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Abstract: This paper presents a comprehensive review of advancements and methodologies in Content-Based Image Retrieval 

(CBIR) systems, with a focus on integrating machine learning algorithms to enhance performance. It examines the CBIR 

framework, covering key stages from feature extraction to similarity measurement and image retrieval, and underscores the 

importance of both global (color, texture, shape) and local (keypoints, patterns) features in image representation. The paper 

explores various extraction methods and their effects on retrieval accuracy, categorizing features into global and local, and 

discussing their roles and limitations. The application of machine learning in CBIR is divided into unsupervised learning 

(clustering), supervised learning (classification), and deep learning. It evaluates algorithms like K-means, SVM, ANN, and 

CNN in the context of CBIR, analyzing recent literature to assess their functionality and challenges. Deep learning, especially 

CNNs, is highlighted as a promising approach due to its strengths in translation, scale, rotation invariance, and direct learning 

from data. The paper identifies research gaps, including issues related to effective feature fusion, the development of scalable 

methods for large databases, and the integration of machine learning for better semantic understanding. It concludes by 

emphasizing the importance of addressing these gaps to improve CBIR systems in terms of retrieval performance, scalability, 

and efficiency. This review provides valuable insights for researchers and practitioners, offering a detailed overview of 

current trends and future directions in CBIR. 
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1. Introduction 

The CBIR framework is divided into mandatory and 

optional stages, as illustrated in Figure 1. CBIR begins when 

a user submits a query image, and the processes applied to 

the query image are performed in the same sequence for all 

images in the database. These processes can be executed 

online for the user's submitted image or applied offline to 

dataset images before query submission. The framework 

may include an optional preprocessing stage, involving 

operations like resizing, segmentation, denoising, and 

rescaling [1].  

 

After preprocessing, the next crucial step is features 

extraction, where visual concepts are converted into 

numerical representations. Extracted features can be low-

level (e.g., color, shape, texture) or local descriptors. This 

stage is essential, as it transforms the image’s visual content 

into a form that machines can process and compare.  

 

 

 

The final stage in CBIR is similarity measurement, where 

the features extracted from the query image are compared 

with those of the images in the database. The goal is to 

calculate the similarity or distance between the query image 

and each image in the dataset. This similarity measure helps 

in identifying and retrieving images that are most similar to 

the query image. After similarity computations, the images 

are sorted and ranked based on their similarity scores. The 

images most similar to the query image are ranked highest, 

while less similar images are ranked lower. Ranking can be 

done using distance values or similarity scores, with 

common metrics such as Euclidean distance, Cosine 

similarity, or others, depending on the feature extraction 

technique used [2-5]. 

 

Once the images are ranked, the system retrieves and 

displays the top-k images as the most relevant results. The 

value of k can be predefined or adjusted according to user 

preferences or system requirements. 

 

The feature extraction step is the most important in CBIR, 

as it translates human perceptions into machine-readable 

numerical data. Features are generally classified as either 

global or local [6]: 

 

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1Postdoctoral Fellow, School of Engineering Architecture Interior 

Design, Amity University Dubai, United Arab Emirate 

Corresponding Author Email: malrahhal@amitydubai.ae 

ORCID ID: 0000-0001-9688-343 

 
2Associate Professor, School of Engineering Architecture Interior 

Design, Amity University Dubai, United Arab Emirate 

vshukla@amityuniversity.ae 

ORCID: 0000-0002-1143-0992 
 

 

mailto:malrahhal@amitydubai.ae
mailto:vshukla@amityuniversity.ae


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12 (4), 4195–4214 |  4196 

 

Fig 1. General framework of the CBIR system. 

 

− Global features (e.g., texture, color, shape) 

provide an overall representation of the image. 

These algorithms are faster in calculating 

similarities but lack the ability to distinguish 

between objects and backgrounds. 

− Local features, by contrast, focus on specific key 

points or regions of the image, such as corners, 

edges, or blobs. These features are more robust, 

allowing the system to handle changes in scale, 

rotation, and background. 

 

Integrating these features into machine learning algorithms 

can significantly enhance CBIR performance. Recent 

developments in deep learning have further improved 

retrieval accuracy, although they often come with the trade-

off of increased computational time [7]. 

 

Additionally, CBIR systems can generate high-dimensional 

features when converting visual content into numerical data, 

which can lead to performance degradation—commonly 

referred to as the "curse of dimensionality." Dimensionality 

reduction techniques can help mitigate this issue by 

simplifying the data while retaining essential information. 

 

The effectiveness of a CBIR system also depends on the 

similarity measure used to compare feature vectors. An 

inappropriate similarity measure can lead to fewer relevant 

images being retrieved, reducing system accuracy. On the 

other hand, selecting the correct similarity measure can 

significantly improve accuracy. 

 

CBIR performance is typically evaluated using metrics like 

precision and recall, which assess the system’s effectiveness  

 

in retrieving relevant images. 

 

The paper makes several key contributions to the field of 

CBIR: 

 

− Comprehensive Review of CBIR Frameworks: It 

offers an in-depth review of advancements and 

methodologies in CBIR systems, with a particular 

focus on the integration of machine learning 

algorithms to enhance performance. 

 

− Detailed Analysis of Feature Extraction Methods: 

The paper provides a thorough analysis of the CBIR 

framework, highlighting the significance of both 

global and local features in image representation. It 

explores various feature extraction methods and their 

influence on retrieval accuracy. 

 

− Exploration of Machine Learning in CBIR: The 

research investigates the application of machine 

learning in CBIR, categorizing the discussion into 

unsupervised learning (clustering), supervised 

learning (classification), and deep learning, 

particularly focusing on CNNs. It evaluates various 

machine learning algorithms and their roles in CBIR 

systems. 

 

− Identification of Research Gaps: The paper 

critically identifies research gaps in CBIR, including 

the need for efficient feature combination and fusion, 

the development of scalable methods for large-scale 

databases, and the integration of machine learning 

for improved semantic understanding. 
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Fig. 2. Features category extracted from the Image. 

 

The remainder of this paper is structured as follows: The 

second section examines the features extracted from images, 

focusing on the different types of features used in CBIR, 

particularly global and local features. This section discusses 

various extraction methods and their role in enhancing 

image retrieval accuracy. The third section explores 

machine learning-based CBIR, addressing unsupervised 

learning (clustering), supervised learning (classification), 

and the transformative role of deep learning, with a 

particular focus on Convolutional Neural Networks 

(CNNs). The fourth section presents a critical analysis of the 

current research gaps in the field. Finally, the fifth section 

concludes the paper by summarizing the key points and 

findings. 

