
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6                                    799www.ijisae.org Original Research Paper 

 

 

International Journal of Intelligent Systems and Applications in Engineering                                                IJISAE, 2024, 12(21s), 4782–4791  |4782 

 

Software Defined Network-Based Intrusion Detection in Cloud 

Environment Using Machine Learning 
 

1Gurjit Kaur, 2Mandeep Kaur 

 

Submitted: 07/02/2024    Revised: 15/03/2024     Accepted: 21/03/2024

Abstract-The continued adoption of cloud services has led to a surge in demand for more secure cloud environments — while our 

traditional Intrusion Detection Systems (IDS) are simply not cutting it when it comes to addressing the inherently multi-machine 

nature and seriously elastic business growth potential that modern day Cloud computing infrastructures enable. This feature 

proposes a novel technique by integrating machine learning (ML) with Software-Deined Networking principles to establish an 

eicient and reliable IDS framework applicable in cloud environments. With SDN controllers as a central system for network 

administration, the system facilitates real-time capture and analysis of packet data across an entire cloud infrastructure. The 

models are based on ML, which is trained to identify patterns and better find anomalies or abnormalities that could some 

underlying intrusion/ attack Africa in case. The framework improves cloud security by calibrating network policies on the fly and 

responding in real time to detected threats as well providing total, live visibility of their entire set-up across any Cloud. Extensive 

performance evaluations show that the proposed approach substantially outperforms previous methods, and produces 99.44% 

detection accuracy as well as much better precision recall F-score results compared to baseline methods in a real-world case study. 

Our results demonstrate the ability of proposed framework to tackle complexity faced in cloud security, and provide scaleable 

solution protecting clouds from new age cyber threats. The work presented in this article conclusively shows how to apply 

machine learning on network security monitoring using SDN (Software Defined Network) technologies which, I believe is a major 

new research direction for future secure cloud architecture developments. 

Keywords- Intrusion Detection Systems, Software-Defined Networking, Machine Learning 

I. Introduction 

Cloud computing is a low-cost and pay-as-you-go 

technology that has revolutionized the IT world by offering 

three service models: software as a service (e.g., Google 

Apps), platform as a service (e.g., Google App Engine), and 

infrastructure as a service (e.g., Amazon Web Service, 

Eucalyptus, Open Nebula) [1]. Virtualization enables cloud 

to provide elasticity, ease of use, scalability, and on-demand 

network access to a shared pool of configurable computing 

resources. The cloud computing paradigm has a service-

oriented architecture, leading to a drastic alteration in how 

services are provided and managed. Intrusion detection 

techniques are used in any computing environment as a layer 

of defense to detect malicious activity before significant 

harm is possible [2-4]. Two main approaches are signature-

based detection and anomaly-based detection [3,4]. 

Signature-based detection defines patterns of known attack 

signatures, and if a system processes code similar to those 

signatures, it is considered suspicious and marked as an 

intrusion. Anomaly-based detection analyses activities 

performed on the system, creating a profile for a particular 

system. Signature-based detection techniques cannot detect 

unknown attacks, while anomaly-based techniques often 

result in large false positives or negatives. Cloud 

environments are vulnerable and attractive to attacks due to 

their distributed nature. Intrusion detection systems (IDSs) 

can enhance security by examining logs, network traffic, and 

configurations. However, conventional IDSs, such as host-

based and network-based IDSs, are not suitable for cloud 

environments as they cannot locate hidden attack trails. 

Attackers can gain control over installed virtual machines if 

the hypervisor is compromised. Popular attacks on virtual 
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machines include DKSM, SubVirt, and Bluepill [5]. IDS 

techniques were not designed for virtualization, and they do 

not offer the same protection [6-8]. Deploying IDS in virtual 

environments requires trade-offs due to their inability to 

inspect operating system internals. Virtualization offers 

significant benefits but also introduces new security risks. 

