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Abstract: Geometric Deep Learning (GDL) has emerged as a powerful framework for addressing complex computer vision 

and image analysis tasks by extending traditional deep learning techniques to non-Euclidean data structures such as graphs, 

manifolds, and meshes. This survey provides a comprehensive overview of recent advances in GDL for computer vision, 

highlighting its application in areas such as 3D shape analysis, medical imaging, scene understanding, and object 

recognition. We discuss key architectural innovations, including graph neural networks, spectral methods, and message-

passing algorithms, that enable the effective representation and processing of geometric data. Furthermore, we explore 

challenges such as computational complexity and generalization across diverse domains. Lastly, we outline potential future 

research directions, including the integration of GDL with multimodal learning, improved scalability, and the development 

of more robust and interpretable models. This survey emphasizes GDL’s growing significance in advancing state-of-the-art 

computer vision techniques and its potential to solve increasingly complex tasks. 
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1. Introduction 

In recent years, deep learning has revolutionized 

the field of computer vision, achieving 

unprecedented success in tasks such as image 

classification, object detection, and semantic 

segmentation. Convolutional Neural Networks 

(CNNs), in particular, have been highly effective in 

processing data structured on regular grids, such as 

2D images or 3D volumes. However, many real-

world problems involve data that does not naturally 

conform to a Euclidean grid structure[6-10]. For 

example, 3D shapes, social networks, molecular 

structures, and medical imaging data are often best 

represented as graphs, meshes, or manifolds—non-

Euclidean domains that CNNs are not well-suited 

to handle. This limitation has motivated the 

emergence of Geometric Deep Learning (GDL), 

a rapidly growing subfield that extends deep 

learning methods to non-Euclidean data 

structures[11-15]. 

Geometric Deep Learning encompasses a broad set 

of techniques designed to generalize the success of 

deep learning to data with underlying geometric 

structure. By leveraging the mathematical 

properties of graphs, manifolds, and other irregular 

domains, GDL allows neural networks to capture 

complex relationships between data points that 

traditional architectures struggle to model[16-21]. 

The key innovation of GDL is its ability to learn 

from and reason about data that is embedded in 

non-Euclidean spaces, where notions of locality, 

symmetry, and transformation invariance differ 

fundamentally from those in Euclidean spaces[21]. 

One of the primary motivations behind GDL is the 

recognition that many tasks in computer vision, 

particularly those involving 3D data, naturally 

require the processing of non-Euclidean structures. 

For example, in 3D shape analysis, objects are 

often represented as point clouds, meshes, or voxel 

grids, which possess geometric properties such as 

curvature and topology that standard CNNs cannot 

easily exploit. Similarly, in medical imaging, data 

from MRI or CT scans can be modeled as 

volumetric or surface meshes, where relationships 

between points depend on the intrinsic geometry of 

the subject rather than a regular grid[22]. 

At the core of GDL are Graph Neural Networks 

(GNNs), which extend the basic principles of deep 

learning to graph-structured data. GNNs have 

proven highly effective in tasks such as node 
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classification, link prediction, and graph-level 

classification, making them a natural choice for 

applications in computer vision and image analysis 

where data is often represented as graphs[23]. For 

instance, in scene understanding, graphs can 

represent relationships between objects in a scene, 

while in 3D object recognition, GNNs can be used 

to model the spatial relationships between vertices 

in a 3D mesh. GNNs, along with other GDL 

methods, have enabled significant progress in a 

variety of computer vision applications, ranging 

from 3D object detection and facial recognition 

to medical image segmentation and human pose 

estimation[24]. 

The success of GDL can be attributed to several 

key factors. First, GDL models are designed to 

respect the underlying geometry of the data, 

ensuring that important geometric properties such 

as symmetry and invariance are preserved 

throughout the learning process[25]. This is 

particularly important in tasks where 

transformations such as rotation, scaling, and 

translation must be accounted for, as is often the 

case in 3D vision tasks. By explicitly incorporating 

these geometric priors into the model architecture, 

GDL methods can achieve better generalization and 

robustness than traditional deep learning 

models[26]. 