2. Features Extracted from The Images 

CBIR focuses on the extraction and selection of features that 

represent the semantic content of images. Global features 

(such as color, texture, and shape) describe the entire image, 

providing an overall representation. In contrast, local 

features are obtained by segmenting the image or 

calculating key points, such as corners and edges. Local 

features are invariant to scale, rotation, and translation, 

making them more robust in diverse conditions. Figure 2 

illustrates the categories of these features. 

 

2.1. Global Features 

Global features play a crucial role in CBIR systems as they 

capture the high-level visual characteristics of images. The 

most commonly used global features are color, texture, and 

shape, each of which contributes to image representation 

and description in distinct ways [8]. The main global 

features are: 

 

A. Color Features 

Color is a highly researched area in CBIR, as it is expected that 

three-dimensional color images will produce better results 

than one-dimensional grayscale images. Different color 

spaces can be used to represent colors in a similar manner, 

with common spaces including RGB, HSV, and CIE. 

Several descriptors are employed to characterize these color 

spaces, such as color moments, color correlations, color 

histograms, dominant color descriptors, and color co-

occurrence matrices. 

 

Color features are considered robust because they are 

invariant to translation, rotation, and scale changes. 

However, they do have spatial limitations, which can be 

addressed by using additional descriptors to compensate for 

this constraint. 

 

B. Texture Features 

Texture is an important property used in CBIR, as it 

provides a measure of surface qualities like smoothness, 

coarseness, and regularity by analyzing the variation in 
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surface intensity. However, texture-based image retrieval is 

often hampered by computational complexity and 

sensitivity to noise. Despite these challenges, various 

algorithms are employed to analyze texture, including the 

Gabor filter, Markov random fields, Wavelet transform, 

Gray Level Co-occurrence Matrix (GLCM), and Edge 

Histogram Descriptor (EHD). 

 

C. Shape Features 

Shape is a low-level feature in CBIR that identifies objects 

within an image. Shape extraction can be based on either the 

boundary or the region of an object. In the region-based 

method, features are extracted from the entire region of the 

object, while the boundary-based method focuses on 

features along the object's boundary. Various methods are 

used for shape feature extraction, including Fourier 

descriptors and moment invariants. Shape descriptors differ 

in their ability to handle translation and scaling, which is 

why they are often combined with other descriptors to 

improve accuracy. 

 

In early CBIR studies, images were retrieved using a single 

feature type, but the results were unsatisfactory, as images 

typically contain multiple pictorial elements. To enhance 

retrieval accuracy and performance, researchers began to 

fuse two or more features—such as color, texture, and 

shape—into a single system. This process is known as 

feature fusion. 

 

D. Global Feature-Based Existing Studies 

Shrivastava and Tyagi [9] proposed a feed-forward 

architecture for a CBIR system designed to retrieve relevant 

images through a three-stage process. In the first stage, N 

images are retrieved from a dataset of M images using color 

features, calculated via color histograms. The second stage 

refines the results by selecting P-relevant images from the 

subset of N images using texture features, which are 

extracted through Gabor filters. Finally, in the third stage, 

shape features are obtained using Fourier descriptors to 

retrieve K-relevant images from the set of P images. The 

system supports relevance feedback by adjusting the values 

of N, K, and P to improve precision. The system was 

evaluated on the Corel and CIFAR datasets, achieving 

precision estimates of 0.769 and 0.859, respectively. 

However, the system lacks a block for spatial information-

based image classification. 

 

Younus et al. [10] introduced a new CBIR system aimed at 

extracting both texture and color features. The authors 

employed four feature extraction methods, including color 

moments (color histograms), wavelet moments, and co-

occurrence matrices. To enhance the clustering process, the 

authors combined the k-means algorithm with particle 

swarm optimization (PSO). The system was evaluated on 

the WANG dataset, which consists of 1,000 images 

classified into 10 categories. The results demonstrated 

improved accuracy in most categories, except for 

architecture and buses. However, it is important to note that 

the method did not incorporate shape features in its 

similarity distance calculation. 

 

Ponomarev et al. [11] presented a CBIR system that 

integrates color, texture, and shape features. The system 

used the Gabor, and wavelet transforms to extract these 

features, with Manhattan distance employed to measure 

similarity between the query images and the dataset. The 

system was tested on three datasets: Corel, Li, and 

Caltech101. The system achieved average precision values 

of 0.83, 0.88, and 0.7, respectively. Despite its promising 

results, the system's complexity is increased due to the 

integration of multiple feature types. 

 

Srivastava and Khare [12] introduced a novel CBIR 

algorithm that utilizes multi-resolution analysis to enhance 

image retrieval. The algorithm analyzes images at multiple 

levels, allowing it to capture details that may be overlooked 

when using a single level of analysis. Texture information 

is extracted using the Local Binary Pattern (LBP), while 

shape features are obtained using Legendre moments. By 

combining multiple local and global features derived from 

the LBP descriptor, a robust feature vector is formed. The 

proposed technique was evaluated on five datasets and 

demonstrated superior performance in terms of both 

accuracy and sensitivity compared to standard methods. 

However, it is worth noting that the computational cost of 

the algorithm increases due to the multi-resolution analysis. 

 

Sajjad et al. [13] developed an invariant CBIR system 

designed to handle texture rotation and color changes. The 

system integrates texture and color attributes into a 360-

dimensional feature vector. In the color feature extraction 

step, images are converted to the HSV color space and 

quantized using a color histogram. Only the Hue and 

Saturation channels are considered to ensure illumination 

invariance. To extract texture features, the system employs 

Rotated Local Binary Patterns (RLBP), which capture 

rotationally invariant texture information. The CBIR system 

was tested on the Corel 1K and Corel 10K datasets, and its 

performance was evaluated based on its ability to retrieve 

relevant images using texture-based features, color-based 

attributes, and its robustness to texture rotation and color 

variation. 

 

Zheng et al. [14] proposed a CBIR approach based on block 

processing with overlapping. The approach involves several 

steps. First, images are transformed into the HSI color space 

to facilitate color feature extraction. Next, the images are 

divided into blocks, with the central block selected for 
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further analysis. Color features are extracted using 

histogram projection, which captures the color distribution 

within the selected block. Texture features are extracted 

using the Roberts Edge detection method, designed to 

identify edges and intensity differences. To calculate image 

similarity, the authors used a weighted Euclidean distance 

metric, with the weights determined through trial and error. 

However, the proposed CBIR system demonstrated lower 

performance compared to other state-of-the-art methods, 

such as those outlined by Tadi Bani and Fekri-Ershad [20]. 

 

Zhao et al. [15] presented a novel approach in the field of 

CBIR by combining color, shape, and texture features. The 

proposed approach utilizes the following feature extraction 

methods: 

 

− Color Features: Color Distribution Entropy (CDE) 

is employed to retrieve color characteristics, 

depicting the scattering of colors within images. 

− Shape Features: Hue Moments are used for shape 

feature extraction, providing insights into the 

shapes of objects within the images. 