Cloud computing providers are adopting software-defined 

networking (SDN) to achieve on-demand provisioning of 

network services, since SDN can provide a centralized 

system to manage the network. The network administrator is 

empowered by SDN to easily access and manage individual 

flows by facilitating them to implement monitoring 

applications, i.e., firewall and IDS [9,10]. Furthermore, 

scalable monitoring and dynamic reconfiguration 

requirements of the network in cloud makes SDN a perfect 

choice [11,12]. SDN offers flexibility in a network system 

which paves the way to overcome challenges from the 

legacy network. Separating the control and data planes and 

having a logically centralized control offers the opportunity 

to develop the architecture and its application easily and in a 

more efficient way.Machine Learning (ML) based IDS has 

been on the rise for the past few years and developers are 

trying to find out suitable and better ML methods and ways 

to implement it in the network [7,11]. The main concern is 

the efficiency, training of complex models, and the amount 

of different data. It uses statistical methods to train the data 

and make prediction based on the training. ML techniques 

have become an essential component of attack security 

measures. These machine learning-based technologies are 

capable of distinguishing between normal and attack traffic 

with extreme accuracy. The ML algorithms used are, 

Support Vector Machine (SVM), Naive-Bayes (NB), 

Decision Tree (DT), and Logistic Regression (LR) [6,8,14]. 

The aim is to have a detection system which learns from 

real-time data. 

ML techniques in SDN networks help against the detection 

of the malicious flow as in the study [36] detect the 

anomalous flows in the SDN network. The information is 

taken from the flow tables from the switches and gets the 

flow of information. The DPTCM-KNN algorithm in the 

detection module process these anomalous flows. The only 

issue here is the processing overhead as the process is 

repeated after 10 seconds. In another study proposed a trust-

based approach for the detection of malicious devices using 

the packet data and device profile. One of the studies [37] 

analyses the ML algorithms in the context of the SDN for 

providing security, resource optimization, traffic 

classification, and quality of service. This further shows that 

ML brings intelligence to the controller for the detection and 

prevention of attacks. The study [38] demonstrates the use 

of machine learning (ML) for DDoS and intrusion detection 

in SDN networks, highlighting its pros and cons. Another 

study examines traffic scheduling in a hybrid data center 

environment, focusing on edge devices for ML-based 

elephant flow traffic classification, reducing SDN controller 

burden but not providing network-wide information. 

Another study [39] suggests using OpenFlow for DDoS 

detection using self-organizing maps (SOM), an 

unsupervised neural network method. The controller collects 

data from switches and devices, monitoring attributes like 

packets, bytes, and flow duration. The data is fed into a 

classifier for DDoS attack detection, reducing controller 

processing overhead. 

II. Related Work 

Devi, et.al (2024) presents detection and avoidance of DDoS 

attacks in software-defined cloud advanced support vector 

machine (ASVM) networks. A three-class multiclass 

classification approach is the ASVM methodology. In 

addition, wedescribe a method for utilizing SDN features to 

identify DDoS attacks in Software Defined Clouds. They 

analyze the outcomes, by evaluating a Precision, Accuracy, 

Recall and Detection Rate. The overall accuracy, False 

alarm rate and Precision values are 97.6%, 97.5% and 97.5% 

respectively. They demonstrated that the ASVM and 

transmitted firewalls with IPS security successfully identify 

and prevent the DDoS attacks based on their simulation 

results and discussions. Shaji, et.al (2024) proposes an 

Intelligent Intrusion Detection System for Software-Defined 

Networks (SD-IIDS) combines two Machine Learning (ML) 

models to detect Distributed Denial of Service (DDoS) 