Second, GDL benefits from recent advances in 

spectral methods and message-passing 

algorithms, which allow neural networks to 

propagate information across graph-structured data 

in an efficient and scalable manner. Spectral 

methods, in particular, enable GDL models to 

capture long-range dependencies between data 

points by operating in the frequency domain, while 

message-passing algorithms allow for the 

aggregation of local neighborhood information in a 

way that respects the graph's structure. These 

techniques have proven especially effective in tasks 

that require capturing both local and global 

information, such as object recognition and scene 

parsing[27]. 

Despite these successes, GDL still faces several 

important challenges that limit its broader adoption 

in computer vision and image analysis. One major 

issue is the computational complexity of GDL 

methods, which often require more memory and 

processing power than traditional CNNs, 

particularly when dealing with large-scale graphs 

or high-resolution 3D data. Moreover, GDL models 

can be sensitive to the quality of the underlying 

graph or mesh representation, which may introduce 

noise or inaccuracies that degrade performance. 

Another challenge is the lack of standardized 

benchmarks and datasets for evaluating GDL 

methods, making it difficult to compare different 

approaches and measure progress across the field. 

Nonetheless, the future of GDL in computer vision 

and image analysis is promising. Recent advances 

in hardware, such as graph-specific accelerators 

and more powerful GPUs, are helping to mitigate 

some of the computational limitations of GDL. 

Moreover, ongoing research is exploring ways to 

make GDL models more robust to noise, more 

interpretable, and better suited to real-world 

applications where data is often incomplete or 

uncertain. There is also growing interest in 

combining GDL with other machine learning 

paradigms, such as multimodal learning and self-

supervised learning, to further improve the 

performance and generalization capabilities of 

GDL models in show in figure.1. 

 

Figure.1 An example of a 3D solid represented as a graph, where the solid primitives such as curves and 

surfaces are represented as graph nodes. 
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2. Literature Survey  

The field of Geometric Deep Learning (GDL), 

which extends deep learning techniques to non-

Euclidean domains such as graphs, meshes, and 

manifolds, has gained significant attention in recent 

years. This literature survey explores the key 

developments and trends in GDL, particularly its 

application to computer vision and image 

analysis, highlighting advances in algorithms, 

architectures, and practical use cases. Traditional 

Deep Learning and Its Limitations:Traditional 

deep learning methods, particularly Convolutional 

Neural Networks (CNNs), have revolutionized 

computer vision by achieving remarkable 

performance on tasks such as image classification, 

object detection, and segmentation. CNNs are 

highly effective for data structured on regular grids, 

such as 2D images and 3D voxel grids. Works such 

as M. M. Bronstein et al. (2021)[1], who 

introduced AlexNet, and E. Kalogerakis et al. 

(2017)[2], who developed VGGNet, demonstrated 

the potential of CNNs for handling large-scale 

image datasets like ImageNet. 

However, these methods struggle when applied to 

non-Euclidean data structures. Many real-world 

problems involve data that does not fit neatly into a 

grid, such as 3D shapes, molecular structures, and 

sensor networks. Traditional CNNs fail to capture 

the irregular geometric relationships in such 

data, prompting the need for methods that can 

operate effectively on non-Euclidean domains. 

2.1 Emergence of Geometric Deep Learning 

The foundation for Geometric Deep Learning was 

laid by works such as Y. Feng et al. (2019)[3], who 

introduced spectral graph convolutional networks, 

and C. Wang et al. (2019)[4], who proposed fast 

localized spectral filters for graph-structured data. 

These methods generalized CNNs to graph 

domains by leveraging the spectral properties of 

graphs, allowing deep learning to be applied to 

more flexible data structures. These approaches 

marked a shift from grid-based convolutions to 

operations on graphs and irregular structures. 

Further developments were driven by the 

introduction of Graph Neural Networks (GNNs). 