− Texture Features: The Color Level Co-occurrence 

Matrix (CLCM) is utilized to retrieve texture 

characteristics, capturing the spatial relationships 

between various color levels. 

 

To measure the similarity between the query image and the 

dataset images, the authors applied a weighted normalized 

similarity measure, where the weights are user-defined 

based on the user’s experience or domain knowledge. While 

the proposed CBIR system achieved high precision, it 

struggled with images containing complex objects. This 

limitation arises from the use of Hue Moments for shape 

attributes, as it may fail to accurately identify images 

containing multiple objects or may incorrectly interpret 

separate edges as a single edge. 

 

Phadikar et al. [16] introduced a novel CBIR system that 

operates in the compressed domain, specifically within the 

Discrete Cosine Transform (DCT) domain. In this system, 

color moments, color histograms, and edge histograms are 

extracted in the compressed domain. To enhance retrieval 

performance, a Genetic Algorithm (GA) is employed to 

assign varying levels of relevance to the extracted features 

based on their dissimilarity.  

 

The application of GA positively impacted the precision of 

the CBIR system, but also increased the computation time 

required for retrieval. However, the authors found that 

features extracted in the compressed domain helped balance 

the total time spent on image retrieval. Overall, the 

combination of compressed domain feature extraction with 

GA feature weighting improved the system’s accuracy in 

retrieving relevant images, striking a balance between 

retrieval performance and computational efficiency. 

 

Pavithra and Sharmila [17] introduced a multi-step CBIR 

method aimed at enhancing image retrieval performance by 

reducing search and computational costs. 

− In the first step, color features were computed 

using color moment measurements, including 

mean and standard deviation for each channel in 

the RGB color space. This color feature extraction 

helped reduce the search space and, consequently, 

the computational requirements. 

− The second stage involved extracting texture and 

shape features from a sub-dataset created in the 

first stage. LBP were used to extract texture 

information, while the Canny edge detector was 

employed to capture edge information. These 

added features provided additional discriminative 

information, improving precision in retrieval. 

− The search process utilized Manhattan distance as 

the similarity metric between the query image and 

database images. 

 

The multi-stage CBIR system demonstrated higher 

precision and lower processing time compared to other 

approaches. However, the authors noted that the system's 

runtime is influenced by the size of the dataset. They also 

suggested that integrating artificial intelligence algorithms 

could further improve the system’s performance, and 

diversifying the type and size of the datasets could enhance 

the retrieval outcomes. Overall, the proposed multi-stage 

CBIR technique successfully combined color, texture, and 

shape features, resulting in improved retrieval accuracy and 

computational efficiency. 

 

In another study, Pavithra and Sharmila [18] proposed an 

innovative method for seed point selection in dominant 

color-based image retrieval techniques. Their approach was 

designed to enhance the retrieval capabilities of dominant 

color descriptors used for image retrieval. The authors tested 

their dominant color descriptor on four image databases, and 

the results demonstrated higher retrieval accuracy compared 

to existing methods. However, it is important to note that the 

proposed strategy focused solely on dominant color 

information, without considering shape, texture, or spatial 

information. This limitation suggests a semantic gap in the 

retrieval process, as images with the same dominant color 

may belong to different semantic classes.  

 

To close this semantic gap and obtain more relevant 

retrieval results, the authors suggested combining their 

approach with other feature extraction methods, such as 

shape, texture, and spatial characteristics. By incorporating 

multiple features, the system could capture a broader range 

of image properties and improve retrieval accuracy,  
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TABLE 1. Summary of the Literature on Global Feature-Based Methods 

REF Features Feature Extraction 

Method 

Methods Limitations 

[9] Color, 

Texture, 

Shape 

Color Histogram, Gabor 

Filter, Fourier Descriptor 

Three-stage image retrieval process. Color histogram lacks spatial information. Fourier 

descriptor entails high computational cost. 

[10] Color, Texture Color Moment, Color 

Histogram, Wavelet 

Moment, Co-occurrence 

Matrix 

Combined k-mean clustering with 

particle swarm optimization (PSO). 

Prone to irrelevant image retrieval due to low 

clustering algorithm accuracy. 

[11] Color, 

Texture, 

Shape 

Color Auto Correlogram, 

Gabor Transform, 

Wavelet Transform 

Incorporates color, texture, and shape 

features for accurate similarity 

measurement. 

High computational cost due to using multiple 

features. 

[12] Texture, 

Shape 

Wavelet Transform/LBP, 

Legendre Moments 

Combines local and global features, 

analyzing images at multiple levels. 

Increased computational cost. 

[13] Color, Texture Quantized Color 

Histogram, RLBP 

Extracts color features in HSV color 

space, ensuring illumination 

invariance. Utilizes RLBP for 

rotation-invariant texture features. 

Lack of clear information about Corel dataset 

results. 

[14] Color, Texture Color Histogram, DWT, 

EDH 

Combines local and global features. 

Uses EHD to incorporate local edge 

distribution. 

Does not involve any machine learning algorithms. 

[15] Color, 

Texture, 

Shape 

CDE, CLCM, Hue 

Moments 

Considers color, texture, and shape 

features for similarity measurement. 

High accuracy. 

Accuracy is contingent on the nature of the query 

image. 
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Table 1. Summary of the literature on global feature-based methods 

REF Features Feature Extraction 

Method 

Methods Limitations 

[16] Color, Texture Color Histogram, Color 

Moment, MPEG-7 Edge 

Descriptor 

Incorporates color and texture features 

in similarity measurement. Utilizing 

GA enhances system accuracy with 

excellent results. 

Genetic Algorithm (GA) introduces an impact on 

computational cost. 

[17] Color, 

Texture, 

Shape 

Color Moment, LBP, 

Canny Edge Detector 

Averts linear dataset search. Running time varies based on the number of images 

in the new sub-dataset. 

[18] Color Dominant Color 

Descriptor 

Introduces seed point selection to 

mitigate the drawback of DCD. 

Falls short of bridging the semantic gap. 

[19] Color, Shape Color Histogram, Canny 

Edge Histogram 

Implements an ANN to discern 

semantic class information. 

Lacks spatial information and provides no details 

about running time. 

[20] Color, Texture Quantized Color 

Histogram, Gabor Filter, 

GLCM 

Extracts features in spatial and 

frequency domains, demonstrating 

invariance to rotation and low 

sensitivity to noise. 

Exhibits high run time. 

[21] Color, 

Texture, 

Shape 

Color Moment, Ranklet 

Transformation, 

Invariant Moment 

Integrates non-parametric and 

parametric features. 

High computational cost arises due to the high 

feature vector dimension. 

[22] Color, 

Texture, 

Shape 

Color Moment, GLCM, 

Geometric Shape Feature 

Considers color, texture, and shape 

features in similarity measurement. 