attacks in SDN. The models are Support Vector Classifier 

bagged with Random Forest (SVC-RF) and Random Forest 

bagged with Logistic Regression (RF-LR). The multi-class 

models detect DDoS attacks with 98.83% and 99.54% 

accuracy, respectively. The binary models classify network 

traffic into malicious and legitimate classes with 99.42% and 

99.79% accuracy. The multi-class RF-LR ensemble 

outperforms the multi-class SVC-RF with 99.45% precision 

and 99.46% sensitivity. Ma, et.al (2023) proposes a DDoS 

attack detection algorithm using heterogeneous integrated 

feature selection and random forest algorithm. It is deployed 

on edge equipment switches of a SDN for distributed edge 

parallel computing, enabling fast and accurate detection of 

DDoS attacks. Simulation experiments using the CIC-

DDoS2019 dataset evaluate the effectiveness and feasibility 

of the proposed scheme. Results show that the algorithm 
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achieves 99.99% accuracy, precision, recall, and F-value, 

with a prediction time of only 0.4 seconds.  

III. The Proposed Method 

3.1 Proposed Methodology 

The provided diagram appears to represent a high-level 

architecture of a system designed for secure communication 

and attack detection within a network, likely using a 

machine learning-based approach. The diagram consists of 

several components: 

1. Applications: This includes various applications 

(Application 1, Application 2, etc.) that generate data. 

2. Encryption: Data from applications is encrypted 

before transmission. 

3. Graph Neural Network (GNN): The central 

component appears to be a graph neural network (GNN) that 

processes the encrypted data. 

4. Decoders: Post-GNN processing, decoders are used 

to interpret the processed data. 

5. Attack Detection: This section outlines the process 

of detecting potential attacks using the decoded data. 

3.1.1. Detailed Breakdown 

1.  Applications and Data Encryption 

• Applications: In the context of a network, different 

applications generate data. This data could be anything from 

text, images, or any form of communication that needs to be 

transmitted securely. 

• Encryption: Before this data is transmitted across 

the network, it is encrypted. The encryption algorithm 

mentioned is "optimized-AES," which suggests an 

Advanced Encryption Standard (AES) that has been 

optimized, possibly for speed or security. 

o Encryption Equation: 

𝐶 = 𝐸𝑘𝑒𝑦(𝑀)              (1) 

 Where: 

• C is the cipher (encrypted data) 

• E is the encryption function, 

• Key is the encryption key, 

• M is theoriginal message or data. 

The AES encryption ensures that the data is secured as it 

travels across the network, protecting it from unauthorized 

access. 

2.  Graph Neural Network (GNN) 

Once the data is encrypted, it is transmitted to a central 

network, represented here as a GNN. A GNN is a type of 

neural network designed to process data structured as 

graphs. In this scenario, the network likely models the 

relationships between various entities (like devices, users, 

etc.) in the network, represented as nodes and edges. 

• Nodes and Edges: 

o Nodes: Represent entities in the 

network, such as devices, servers, or users. 

o Edges: Represent connections or 

interactions between these entities, such as data 

transmission, communication links, etc. 

o Graph Representation: 

𝐺 = (𝑉, 𝐸)              (2) 

Where: 

• G is the graph 

• V is the set of vertices or nodes, 

• E is the set of edges connecting the nodes, 

• GNN Operation: The GNN processes this graph to learn and 

encode the relationships and interactions between the nodes. 

This encoding can be used to detect anomalies or patterns 

that might indicate malicious activity. 

o GNN Equation: 

ℎ𝑣
(𝑘)

= 𝜎 (𝑊(𝑘). 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ({ℎ𝑢
(𝑘−1)|𝑢𝜖 𝑁(𝑣)})

+ 𝑏(𝑘))                 (3) 

Where: 

• ℎ𝑣
(𝑘)

is the hidden state of node v at the kth layer, 

• 𝑊(𝑘) is the weight matrix at the kth layer, 

• 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 is a function that aggregates messages from 

neighboring nodes, 

• 𝑏(𝑘)is the bias term, 

• 𝜎is the activation function (e.g., ReLU). 

This equation essentially describes how each node’s 

representation is updated by aggregating information from 

its neighbors, which is crucial for detecting complex patterns 

in the network. 

3.  Decoders 

After the GNN has processed the data, it is sent to decoders. 

The decoders' role is to interpret the encoded data back into 
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a form that can be analysed or acted upon. This is crucial 

because the GNN encodes data into complex, high-

dimensional representations that are not human-readable. 

