 32. The difficulty of 

the categorization groups was taken into consideration when 

determining the number of training epochs by exploratory means. 

As a result, more epochs were needed for groups that presented a 

greater challenge. As we delved further into the exploration of 

optimal model training, we noticed a marked difference. When 

fine-tuning, the model consistently reached its optimal solution in 

a fraction of the time needed during initial training. The discovery 

that fewer epochs were needed for successful results prompted us 

to delve deeper into the optimal number of epochs for training our 

model. In our comprehensive analysis, we utilized the dependable 

DenseNet-121 as the foundation for our research. We then 

extended our findings to other architectures, yielding broader and 

more widely applicable conclusions. These findings are illustrated 

in Fig. 7. 

Figure 7 shows that the random parameter initialization strategy 

takes longer to converge, typically between 200 and 350 epochs, 

whereas the fine-tuned models converge within 100 epochs. When 

considering the various classification groups, it is evident that 

certain groups, such as EMCI/LCMI and 4-way classification, pose 

a greater challenge and therefore take longer to converge, requiring 

a greater number of epochs. 

In our quest for the best results, we delved even deeper into our 

analysis. We rigorously investigated various hyperparameters, 

including the selection of dropout layer numbers and values, the 

incorporation of batch normalization layers, and the choice of base 

classifiers and their numbers within our ensemble model. 

Furthermore, we specifically utilized the NC/AD classification 

group and implemented the esteemed DenseNet121 as our base 

classifier. Our examination of these variables was thoroughly 

conducted in various scenarios, as shown in Fig. 8. 

Figure 8 demonstrates that the model performs exceptionally well 

when a single dropout layer with a value of 0.3 and one batch 

normalization layer is used compared with the other 

configurations. We also evaluated prominent CNN models and 

found that DenseNet-based models outperformed others, as shown 

in Fig. 8d. On the basis of these results, we defined and evaluated 

different combinations for merging the individual CNN classifiers 

to obtain the optimal ensemble model. The performance in 

different scenarios graphically is shown in Figure 9. 

Fig. 9 displays the highest-performing scenarios among the seven 

defined options, with E6 and E7 achieving an impressive 98.57% 

accuracy. Considering this, we opt for the E6 scenario, which 

combines DenseNet121, DenseNet201, DenseNet169, ResNet-50, 

VGG-19, and Inception-ResNet V2, as our ultimate ensemble 

model because of its efficient computational cost compared with 

that of E7. 

 

 
Fig.7. Analyzing the required epoch count using the DenseNet121 

architecture - a. Attained accuracy for various epochs in the 

random parameters initialization approach. b. Attained accuracy 

for various epochs in fine-tuned models 

 

 
Fig.8. Hyperparameter exploration and analysis: a. assessing the 

accuracy of the model with different dropout layer counts b. 

Assessing model accuracy with different dropout layer values. c. 

batch normalization layer's effect on model prediction. d. 

accuracy comparison between several well-known CNN designs. 
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Fig.9 The evaluation of several ensemble model scenarios 

 

4.2 Performance evaluation 

4.1.1 Binary and Four-Way Classification 

Once the appropriate hyperparameters were chosen, we proceeded 

to train and evaluate the base classifiers and the ensemble method. 

Our focus was on early detection of AD, so we created a range of 

binary and multiclass classification groups. The results for both the 

binary and four-way classification models are listed in Table 5. 

 

According to Table 5, the ensemble methods (listed in the last three 

rows) outperformed the individual models in terms of 

performance. When different ensemble techniques were analyzed, 

there were no major discrepancies in the classification results. 

However, the WPBDELM model was marginally better than other 

widely used ensemble methods across various classification 

groups. For a visual representation, Figure 10 displays the ROC 

plot for both individual models and the proposed ensemble 

approach in every classification group. 

Figure 10 illustrates the difficulties encountered in classifying the 

EMCI/LMCI group, where the combined model outperforms the 

single classifiers. Keep in mind that ROC curves cannot be directly 

applied to multiclass classification models; therefore, we drew 

separate ROC curves for each class in the 4-way classification 

model. Our suggested ensemble technique showed satisfactory 

results in identifying all disease categories in the 4-way 

classification group, with particular success in detecting AD 

patients and NCs (refer to Fig. 10e).  