Potential for reducing retrieval time with the 

application of a suitable optimization algorithm. 

[23] Color, Texture Color Moment, 

DWT/Gabor 

Filter/CEDD 

Achieves high accuracy values. High computational cost attributed to the high 

feature vector dimension. 
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ensuring that images with similar semantic content are 

accurately retrieved. 

 

Ashraf et al. [19] introduced a novel CBIR system aimed at 

bridging the gap in image retrieval efficiency. The proposed 

method combines color and edge features to form a 

comprehensive feature descriptor. For color feature 

extraction, a color histogram analysis was employed, while 

the Canny edge detector was used for edge extraction in the 

YCbCr color space.  

 

To further enhance feature representation, discrete wavelet 

transformation was applied, with the Haar wavelet selected 

due to its computational efficiency compared to other 

wavelet functions. To classify images into semantic 

categories, an artificial neural network (ANN) was trained 

using the extracted features. It is important to note that the 

training and testing of the ANN require significant 

computational resources. The system used the Manhattan 

distance metric for similarity measurement. The results 

showed good precision and recall performance, 

demonstrating the system's effectiveness. However, the lack 

of spatial information limits the system's ability to capture 

fine details and spatial relationships in images. Additionally, 

no information was provided regarding the system's 

computational cost, preventing an assessment of its 

scalability for large datasets. 

 

Tadi Bani and Fekri-Ershad [20] proposed a novel CBIR 

system designed to extract global and local textures in both 

frequency and spatial domains. Color features were 

obtained in the spatial domain, with Gaussian filtering 

applied as preprocessing to reduce noise. Global texture 

features were extracted using the Gray Level Co-occurrence 

Matrix (GLCM) in the spatial domain, while color features 

were extracted using quantized color histograms within the 

RGB color space. Local texture features were derived using 

the Gabor filter to improve retrieval performance. The 

system was tested on the Simplicity dataset, achieving high 

precision values compared to other approaches. It was also 

found to be rotation-invariant and able to tolerate moderate 

levels of noise. However, the system's runtime was longer 

due to the use of multiple feature types. 

 

Rana et al. [21] introduced a new CBIR approach that 

combines both parametric (color, shape) and nonparametric 

(texture) features. Parametric features were analyzed using 

color moments and moment invariants, while nonparametric 

features were analyzed using the ranklet transform. The 

resulting feature vector had a length of 247, which slowed 

down the algorithm, a notable drawback. The method was 

tested on five datasets. Additionally, Bella and Vasuki [22] 

proposed the FIF-IRS method, which fused color moments 

in the HSV color space with GLCM in eight directions. The 

evaluation metrics for FIF-IRS included precision, retrieval 

speed, and error rate, indicating it as a promising approach. 

Retrieval time could be further reduced through the use of 

optimization algorithms. 

 

Ashraf et al. [23] proposed a CBIR system that combines 

low-level features, such as texture and color, to improve 

image retrieval performance. Color features were extracted 

using color moments within the HSV color space, while 

texture features were obtained using Discrete Wavelet 

Transform (DWT) and Gabor wavelet techniques. The  

system integrated color and edge descriptors into a feature 

vector, resulting in more accurate retrieval results. 

However, the large size of the feature vector also increased 

the time required for search and comparison. The proposed 

system demonstrated high precision and recall in 

experiments conducted on the Corel 1000 and Corel 15,000 

datasets. It is important to note that, like many other 

methods in the literature, this approach lacks spatial and 

comprehensive texture information. 

 

Alsmadi et al. [24] introduced a new CBIR system that 

integrates shape, color, and texture features. The system 

extracted color features using the Canny edge histogram in 

the YCbCr color space, while texture features were derived 

using the Gray Level Co-occurrence Matrix (GLCM). 

Shape features were extracted using the Canny edge method 

in the RGB color space. The system utilized simulated 

annealing (SA) and a genetic algorithm (GA) to enhance the 

solution quality. The CBIR system outperformed other 

state-of-the-art approaches, achieving an average precision 

of 0.901 and a recall average of 0.1803. However, it is 

important to consider that the cooling process in the SA 

method and the need for numerous iterations may lead to 

extended computation times. 

 

Table 1 provides a comprehensive overview of literature 

focused on methods based on features such as color, texture, 

and shape. 

 

2.2. Local Features 

 

The use of local image features in CBIR is becoming 

increasingly popular due to their advantages over global 

features. Unlike global features, local features are invariant 

to scale and rotation, making them more robust under 

various conditions. They provide consistent matching by 

capturing detailed information from specific regions of an 

image. This makes CBIR systems more accurate and 

efficient in retrieving relevant images from large datasets. 

Consequently, the adoption of local visual features 

highlights their effectiveness in addressing scale and 

rotation invariance issues, ultimately enhancing the overall 

performance and quality of CBIR systems. 
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A. Scale-Invariant Feature Transform 

 

SIFT (Scale-Invariant Feature Transform) is one of the most 

renowned local descriptors in image analysis, introduced by 

David Lowe [25]. It consists of a keypoint detector and a 

descriptor extractor. One of SIFT's key advantages is its 

invariance to image rotation and scaling, making it useful in 

several applications. However, SIFT has limitations in high-

dimensional matching tasks and requires a fixed-size vector 

encoding mode for image similarity comparisons. These 

factors contribute to its shortcomings in image retrieval, 

particularly due to its high memory usage and 

computational demands in certain cases, rendering it less 

effective in some scenarios. 

 

Montazer and Giveki [26] introduced a CBIR system 

utilizing SIFT and Local Derivative Pattern (LDP) to create 

feature descriptors. To mitigate the high memory 

consumption and computational costs associated with SIFT, 

the authors proposed two dimensionality reduction 

techniques. The CBIR system was evaluated on four 

databases and demonstrated excellent retrieval performance 

for object-based images. However, additional refinements 

are necessary for the system to perform effectively with 

natural images. 

 

Sharif et al. [27] proposed a CBIR system that unifies visual 

words produced by SIFT and Binary Robust Invariant 

Scalable Key Points (BRISK) methods. BRISK, a key 

component of the system, addresses SIFT's limitations in 

handling low-light conditions and poorly localized key 

points. To reduce computational costs, the system allows for 

selecting different percentages of image features. However, 

this proposed method has yet to be tested on large, unlabeled 

datasets. 

 

B. Speeded-Up Robust Features 

 

Bay et al. [28] introduced the SURF algorithm (Speeded Up 

Robust Features), a robust local descriptor that addresses 

SIFT's limitation of high dimensionality. While 

dimensionality reduction techniques can be applied to 

mitigate this drawback, they may impact system 

performance during feature computation. Inspired by the 

SIFT algorithm, the authors developed SURF to offer faster 

speeds and greater robustness. SURF uses an indexing 

scheme based on the Laplacian symbol, enabling quicker 

feature calculation and image matching. However, SURF 

has limitations when handling image rotations. 