• Decoding Process: The decoding can involve 

various techniques, including decryption and interpretation 

of the GNN's output to identify specific features or patterns. 

o Decoding Equation: 

𝑀′ = 𝐷𝑘𝑒𝑦(𝐶)              (3) 

Where: 

• 𝑀′are the decoded messages 

• D is the decryption function, 

• Key is the decryption key, 

• C is theciphertext. 

The decoders output the data in a format suitable for further 

analysis, particularly for attack detection. 

4.  Attack Detection 

The final stage of the process involves detecting potential 

attacks using the decoded data. This process is broken down 

into several steps: 

• Input Data: The data, once decoded, is fed into the 

attack detection system. 

• Feature Extraction: The system extracts relevant 

features from the data that could indicate an attack. This 

could involve analysing traffic patterns, data anomalies, or 

unusual behaviors in the network. 

o Feature Extraction Equation: 

𝐹 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑀′)  (4) 

Where: 

• F is the set of features extracted from the decoded message 

𝑀′. 

o Feature Selection: 

𝐹′ = 𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹)                 (5) 

Where: 

• 𝐹′is the selected subset of features from F. 

o Learning & Classification: The selected features are then 

used to train a machine learning model that can classify 

whether an attack is occurring. Common algorithms used 

could include Support Vector Machines (SVM), Random 

Forests, or Deep Learning models. 

o Classification Model Equation: 

𝑦 = 𝑀𝑜𝑑𝑒𝑙 (𝐹′)                 (6) 

Where: 

• y is the predicted label (attack or no attack). 

• Model represents the trained classification model. 

PSEUDOCODE 

  // Step 1: Data Generation by Applications 

  FOR each application IN applications_list: 

    data = application.generateData() 

    // Step 2: Encryption of Data 

    encrypted_data = AES_Encrypt(data, 

encryption_key) 

    // Step 3: Transmission of Encrypted Data to 

Graph Neural Network (GNN) 

    graph_network = createGraph(encrypted_data) 

    // Step 4: Processing Data using Graph Neural 

Network (GNN) 

    FOR each node IN graph_network.nodes: 

        FOR each neighbor IN node.neighbors: 

            node_representation = 

GNN_Aggregate(node, neighbor) 

        END FOR 

        node_representation = 

GNN_Update(node_representation) 

    END FOR 

    encoded_data = GNN_Output(graph_network) 

    // Step 5: Decoding the Encoded Data 

    decoded_data = Decoder(encoded_data) 

    // Step 6: Attack Detection 

    attack_detected = False 

    // 6a: Feature Extraction 

    features = ExtractFeatures(decoded_data) 

    // 6b: Feature Selection using Correlation 

    selected_features = 

SelectRelevantFeatures(features) 
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    // 6c: Train or Load Machine Learning Model 

    model = LoadOrTrainModel(selected_features) 

    // 6d: Classify and Detect Attack 

    attack_detected = 

model.Predict(selected_features) 

    // Step 7: Evaluate Performance Metrics 

    IF attack_detected == True THEN 

        recordDetection(attack_detected) 

        print("Attack detected!") 

    ELSE 

        print("No attack detected.") 

    END IF 

END FOR 

// Utility Functions 

FUNCTION AES_Encrypt(data, key): 

    RETURN encrypted_data 

FUNCTION createGraph(encrypted_data): 

    RETURN graph_network 

FUNCTION GNN_Aggregate(node, neighbor): 

    RETURN aggregated_data 

FUNCTION GNN_Update(node_representation): 

    RETURN updated_representation 

FUNCTION GNN_Output(graph_network): 

    RETURN encoded_data 

FUNCTION Decoder(encoded_data): 

    RETURN decoded_data 

FUNCTION ExtractFeatures(decoded_data): 

    RETURN features 

FUNCTION SelectRelevantFeatures(features): 

    RETURN selected_features 

FUNCTION 

LoadOrTrainModel(selected_features): 