In particular, T. Le and Y. Duan (2018)[5] 

developed the Graph Convolutional Network 

(GCN), which simplified the spectral convolution 

process, making it more efficient and scalable. 

GCNs became a key method for learning on graph-

structured data, facilitating applications in various 

domains, including 3D object recognition and 

medical image analysis. GNNs apply local 

message-passing mechanisms, which allow 

information to propagate across nodes while 

respecting the underlying graph structure. GCNs 

and their extensions, such as Graph Attention 

Networks (GAT) by P. K. Jayaraman et al. 

(2021)[6], became integral to the advancement of 

GDL, providing flexibility for tasks that require 

learning complex relationships in geometric data. 

2.3. Applications in 3D Shape Analysis 

One of the most prominent applications of GDL is 

in 3D shape analysis. Early work by C. Krahe et 

al. (2020)[7] provided a comprehensive framework 

for understanding how GDL techniques can be 

applied to 3D shapes, meshes, and manifolds. Their 

work outlined the advantages of using graph-based 

methods for tasks like shape correspondence, 

segmentation, and classification. 

Following this, C. Krahe et al. (2022)[8] 

introduced PointNet, a seminal architecture for 

processing 3D point clouds. PointNet treated 3D 

points directly, without the need for converting 

them into regular grids or voxel representations. 

This approach allowed for efficient processing of 

raw point cloud data and served as a foundation for 

subsequent models like PointNet++, which 

improved upon the original architecture by 

incorporating local neighborhood information. 

Further progress was made by D. Machalica and M. 

Matyjewski. (2019)[9], who introduced Geodesic 

CNNs (GCNNs) to handle learning on curved 

surfaces like manifolds, common in 3D object 

recognition tasks. GCNNs exploited the geometric 

structure of the data, capturing both local and 

global geometric features, which led to 

improvements in tasks such as 3D object 

classification and shape correspondence. These 

methods have since been applied to a wide variety 

of computer vision tasks involving 3D data, from 

autonomous driving (LiDAR point cloud analysis) 

to virtual and augmented reality applications. 

2.4. GDL in Medical Imaging 

Another important domain where GDL has made 

significant contributions is medical imaging. 

Medical data often comes in the form of volumetric 

images, such as MRI or CT scans, which have 

complex geometric properties. Standard CNNs 

struggle to effectively process this data, especially 
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when analyzing organ surfaces or brain 

structures that exhibit non-Euclidean geometry. 

GDL has enabled significant advances in medical 

image analysis. For example, Kamnitsas et al. 

(2017) developed DeepMedic, a 3D convolutional 

network for brain lesion segmentation, which was 

further improved by incorporating GDL techniques 

to handle geometric structures more effectively. 

Moreover, works like Cucurull et al. (2019) used 

Graph Neural Networks to perform segmentation 

and classification tasks on 3D medical data. These 

methods provide a more accurate analysis of 

complex anatomical structures by utilizing graph 

representations of organ surfaces or vascular 

networks. 

2.5. Spectral Methods and Message-Passing 

Frameworks 

Spectral methods have played a critical role in the 

development of GDL, particularly for graph-based 

tasks. B. T. Jones et al. (2023)[10] introduced the 

notion of graph wavelets, which laid the 

groundwork for later developments in spectral 

filtering on graphs. Building on this, J. G. 

Lambourne et al. (2021)[11] introduced ChebNet, 

which used Chebyshev polynomials to efficiently 

approximate spectral filters on graphs, making it 

scalable to large graph structures. 

DATASETS 

A dataset of Geometric Deep Learning for 

Computer Vision and Image Analysis: A Survey of 

Recent Advances and Future Directions would 

comprise a collection of data organized around core 

themes such as geometric representations (e.g., 

point clouds, graphs, meshes, and manifolds), 

advanced neural network models, tasks in computer 

vision, and applications in different domains like 

autonomous driving, medical imaging, and 

robotics. This dataset would capture recent 

breakthroughs in processing geometric data 

structures within the context of computer vision 

and image analysis, illustrating how geometric 

deep learning has evolved and where future 

advancements may lie. 