 

In a related study, Jabeen et al. [29] proposed a new CBIR 

system that integrates FREAK (Fast Retina Keypoint) 

descriptors with SURF features. FREAK demonstrates 

superior classification performance, while SURF excels in 

managing changes in illumination and scale. This fusion of 

descriptors generates visual words using the Bag of Visual 

Words (BoVW) model, which helps reduce the semantic 

gap in image retrieval. The visual words are clustered using 

K-means, and histograms of visual words are created for 

each image. These histograms are then used to train an SVM 

classifier to recognize the semantic content in images. The 

proposed system was evaluated on three image collections, 

including Corel 1000 and Corel 150, and showed high 

efficiency in terms of average precision, retrieval accuracy, 

and computational complexity. It is worth noting that 

descriptors like FREAK and SURF do not inherently 

capture color information. 

 

C. Histogram of Oriented Gradients (HOG)  

 

Dalal and Triggs [30] proposed the Histogram of Oriented 

Gradients (HOG) as an improved descriptor that 

outperforms existing descriptors, such as wavelets. HOG 

estimates the shape and appearance of local objects based 

on the direction of edges or the distribution of local intensity 

gradients, without needing the precise location of the 

gradient or edge. The image is divided into smaller spatial 

regions, called cells, where the orientations of edges within 

each cell are summed to produce local 1D gradient direction 

histograms. These histograms are then combined to 

represent the image. HOG also calculates energy by 

comparing the local histograms of larger blocks and 

normalizes the cells within the blocks, enhancing its 

resistance to shadowing and illumination effects. Over the 

past decade, HOG has been widely used in various 

applications, particularly in object recognition. 

 

Mehmood et al. [31] proposed a CBIR system that combines 

the strengths of HOG and SURF descriptors. SURF is used 

to extract local features and performs well on noisy images, 

low-illumination settings, and images with clear 

backgrounds. HOG, on the other hand, extracts global 

features, providing more spatial information and improving 

retrieval performance. The two descriptors, each with its 

own visual vocabulary, are combined to form a larger 

vocabulary. While a larger vocabulary can enhance retrieval 

results, it also increases computational costs. To mitigate 

this issue, the authors selected a subset of the extracted 

features for further processing.  

 

The fused feature matrix was clustered using K-means++, 

and histograms for each image were computed. An SVM 

classifier was then used for image classification. The system 

was tested on four well-known datasets (Caltech 256, Corel 

1K, Corel 1.5K, and Corel 5K). Although HOG is efficient, 

it cannot directly construct feature vectors from 

multispectral images, leading to a loss of spatial and spectral 

information. 
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Table 2. Summary of the Literature for Key Pints and Local Pattern-Based Methods. 

REF Features Feature 

Extraction 

Method 

Methods Limitations 

[26] KeyPoint, Local Pattern SIFT, LDP Demonstrates high performance for images containing objects. The length of the feature vector is 3000, 

and there's a need for improvement 

when applied to nature images. 

[27] KeyPoint SIFT, BRISK Aims to reduce the semantic gap between high-level and low-

level features. 

Not tested against large-scale unlabeled 

datasets. 

[29] KeyPoints SURF, FREAK Targets the reduction of the semantic gap between high-level 

and low-level features. 

Does not provide any color information. 

[31] HOG, KeyPoint HOG, SURF Provides additional spatial information and performs well in 

noisy and low-illumination situations. 

HOG cannot be directly used for 

multispectral images. 

[34] KeyPoint, Local Pattern LBPV, LIOP Aims to reduce the semantic gap between high-level and low-

level features, utilizing PCA for dimensionality reduction. 

Not tested against large-scale datasets, 

and not directly applicable to 

multispectral images. 

[35] KeyPoints SFIT, LIOP Strives to reduce the semantic gap between high-level and 

low-level features. Exhibits invariance to rotation, changing 

scale, illumination, and performs well in low-contrast cases. 

Presents a high-dimensional descriptor. 
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C. Local Pattern 

 

LBP (Local Binary Patterns) was introduced by Ojala et al. 

[32] as a qualitative technique for local pattern analysis. It 

compares the central pixel in a neighborhood to its 

surrounding neighbors using a threshold. LBP is robust, as 

it remains invariant under monotonic grayscale 

transformations, and is computationally efficient. However, 

LBP has some limitations. 

 

Guo et al. [33] introduced LBP Variance (LBPV) as an 

extension of LBP to address these limitations. LBPV 

includes a global rotation-invariance step after applying the 

local variant of LBP. The authors also proposed a feature 

reduction technique using similarity measurements to speed 

up the matching process. 

 

Sarwar et al. [34] presented a CBIR system that uses LIOP 

(Local Intensity Order Pattern) and LBPV to improve 

performance by reducing semantic gaps. These two feature 

descriptors are used to create smaller visual vocabularies, 

which are then combined into a larger visual dictionary. To 

reduce the size of the visual dictionary, principal component 

analysis is employed. Histograms are computed, and an 

SVM is trained using both LBPV and LIOP.  

 

The system was evaluated on three datasets: Holidays 

(WANG-1K), WANG-2K, and WANG-2K. The system 

was efficient in terms of precision, recall, and computational 

cost. However, it has not been tested on large datasets like 

ImageNet or ImageCLEF, and it cannot construct feature 

vectors from multispectral images, leading to a loss of 

spectral and spatial information. A summary of Keypoints, 

Local Patterns, and Local Patterns from the literature is 

provided in Table 2. 

3. Machine Learning Based Content Based 

Image Retrieval 

In recent years, there has been a significant trend in CBIR 

systems towards the integration of machine learning 

algorithms to create models capable of handling new input 

data and providing accurate predictions. This integration has 

led to notable improvements in image search performance. 

This section is divided into three subsections: unsupervised 

learning (clustering), supervised learning (classification), 

and deep learning. 

 

3.1. Unsupervised Learning (Clustering) 

 

After the feature extraction process and feature vector 

construction are completed in a CBIR system, the next step 

is clustering. Clustering involves grouping image 

descriptors into separate clusters based on similarities, while 

ensuring that these clusters also exhibit semantic differences 

from each other. It is considered an unsupervised learning 

algorithm since it does not require predefined labels for the 

image data. Although K-means and K-means++ are the 

most common clustering algorithms used in CBIR, 

particularly with local feature extraction methods, other 

clustering techniques are rarely applied. These methods use 

local feature extraction from images and then apply the 

clustering process. Clustering algorithms process the feature 

vectors to find the optimal grouping of images based on 

similarity, which makes the management and retrieval of 

images in CBIR systems highly efficient. 