    IF model exists THEN 

        RETURN loadModel() 

    ELSE 

        RETURN trainModel(selected_features) 

    END IF 

FUNCTION recordDetection(attack_detected): 

    LOG detection_event 

    RETURN 

 

IV. Result Analysis 

4.1 Result Analysis 

Table 1 displays the time intervals for encryption and 

decryption, which are determined by the specific 

applications provided. For video-based encryption 

applications, the AES, RSA, Blowfish, and Fernet 

algorithms yield values of 0.001, 2.7, 0.001, and 0.0009, 

respectively. When decrypting video-based apps, the 

resulting values for AES, RSA, Blowfish, and Fernet are 

0.0008, 0.004, 0.001, and 0.009, respectively. In the context 

of decrypting text-based applications, the AES, RSA, 

Blowfish, and Fernet algorithms yield the following values: 

0.0009, 1.3, 0.0009, and 0.0008, respectively. When 

decrypting text-based applications, the AES, RSA, 

Blowfish, and Fernet algorithms yield values of 0.0008, 

0.003, 0.0008, and 0.0007, respectively. In CyberShake, the 

encryption values achieved for AES, RSA, Blowfish, and 

Fernet are 0.0008, 0.3, 0.0008, and 0.0008, respectively. The 

decryption values for AES, RSA, Blowfish, and Fernet are 

all 0.0007, 0.003, 0.0007, and 0.0007, respectively. The 

encryption values achieved for AES, RSA, Blowfish, and 

Fernet in Genome are 0.0008, 0.5, 0.0008, and 0.0008 

respectively. The decryption values attained for AES, RSA, 

Blowfish, and Fernet are 0.0007, 0.003, 0.0008, and 0.0007 

respectively. The encryption values achieved for AES, RSA, 

Blowfish, and Fernet in LIGO are 0.0008, 0.4, 0.0008, and 

0.0008 respectively. Similarly, the decryption values gained 

for AES, RSA, Blowfish, and Fernet are 0.0007, 0.003, 

0.0007, and 0.0007 respectively. 
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Table 1: Encryption and decryption time span parameters 

Applications 
AES 

(Encrypt) 

RSA 

(Encrypt) 

Blowfish 

(Encrypt) 

Fernet 

(Encrypt) 

AES 

(Decrypt) 

RSA 

(Decrypt) 

Blowfish 

(Decrypt) 

Fernet 

(Decrypt) 

Videos 0.001 2.7 0.001 0.0009 0.0008 0.004 0.001 0.0008 

Text 0.0009 1.3 0.0009 0.0008 0.0008 0.003 0.0008 0.0007 

CyberShake 0.0008 0.3 0.0008 0.0008 0.0007 0.003 0.0007 0.0007 

Genome 0.0008 0.5 0.0008 0.0008 0.0007 0.003 0.0008 0.0007 

LIGO 0.0008 0.4 0.0008 0.0008 0.0007 0.003 0.0007 0.0007 

 

Figure 3: Encryption and decryption time span 

parameters 

Figure 3 illustrates the comparison between the 

time it takes to encrypt and decrypt data.  Video-

based encryption is the most advanced form of 

encryption, surpassing text, Genome, LIGO, and 

Cybershake. When it comes to decryption, video-

based decryption has the highest priority, with RSA 

(Decrypt) being the most preferred, followed by 

Blowfish (Decrypt), AES (Decrypt), and Fernet 

(Decrypt). Text-based decryption follows a similar 

pattern, with RSA (Decrypt) being the most 

preferred, followed by Blowfish (Decrypt), AES 

(Decrypt), and Fernet (Decrypt). For both 

CyberShake and LiGO, RSA (Decrypt) has the 

highest value, followed by other methods that have 

the same values. The greatest level of decryption 

for Genome RSA is followed by Blowfish, AES, 

and Fernet. 