Table 5. Performance of Binary and Four-Way Classification on the Test Set 

Method NC vs. AD NC vs. EMCI EMCI vs. LMCI LMCI vs. AD 4-way  
Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spc Acc 

DenseNet201 97.38 96.59 98.43 98.83 98.79 99.68 97.03 98.36 95.61 92.56 91.17 93.96 94.87 

DenseNet169 96.96 97.19 96.67 98.74 98.55 99.66 97.81 99.32 95.02 94.65 93.76 95.57 94.29 

DenseNet121 96.88 97.78 95.68 98.57 98.70 98.69 98.19 99.13 96.02 94.28 93.18 95.09 93.48 

ResNet50 94.94 94.67 95.29 97.98 97.96 98.43 96.15 98.64 92.02 94.30 92.98 95.71 94.55 

VGG19 94.51 93.19 96.27 97.98 97.22 99.64 97.03 99.27 92.62 94.32 96.18 92.43 93.99 

Inception-ResNet 95.61 95.11 96.27 97.89 97.96 98.06 96.24 98.23 93.62 91.88 91.31 92.45 93.80 

MVEM 98.31 97.63 98.22 99.16 98.40 99.68 98.29 99.46 94.86 97.77 95.54 98.36 97.93 

PBEM 98.50 98.72 98.15 99.13 98.70 99.74 98.34 99.51 94.91 98.07 97.73 98.42 97.83 

WPBDELM (Proposed Method) 98.57 98.81 98.24 99.23 99.67 99.82 98.49 99.63 95.02 98.27 98.13 98.42 98.78 

Note: PBEM – probability-based ensemble method, MVEM – majority-voting ensemble method, WPBDELM – weighted probability-based 

ensemble deep learning method 

 

Fig.10. ROC curve for categorization group a. NC/AD b. 

NC/EMCI c. EMCI/LMCI d. LMCI/AD e. 4-way classification 

4.1.2 Three-Way Classification 

An ADNI data-driven three-way classification model has been 

trained and evaluated. The performance results are detailed in 

Table 6 and Fig. 11, which show that the suggested ensemble 

framework (WPBDEM) outperformed the individual architectures. 

 
Fig.11. ROC plot for three-way classification 

 

 

  

  

 
 

a b 

c d 

e 
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Table 6. Performance of Three-Way Classification on the Test Set 
 DenseNet201 DenseNet169 DenseNet121 ResNet50 VGG Inception-ResNet WPBEM 

Evaluation 97.14 96.91 96.81 97.12 96.29 94.92 98.72 

5. Discussion 

This study aimed to present an ensemble learning model for 

Alzheimer's disease early detection that makes use of deep learning 

techniques. The process involved collecting and preprocessing 

data, forming individual models, and evaluating them against 

ADNI data. This innovative method was chosen following a 

comprehensive comparative study of several ensemble scenarios. 

The final ensemble model was formed by selecting the top six 

individual CNN-based classifiers. As previously indicated, the 

model's performance was assessed using critical metrics including 

accuracy, sensitivity, and specificity, placing it on par with current 

cutting-edge techniques. Table 5 outlines the comparison of our 

suggested model and other relevant studies based on the 

assessment of ADNI data. 

In our comprehensive study, we address all significant 

classification groups, including both binary and multiclass 

classifications. While we did not include NC/LMCI and EMCI/AD 

in our analysis because of their lower clinical significance for early 

AD diagnosis, we did thoroughly cover other MCI subgroups 

(namely, EMCI and LMCI). Upon reviewing Table 5, which 

enumerates research utilizing MR images as input data, we 

discovered that not all classification groups were covered by any 

of the examined studies. While Yue et al. [53], Basaia et al. [10], 

and Mehmood et al. [16] covered all binary classification groups 

in their research, they failed to consider the multiclass 

classification group, which is just as significant. 

According to Table 5, our performance results surpass those of the 

majority of the reviewed papers and are on par with those of others. 

Our proposed model particularly excels in four-way classification, 

outperforming other methods. While Yue et al. [53] produced 

remarkable results in several binary classification groups, 

multiclass classification was not addressed in their work. 

The ensemble approach has been widely utilized in various studies, 

with majority voting (MVEM) and probability-based methods 

(PBEM) being the most commonly used approaches [5, 19, 33, 54, 

55]. Notably, MVEM has been prominent in the literature. In 

addition, the PBEM has also been incorporated into studies 

conducted by Ruiz et al. [34] and Wang et al. [35]. Inspired by the 

PBEM, a new method called the WPBDELM was introduced in 

the present study and compared with other approaches. Despite 

previous research consistently supporting the effectiveness of 

ensemble methods over individual architectures, minimal 

differences are observed 

among different ensemble approaches according to a comparative 

analysis [41]. In most binary classification groups, the WPBDELM 

yields equal or slightly better results than the other approaches do, 

whereas the MVEM outperforms the other methods in four-way 

classification (refer to Table 3 for details). A groundbreaking 

ensemble technique was introduced in a recent study by Ma et al. 