 

As mentioned earlier, Yousuf et al. [35] used the K-means 

clustering algorithm in combination with a visual 

vocabulary created from SIFT and LIOP descriptors. This 

fusion increased the size of the visual vocabulary, which 

improved the image retrieval process. However, K-means 

clustering has some limitations. One issue is that it requires 

the number of clusters to be specified in advance, which can 

be challenging without prior knowledge or experimentation. 

Additionally, the choice of initial centroids influences the 

quality of the clustering. Incorrect selection of centroids 

may cause the algorithm to converge to local optima, 

thereby affecting the final clustering quality. Moreover, 

while using a larger number of clusters might reduce error, 

it can also lead to overfitting, where the model becomes too 

tailored to the training data and may perform poorly on 

unseen data. 

 

Another drawback of K-means is its sensitivity to outliers 

and noise. Outliers can distort centroid calculations and 

cluster assignments, resulting in suboptimal clustering. 

Despite these limitations, K-means remains a popular 

clustering algorithm in CBIR systems, and researchers 

continue to develop techniques to overcome these 

challenges and improve its efficiency. 

 

Mehmood et al. [31] applied the K-means++ algorithm to a 

combined visual dictionary created from HOG and SURF 

descriptors. K-means++ is an improvement over the 

traditional K-means algorithm, addressing some of its 

limitations. One of the key improvements is in the selection 

of initial centroids. K-means++ uses a weight-based method 

to assign probabilities to potential centroids, ensuring that 

the chosen centroids better represent the data distribution. 

This results in more accurate clustering from the outset. 

 

Although the initial selection process for centroids in K-

means++ is more complex and time-consuming compared 

to the standard K-means algorithm, it offers several 

advantages. By assigning weights to centroids, K-means++ 

avoids convergence to local optima, thereby improving the 

overall clustering accuracy.  
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TABLE 3. Classification Of the Main Characteristics, Limitations, And Examples for the Main Machine Learning Categories 

 METHODS                      Main Characteristics                                              Limitations                                                 Examples                            

 SUPERVISED LEARNING           Requires the presence of labels.  

Predict and classify data to one of 

predefined classes.                                           

 Classification accuracy is directly impacted 

by the size of the training set.  

 SVM, ANN                            

 UNSUPERVISED 

LEARNING        

 No need for labels. Learns the similarities 

and semantics between input data and 

generalizes a model to handle unseen 

inputs.                                    

 Overfitting, Scalability, and clustering 

algorithm performance are affected by the 

number of clusters.  

 K-means, K-means++                  

 DEEP LEARNING                 Can be Supervised or Unsupervised. 

Generates learning models.  

Predict and classify data to one of 

predefined classes.   

Generate learning model.                                         

 High computational cost and complex 

structure.  Learns the similarities and 

semantics between input data and generalizes 

a model to handle unseen inputs.  

 CNN, Deep Neural Network, 

Deep Belief Network, 

Boltzmann Machine  
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Furthermore, the use of weighted centroids leads to faster 

convergence, requiring fewer iterations to reach the optimal 

clustering solution. This reduction in the number of 

iterations decreases the computational cost and enhances the 

efficiency of the clustering process. Overall, by 

incorporating K-means++ in their CBIR system, Mehmood 

et al. achieved better performance in terms of clustering 

accuracy and reduced computational overhead compared to 

the traditional K-means algorithm. 

 

3.2. Supervised Learning (Classification) 

 

In CBIR, supervised learning algorithms differ from 

unsupervised ones in that they have prior knowledge of 

image groups and their corresponding labels, making the 

task one of classification. These algorithms are provided 

with a training dataset consisting of labeled images, which 

helps them detect patterns and relationships between 

features and class labels. When a new image is presented, 

the supervised learning algorithm predicts the most 

appropriate predefined group or label for the image based 

on the knowledge it has learned from the training data. 

 

A. Support Vector Machine 

 

SVM (Support Vector Machine) is one of the most widely 

used supervised classifiers in pattern recognition and image 

classification applications. It classifies new data by 

associating it with predefined classes based on patterns 

learned from the training data. SVM can be categorized into 

two types: linear SVM and non-linear SVM [36, 37]. 

 

− Linear SVM: In a linear SVM, the feature space is 

linearly separable, meaning that classes can be 

separated by a straight line or hyperplane. The goal 

of a linear SVM is to find the optimal hyperplane 

that maximizes the margin between the classes, 

allowing for better generalization to new data. 

Linear SVM is particularly effective when the 

classes can be separated in the original feature 

space. 

 

− Non-linear SVM: Often, data is not linearly 

separable in its original feature space. To address 

this, non-linear SVM uses kernel functions to map 

the data into a higher dimensional feature space 

where linear separation becomes possible. The 

"kernel trick" allows the computation of dot 

products in the transformed space without 

explicitly calculating the transformation. Common 

kernel functions, such as the radial basis function 

(RBF) or polynomial kernels, enable non-linear 

SVM to efficiently handle complex non-linear 

decision boundaries. 

 

The selection of the kernel function is a crucial factor in 

determining the performance of SVM. Different kernels 

capture different types of non-linear relationships in the 

data. The choice of the appropriate kernel depends on the 

characteristics of the data and the specific problem at hand. 

To achieve optimal classification performance, it is 

important to test different kernel functions and fine-tune 

their parameters. 

 

Overall, SVM is a powerful tool for supervised 

classification in CBIR and pattern recognition tasks. It is 

effective for both linearly separable and non-linearly 

separable datasets, offering accurate classification based on 

patterns learned from the training data. 

 

B. Artificial Neural Networks 

 

ANNs are widely used in practical applications, including 

image retrieval. The architecture of ANNs is designed to 

mimic the functioning of the human neuronal system, 

making them highly effective in data processing. ANNs are 

adaptable to solving problems across various domains and 

are characterized by features such as robustness, high 

parallelism, fault tolerance, noise resilience, and 

nonlinearity. ANNs operate by simulating interconnected 

neurons, also known as nodes or artificial neurons, which 

receive, process, and transmit information. These neurons 

are organized into layers, with each layer containing 

multiple nodes. The connections between nodes are 

weighted, where the weights represent the strength and 

influence of signals transmitted between them [38]. 

 

The weights of these connections are updated through 

optimization algorithms, such as backpropagation, which 

aims to minimize the difference between the network's 

output and the desired outcome during training. This 

learning process enables the network to identify and 

generalize patterns from input data, making it well-suited 

for image retrieval tasks. Due to ANNs’ ability to process 

complex relationships and learn from large datasets, they are 

a powerful tool for image retrieval [39]. 