 

Figure 4: Confusion matrix comparison 

Figure 4 represents the comparison of confusion 

matrix using different methods. The model that has 

been designed using the XGBoost method yields a 

total of 41 True Positive (TP), 63 True Negative 

(TN), 56 False Positive (FP), and 40 False 

Negative (FN) predictions. Random Forest 

generates a set of predictions, including 41 true 

positives, 60 true negatives, 56 false positives, and 

43 false negatives. However, the SVM confusion 

matrix provides the following prediction numbers: 

29 true positives, 60 true negatives, 68 false 

positives, and 43 false negatives. Finally, the 

confusion matrix for Logistic Regression shows the 

following predictions: 37 true positives, 70 true 

negatives, 60 false positives, and 33 false 

negatives. 



 

 

  

 

International Journal of Intelligent Systems and Applications in Engineering                                                       IJISAE, 2024, 12(21s), 4782–4791  |4788 

 

 

Figure 4: Comparison of detection performance parameters proposed and existing 

Table 2: Comparison of the proposed and existing 

detection performance parameters. 

Algorithm Accuracy Precision Recall F-score 

lr_newton-

cg 
0.767559 0.722817 0.839271617 0.751222 

lr_lbfgs 0.767559 0.722817 0.839271617 0.751222 

lr_liblinear 0.767687 0.722716 0.839008473 0.751421 

lr_sag 0.767559 0.722817 0.839271617 0.751222 

lr_saga 0.767559 0.722817 0.839271617 0.751222 

proposed 0.994479 0.991708 0.99468449 0.994201 

 

Table 2 displays a comparison between the proposed and 

existing algorithms, focussing on the performance of 

detection parameters. It is evident that the proposed 

algorithm achieved the highest accuracy, followed by recall, 

f-score, and precision values. In addition, the lr_liblinear 

algorithm achieved the second highest recall value, with 

accuracy, f-score, and precision following closely behind. 

Among all the other existing approaches, the highest recall 

value is achieved, followed by accuracy, f-score, and 

precision.  

Figure 4 highlights the comparison between the proposed 

and existing algorithms, with a specific focus on the 

performance of detection parameters. As evident from all the 

figures, the proposed method demonstrated superior 

performance in terms of accuracy, precision, recall, and F-

score when compared to other algorithms. 

IV Conclusion 

To ensure a secure architecture we introduce an optimized 

encryption techniques along with a GNN (Graph Neural 

Network) and advance machine learning algorithms which 

detects any attack within the network. It is based on start by 

encrypting data generated across a variety of applications 

through an Advanced Encryption Standard (AES) 

implementation that has been optimized for both security 

and speed. During this process, data is encrypted in order to 

protect it while on the network so that outsiders cannot 

access or interfere with it. 

The data that is encrypted, it goes through a Graph Neural 

Network (GNN), this GNN processes the encoded input as a 

graph which indicates the complex relationship in between 

these entities from the network side. In this context, nodes 

are entities like devices or users and edges represent 

interactions/ communications among them. The GNN parses 

these connections to uncover trends or discrepancies that 
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could lead suspicious behavior with the data security intact. 

The GNN can model and analyse these interactions on a 

much high level of abstraction, making it an excellent 

candidate for detection sophisticated threats that only skilled 

human analysts might able to notice (at least if new rules are 

specifically crafted) but cannot without almost perfect 

knowledge about the network. 

Decoders interpret the encoded data back into forms of 

information that can be used to analyze for potential threats, 

and further passed through more layers of GNN processing. 

These learnings is then applied to a set of feature extractors 

and machine learning algorithms: XGBoost, Random 

Forests, SVM which works on classification algorithm 

where a given data instance must be classified as either one 

label or the other. The performance analyses revealed the 

proposed system to be extremely higher than traditional 

methods, reaching an accuracy of 99.44% as well with high 

precision and recall and F-score. By providing this level of 

performance, the STORDIS Athena ETH1 system confirms 

that it is a strong and efficient solution against traffic 

visibility challenges in modern networking to improve 

security defenses in detecting and preventing cyber threats. 
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