[39], referred to as the deep-broad ensemble, which combines 3D-

residual convolutional blocks and a broad learning system. This 

innovative approach has shown remarkable performance 

improvements over individual methods. The proposed approach 

offers a notable advantage by removing the need for costly 

hardware and lengthy training times. 

6. Conclusion and Future Work 

In recent years, the number of elderly people has increased, 

resulting in various repercussions, such as the increasing 

prevalence of age-related illnesses like Alzheimer's. As a result, 

researchers have turned their attention toward finding ways to 

improve the early detection and diagnosis of these diseases. 

Currently, machine learning and deep learning techniques are 

being heavily researched due to their potential to accurately 

identify these 

 

conditions. Despite impressive diagnostic results, addressing some 

critical concerns surrounding deep learning methods, including the 

suggested framework, is crucial. 

Table 5. Comparison of our proposed model with similar studies in the literature 
Author (s) Method NC vs. AD NC vs. EMCI EMCI vs. LMCI LMCI vs. AD 4–way   

Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc 

Mujahid et al. [41] 2D CNN Ensemble – – – – – – – – – – – – 97.35 

Raza et al.  [42] CNN from scratch – – – – – – – – – – – – 97.84 

Helaly et al.[47]  2D–CNN+3D–CNN – – – – – – – – – – – – 97.0 

Li et al. [56] 2D–CNN+3D–CNN 86.01 82.36 90.19 
 

– – 72.34 60.28 78.35 – – – – 

Mehmood et al. [57] 2D–CNN (VGG) 97.52 97.98 98.99 87.36 87.01 87.01 82.26 81.01 82.61 83.02 82.31 83.01 – 

Zhang et al. [24] 3D–CNN (ResAttNet) 92.4 90.98 91.29 – – – 83.41 82.12 81.27 – – – – 

Ruiz et al. [34] 3D–DenseNet Ensemble – – – – – – – – – – – – 83.33 

Kang et al. [17] 2D–CNN (VGG) – – – 93.92 97.43 93.02 – – – – – – – 

Pan et al. [58] 2D–CNN 83.98 – – – – – 63.54 – – – – – – 

Abrol et al. [6] 3D–CNN (ResNet) 92.05 – – – – – 78.18 – – – – – – 

Basaia et al. [10] 3D–CNN 97.21 97.98 97.95 77.24 76.17 78.18 74.91 75.08 75.17 76.31 75.21 78.14 – 

Gorji and Kaabouch 

[36] 

2D–CNN – – – 94.06 91.26 97.91 92.96 92.04 95.32 – – – – 

Yue et al. [59] 2D–CNN 97.96 98.01 – 98.97 98.95 – 97.98 98.02 – 98.97 99.34 – – 

Lu et al. [54] SAE+DNN 85.08 81.34 92.08 – – – 83.02 80.17 84.35 – – – – 

Liu et al. [60] 2D–CNN+3D–CNN 94.04 93.06 94.04 65.74 64.21 68.47 – – – – – – – 

Islam and Zhang [33] 2D–DenseNet Ensemble – – – – – – – – – – – – 93.18 

Shi et al. [61] Stacked DPN 96.24 96.07 98.67 – – – 79.18 69.07 87.56 – – – 57 

Suk et al. [62] 2D–CNN 92.18 93.08 90.14 – – – 75.14 71.14 83.47 – – – – 

Ortiz et al. [63] Deep Belief Network 90.78 86 94 80 60 90 – – – – – – – 

Proposed Model Ensemble of six 2D–CNNs 

with WPBDEM 

98.57 98.81 98.24 98.37 99.63 94.97 98.22 94.08 95.36 99.83 99.70 100 98.78 

 

Numerous studies on deep learning have used well-known datasets 

like ADNI and OASIS datasets to assess their frameworks. While 

these datasets are valuable for research purposes, their practical 

applicability as automatic CAD systems need further investigation. 

To overcome the situation, we conducted a thorough evaluation 

process, we measured the accuracy of trained models using the 

ADNI dataset as part of a comprehensive validation process. The 

outcomes showed that individual models perform poorly in real-

world situations. However, the diagnostic outcomes of our 

recommended ensemble method were encouraging. To validate the 

model's generalizability, it is necessary to conduct additional 

experiments using a variety of larger datasets. 

This study aimed to present a DL framework that utilizes MR 

images. However, there is potential for adaptation and retraining 

with different neuroimaging data, such as PET and fMRI data. 

Additionally, exploring the potential for developing multimodal 
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and modality-independent frameworks should be considered. 

Additional research is necessary to assess the efficacy of 

alternative deep learning methods, including the recently released 

CNN architectures, in the early identification of Alzheimer's 

disease. 
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