 

When trained on a labeled dataset of images, an ANN model 

can extract meaningful features and recognize patterns 

unique to certain image classes or attributes. This learned 

knowledge can then be applied to sort or retrieve images 

based on their similarity to the training data. The parallel 

processing capabilities of ANNs make computational tasks 

faster, especially with modern hardware designs, thus 

enhancing the efficiency of image retrieval. Additionally, 

ANNs are robust to errors and noise, enabling the system to 

handle imperfect or noisy input data, which is common in 

real-world scenarios where images may have defects or 

variations [40]. 
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TABLE 4. Summary of the Performance of Machine Learning Algorithms-Based Approaches For CBIR 

REF. Machine Learning Algorithm Method Limitations 

[31] K-means++/SVM 
Offers more spatial information. Performs better in noise and low 

illumination situations. 

HOG cannot be directly applied to multispectral 

images. 

[34] SVM 

Reduces the semantic gap between high-level and low-level 

features. Invariant to image rotation and monotonic intensity 

change. Using PCA to reduce dimensionality. 

Not tested on large-scale datasets. Cannot be directly 

applied to multispectral images. 

[35] K-means/SVM 
Reduces the semantic gap between high-level and low-level 

features 
The resulting descriptor becomes high-dimensional. 

[41] ANN Retrieval based on the image core (main) object. Segmentation slows down the system. 

[46] CNN 
No need for annotations or labels. The length of the feature vector 

is 16. Reduces required memory and run time. 
Accuracy decreases with larger datasets. 

[47] 
CNN/Unsupervised 

CNN/Supervised 

Reduces the dimension of the feature descriptor. Retains spatial 

information. 
Increased retrieval time. 

[48] CNN Uses VGG-16. Utilizes a similarity score. 

Requires enhancement in terms of speed during the 

training and testing stages. More time to construct 

the gravitational field database. 

[49] CNN Reduces computational cost. 
Increased retrieval time if not using sparse 

representation. 
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Overall, ANNs' ability to emulate the human neuronal 

system, combined with their powerful information 

processing capabilities, makes them a valuable tool in the 

field of image retrieval. Their capacity to extract meaningful 

information from data and identify patterns leads to 

intelligent solutions in image analysis and retrieval tasks. 

 

Ashraf et al. [41] proposed a CBIR system designed to 

retrieve images based on their main subjects. The system 

employs the Bandelet transform as a feature extraction 

technique, specifically applied to the primary object within 

images. For texture classification, an ANN based on 

backpropagation was used, with four categories: deficiency 

of contour blocks, vertical, horizontal, and left/right 

diagonal. The ANN architecture included a hidden layer 

with 20 neurons and an output layer with 4 neurons. Texture 

features were extracted from the ANN's output using Gabor 

filters. 

 

In addition, color-based feature extraction was performed in 

both the YCbCr and RGB color spaces to enhance system 

performance. This was achieved through the use of color 

wavelets and color histograms. Another ANN was 

employed to classify the query image into its corresponding 

class and then compare it with images within the same class, 

thereby improving retrieval accuracy. 

 

The approach introduced by Ashraf et al. was segmentation-

based, which contributed to higher precision in image 

retrieval. However, this method can result in slower 

processing speeds compared to other techniques. In 

conclusion, the CBIR system proposed by Ashraf et al. 

integrates the Bandelet transform, ANN-based texture 

classification, and color feature extraction techniques to 

retrieve images based on their central objects. While 

segmentation led to improved precision, it came at the cost 

of slower processing speeds. 

 

3.3. Deep Learning 

 

Over the past few decades, deep learning has emerged as a 

popular machine learning technique for solving real-world 

problems. Deep learning architectures, modeled after the 

structure of the human brain, process data through stages of 

transformation and representation. These architectures have 

been highly successful in various domains, including object 

recognition, and this success can be extended to CBIR to 

help overcome the semantic gap. Deep learning algorithms, 

such as CNNs, Deep Neural Networks (DNNs), Deep Belief 

Networks, and Boltzmann Machines, are particularly 

powerful in computer vision tasks. Among these, CNNs 

have gained significant popularity in CBIR [42]. 

 

CNNs consist of three types of layers: convolutional,  

 

pooling, and fully connected layers. In the convolutional 

layers, filters are applied to input images to learn important 

features. Pooling layers, or subsampling layers, reduce the 

spatial dimensions of the input, which helps decrease the 

amount of information and computation required. Finally, 

the fully connected layer predicts the class or label of the 

input image. The key difference between CNNs and ANNs 

is that CNNs use convolutional and pooling layers before 

the fully connected layer, while in ANNs, all neurons are 

interconnected [43]. 

 

CNNs have several advantages over ANNs. They are robust 

to translation, scaling, and rotation, making them ideal for 

computer vision tasks. Additionally, CNNs do not require 

hand-crafted feature extraction, as they are capable of 

learning relevant features directly from the data. However, 

CNNs do rely on labeled datasets, which can be a limitation 

in certain cases [44]. 

 

Table 3 provides an overview of machine learning 

categories, their main characteristics, and examples. Deep 

learning, with CNNs at its core, has proven to be a 

successful approach in CBIR due to its feature extraction 

capabilities and its efficiency in computer vision tasks. 

 

Wan [45] explored the behavior of CNNs in various case 

studies within the CBIR field, aiming to improve image 

retrieval by using CNNs to represent image features and 

measure similarity. The results demonstrated that CNNs 

effectively extract features, leading to enhanced retrieval 

performance. However, it is important to acknowledge that 

combining a large visual dictionary with CNNs can 

introduce several challenges. Specifically, the increased size 

of the visual dictionary can impact memory storage and 

training time, potentially degrading retrieval capacity. 

These limitations highlight the need to consider practical 

and computational requirements when employing CNN-

based approaches in CBIR systems. 

 

Alzu’bi et al. [46] introduced a novel CBIR system utilizing 

bilinear CNNs. This innovative approach used CNNs for 

unsupervised feature extraction from image content, without 

the need for bounding boxes, annotations, or class labels. To 

optimize memory and computational costs, the extracted 

features underwent dimensionality reduction via pooling 

during the feature extraction process. The system was tested 

on large-scale image retrieval tasks, showing promising 

results. By leveraging the bilinear CNN's ability to capture 

and represent visual features, the system provided accurate 

retrieval results. The use of unsupervised feature extraction 

and dimensionality reduction demonstrated the system's 

capability to handle large-scale image datasets efficiently. 

 

Tzelepi and Tefas [47] proposed a method to enhance CBIR 
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performance by employing a CNN to represent features. 

They modified the classical CNN architecture by 

incorporating maximum pooling after convolutional layers, 

instead of using fully connected layers. This modification 

was intended to preserve spatial information, which is often 

lost with fully connected layers that connect to all input 

neurons. By reducing the dimensionality of the feature 

descriptor while retaining essential spatial information, their 

approach achieved high retrieval efficiency with minimal 

memory and processing time requirements. The method 

presented three different schemes based on the available 

information: fully unsupervised retraining, utilization of 

relevance information, and feedback-based retraining. 