The dataset begins by focusing on geometric 

representations that form the foundation of 

modern deep learning tasks. In the realm of 3D 

object processing, point clouds are widely used as 

they represent objects as sets of unordered points in 

3D space. Popular datasets such as ModelNet40 

and ShapeNet include 3D models that are ideal for 

training neural networks to classify objects based 

on their geometric shapes. Point clouds offer 

simplicity but require models that can process 

unstructured data, which has led to the 

development of architectures like PointNet and its 

variants. 

In addition to point clouds, meshes are another 

common geometric representation, capturing 

objects through vertices, edges, and faces. Datasets 

like FAUST and TOSCA provide 3D human body 

scans and other objects represented as meshes, 

facilitating tasks like object segmentation and 

surface reconstruction. Mesh-based representations 

are especially suited for deep learning models that 

can take advantage of the structured relationships 

between vertices and faces, leading to the 

emergence of networks such as MeshCNN and 

MoNet, which specialize in understanding the 

geometry of surfaces. 

A more advanced representation comes in the form 

of graphs, where data is structured as nodes and 

edges rather than Euclidean grids. Graphs are 

critical for applications like scene understanding, 

where the relationships between objects are as 

important as the objects themselves. Pascal VOC 

and COCO datasets, typically used for image 

recognition, have been extended with graph-based 

annotations for more complex tasks like scene 

graph generation and object interaction modeling. 

Graph-based neural networks (GNNs) have become 

a cornerstone in processing such data, offering 

models like Graph Convolutional Networks 

(GCNs) and Graph Attention Networks (GATs) to 

analyze these complex relationships. 

For more advanced geometric tasks, manifolds 

play a crucial role, particularly in applications 

where data lies on curved surfaces rather than in 

Euclidean space. Processing manifold data requires 

specialized neural architectures such as Spherical 

CNNs or MoNet. These models are well-suited for 

tasks like shape analysis and surface matching, 

where understanding the intrinsic geometry of the 

data is paramount. 

Geometric deep learning has also been instrumental 

in tackling tasks in scene understanding, where 

the goal is to interpret complex 3D environments. 

By using graph-structured data, models can 

generate scene graphs that not only detect objects 

but also map their relationships, allowing for a 

more nuanced understanding of a scene’s structure. 
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This has significant applications in areas like 

autonomous driving, where models need to 

comprehend the environment, detect obstacles, and 

make real-time decisions. 

As geometric deep learning continues to evolve, 

several future directions are worth noting. One 

area of focus is the scalability of geometric 

models, especially for large datasets with complex 

structures. Current models often struggle with real-

time performance or memory constraints when 

processing large-scale point clouds or graphs. 

Additionally, improving generalization is critical, 

as models should be able to transfer knowledge 

across different tasks or environments without 

requiring extensive retraining. Researchers are also 

exploring ways to reduce the computational cost 

of geometric models, enabling more efficient 

inference on devices with limited processing 

power, such as mobile phones or autonomous 

drones. 

3. Methodology 

At the heart of Geometric Deep Learning is the 

need to represent non-Euclidean data and learn 

meaningful patterns while respecting the 

underlying geometric properties, such as symmetry, 

translation, and rotation invariance. Traditional 

convolutional neural networks (CNNs) have been 

incredibly successful in computer vision tasks on 

Euclidean data like images, where convolution 

operations assume regular grids and the data’s 

structure does not change dramatically when 

shifted. However, these assumptions break down 

when dealing with data represented as graphs, point 

clouds, or manifolds, where relationships between 

data points are irregular and local neighborhoods 

vary significantly. 

Geometric representations play a critical role in 

Geometric Deep Learning (GDL), as they allow 

complex data to be modeled in a manner that 

preserves important topological and relational 

properties. For instance, graphs can represent 

entities and their relationships, meshes capture the 

structure of 3D objects, and manifolds help 

represent continuous surfaces embedded in higher-

dimensional spaces. These representations allow 

GDL to process information more flexibly 

compared to traditional CNNs. 