 

In the completely unsupervised retraining approach, there is 

only a dataset available, allowing the CNN to be trained 

without any class labels. The relevance information scheme 

is activated when a labeled dataset is available, enabling the 

use of class labels to enhance training. Finally, the relevance 

feedback-based retraining approach involves user 

interaction, where users provide feedback on the retrieved 

results, followed by iterative retraining of the CNN based 

on this feedback. These approaches cover various scenarios, 

providing flexibility to the proposed CBIR method, 

accommodating different levels of data availability and user 

involvement. Overall, this approach enhances retrieval 

performance by balancing computational efficiency, 

memory usage, and the use of available information sources. 

 

Zheng et al. [48] proposed a VGGNet-based end-to-end 

CBIR system. Instead of using traditional class labels for 

CNN training, the authors used a gravitational field dataset 

with similarity score labels. The system was evaluated on 

three benchmark datasets—Oxford, Paris, Holidays, and 

Caltech 101—achieving high accuracies of 0.9620, 0.9410, 

and 0.8850, respectively. These results demonstrate the 

system’s promising potential for accurate image retrieval. 

 

However, constructing the gravitational field database used 

to train the CNN was found to be time-consuming. The 

authors also acknowledged that the system's speed should 

be improved during both the training and testing stages. 

Despite these limitations, the proposed end-to-end CBIR 

system shows strong potential for providing accurate image 

retrieval results. Future improvements will focus on 

reducing the time required to build the gravitational field 

database and enhancing the system's training and testing 

efficiency. 

 

Sezavar et al. [49] proposed a CBIR framework using a 

convolutional neural network (CNN) for high-level feature 

extraction. They employed the last layer of the AlexNet 

architecture, originally introduced by Krizhevsky et al. [50]. 

The last layer was chosen because it produces the smallest 

feature vector, thereby reducing computational cost. To 

further optimize the process, the authors applied sparse 

representation, an effective compression technique that 

enhances retrieval performance while maintaining an 

acceptable level of accuracy. The proposed approach was 

evaluated on three datasets: ALOI, Corel, and MPEG-7. The 

results demonstrated good retrieval speed and accuracy, 

highlighting the efficiency of the method. 

 

However, it is worth noting that while sparse representation 

enables faster bulk access, it comes at the expense of slightly 

reduced accuracy compared to other methods. Their paper 

also includes Table 4, which provides a detailed overview 

of the performance of machine learning algorithm-based 

approaches in CBIR, offering valuable insights into the 

comparative speed and accuracy of different methods. 

 

In conclusion, the integration of machine learning 

algorithms into various stages of CBIR can significantly 

improve retrieval accuracy. However, the training and 

testing phases of these algorithms often require substantial 

processing time. While machine learning enhances 

accuracy, it also introduces computational challenges that 

must be addressed for CBIR systems to be efficient. Further 

research into optimization techniques and hardware 

advancements is necessary to reduce processing time and 

make machine learning-based CBIR more practical and 

scalable. 

4. RESEARCH GAP 

From the reviewed studies, several research gaps can be 

identified in the field of CBIR: 

 

− Feature Combination and Fusion: Using a single 

type of feature for image representation often 

results in suboptimal retrieval performance. 

Therefore, research is needed on efficient methods 

to merge and combine different types of features, 

such as color, texture, and shape, to produce more 

comprehensive and discriminative representations. 

The challenge lies in finding appropriate fusion 

methods that can leverage interactions among 

different features, even when they vary in 

dimensionality and properties. 

− Database-Specific Fusion Approaches: While 

feature fusion often improves results, most fusion 

approaches are typically tailored to specific image 

databases or domains. There is a research gap in 

developing generic fusion approaches that can be 

adapted to different types of image databases, 

encompassing various visual content, image sizes, 

and domain-specific characteristics. Moreover, 

these approaches must maintain retrieval 

performance when applied to diverse datasets 
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without being hindered by the challenges posed by 

different image collections. 

− Dimensionality Reduction for High-

Dimensional Features: Techniques such as local 

patterns, keypoints, and deep learning methods 

(e.g., CNNs) have shown promise in improving 

retrieval precision. However, they often produce 

high-dimensional feature vectors, leading to 

increased computational complexity and storage 

requirements. Developing dimensionality 

reduction techniques specifically designed for 

high-dimensional features is critical to enhancing 

the scalability of CBIR systems. 

− Integration of Machine Learning and CBIR: 

Although machine learning algorithms have been 

utilized in CBIR tasks such as feature selection, 

visual vocabulary construction, and image 

classification, there is a gap in developing efficient 

approaches that seamlessly integrate machine 

learning into the CBIR pipeline. This includes 

exploring new ways to co-optimize tasks like 

feature extraction and classification and harnessing 

the full potential of machine learning to improve 

retrieval performance and address the semantic 

gap. 

− Scalability for Large-Scale Databases: Many 

current CBIR approaches perform well on small 

databases but degrade in performance when 

applied to large-scale databases due to increased 

computational and storage demands. Research is 

needed to develop scalable CBIR approaches that 

maintain high retrieval precision and efficiency 

without significantly increasing execution time, 

even with large image databases. 

Addressing these research gaps will contribute to 

advancements in CBIR, improving retrieval performance, 

scalability, and efficiency, ultimately leading to more 

practical and effective image retrieval systems. 

5. CONCLUSION 

This comprehensive review of CBIR systems, with a focus 

on the use of machine learning techniques, represents a 

significant step forward in advancing the field. The 

examination of various feature extraction methods, both 

global and local, highlights their crucial role in enhancing 

the precision and effectiveness of CBIR systems. The 

research shows that while global features provide a quick 

overview of image content, local features offer more 

detailed and accurate representations, which are essential 

for complex retrieval tasks. The integration of machine 

learning algorithms—encompassing supervised, 

unsupervised, and deep learning techniques like CNNs—

has been transformative for CBIR. These algorithms have 

significantly improved image retrieval accuracy, addressed 

the semantic gap, and facilitated the handling of high-

dimensional data. Deep learning, in particular, has 

revolutionized the field by providing unparalleled feature 

learning and adaptability across diverse image datasets. 

 

However, the review also identifies critical research gaps 

and challenges. These include the need for more efficient 

feature fusion methods, scalable solutions for large image 

databases, and the application of machine learning to 

enhance semantic interpretation in CBIR. Additional 

challenges arise from the high computational demands and 

the need for large, labeled datasets, particularly in deep 

learning. 

 

In conclusion, while significant progress has been made in 

integrating machine learning into CBIR systems, there is 

still considerable potential for further advancements. 

Addressing these research gaps will not only improve 

existing systems but also lay the foundation for more 

sophisticated, effective, and accurate image retrieval 

solutions. The future of CBIR is closely tied to the 

continuous evolution of machine learning techniques and 

their successful integration with image retrieval processes, 

promising new breakthroughs in digital image and data 

analysis. 
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