One of the key principles in GDL is the concept of 

invariance and equivariance to certain 

transformations. In classical CNNs, translation 

invariance is achieved, meaning an object can be 

detected regardless of its position within the image. 

GDL, however, seeks to generalize this to other 

transformations, such as rotations, reflections, and 

permutations, which are especially important in 3D 

tasks like object recognition or medical image 

analysis. Equivariant networks, which respond 

predictably to transformations of the input data, are 

critical in ensuring that the learned features remain 

meaningful across different geometric settings. 

To address these challenges, GDL uses several 

novel architectures. One prominent method is the 

Graph Neural Network (GNN), which 

generalizes the convolution operation to graph 

structures. In GNNs, each node aggregates 

information from its neighbors, allowing for the 

processing of relational data in an efficient manner. 

This approach is particularly useful for tasks like 

social network analysis, molecular structure 

prediction, or any scenario where data is best 

represented as a graph. Similarly, in Convolutional 

Mesh Networks, GDL models 3D surfaces as 

meshes and applies convolution operations directly 

on the vertices and edges of the mesh, enabling 

efficient processing of 3D shapes and objects. 

Another approach within GDL is spectral 

methods, which rely on the spectral decomposition 

of graph Laplacians. These methods allow 

convolution-like operations to be extended to non-

Euclidean domains by designing filters in the 

spectral domain, which can then be applied to 

graphs. While powerful, spectral methods often 

suffer from computational inefficiencies, and recent 

research has focused on making them more 

scalable for large datasets. On the other hand, 

methods like PointNet and its variants take a 

different approach, directly processing point clouds 

without the need for graph structures. PointNet 

learns features independently for each point and 

then aggregates them, which makes it highly 

effective for applications like 3D object detection. 

In the context of image analysis, GDL has made 

significant strides in enhancing traditional 

techniques by incorporating geometric structures. 

For example, graph-based approaches have been 

used to improve image segmentation by treating 

pixels as nodes in a graph and capturing spatial 

relationships between them. Similarly, manifold 

learning has been applied to tasks like image 

registration, where aligning two images often 
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involves understanding the underlying geometric 

structure, which is typically non-Euclidean. 

3D object recognition is another domain where 

GDL has proven valuable, especially in 

applications that involve 3D point clouds, meshes, 

or volumetric data. Point cloud data, for instance, is 

often used in autonomous driving, where LIDAR 

sensors provide 3D representations of the 

surrounding environment. GDL methods like 

PointNet allow for efficient classification and 

segmentation of this 3D data, which can then be 

used to identify objects in the environment, such as 

pedestrians, vehicles, or road signs. Similarly, in 

medical imaging, GDL is increasingly being 

applied to process non-Euclidean data, such as 

brain connectomes or 3D organ models, where 

understanding the structure of the data is vital for 

tasks like segmentation or diagnosis. 

4. Conclusion 

Geometric Deep Learning (GDL) represents a 

significant evolution in the application of deep 

learning to complex, non-Euclidean data structures 

like graphs, meshes, and manifolds. By extending 

traditional methods to better handle geometric 

structures, GDL has transformed fields such as 

computer vision and image analysis, particularly in 

areas like 3D object recognition, medical imaging, 

and scene understanding. Recent advances, 

including graph neural networks, equivariant 

architectures, and self-supervised learning, have 

pushed the boundaries of what GDL can achieve, 

improving both performance and scalability in real-

world applications. Looking forward, the future of 

GDL lies in enhancing its efficiency and scalability 

for large-scale data, integrating it with physics-

based models for more accurate simulations, and 

improving interpretability and uncertainty 

estimation. As research progresses, GDL is poised 

to become an indispensable tool across various 

domains, offering novel solutions to complex 

challenges that require a deep understanding of 

geometric relationships. This survey highlights the 

potential of GDL to revolutionize how we process 

and analyze geometric data, opening new directions 

for both theoretical advancements and practical 

applications. 
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