

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4782–4791 |4782

Software Defined Network-Based Intrusion Detection in Cloud

Environment Using Machine Learning

1Gurjit Kaur, 2Mandeep Kaur

Submitted: 07/02/2024 Revised: 15/03/2024 Accepted: 21/03/2024

Abstract-The continued adoption of cloud services has led to a surge in demand for more secure cloud environments — while our

traditional Intrusion Detection Systems (IDS) are simply not cutting it when it comes to addressing the inherently multi-machine

nature and seriously elastic business growth potential that modern day Cloud computing infrastructures enable. This feature

proposes a novel technique by integrating machine learning (ML) with Software-Deined Networking principles to establish an

eicient and reliable IDS framework applicable in cloud environments. With SDN controllers as a central system for network

administration, the system facilitates real-time capture and analysis of packet data across an entire cloud infrastructure. The

models are based on ML, which is trained to identify patterns and better find anomalies or abnormalities that could some

underlying intrusion/ attack Africa in case. The framework improves cloud security by calibrating network policies on the fly and

responding in real time to detected threats as well providing total, live visibility of their entire set-up across any Cloud. Extensive

performance evaluations show that the proposed approach substantially outperforms previous methods, and produces 99.44%

detection accuracy as well as much better precision recall F-score results compared to baseline methods in a real-world case study.

Our results demonstrate the ability of proposed framework to tackle complexity faced in cloud security, and provide scaleable

solution protecting clouds from new age cyber threats. The work presented in this article conclusively shows how to apply

machine learning on network security monitoring using SDN (Software Defined Network) technologies which, I believe is a major

new research direction for future secure cloud architecture developments.

Keywords- Intrusion Detection Systems, Software-Defined Networking, Machine Learning

I. Introduction

Cloud computing is a low-cost and pay-as-you-go

technology that has revolutionized the IT world by offering

three service models: software as a service (e.g., Google

Apps), platform as a service (e.g., Google App Engine), and

infrastructure as a service (e.g., Amazon Web Service,

Eucalyptus, Open Nebula) [1]. Virtualization enables cloud

to provide elasticity, ease of use, scalability, and on-demand

network access to a shared pool of configurable computing

resources. The cloud computing paradigm has a service-

oriented architecture, leading to a drastic alteration in how

services are provided and managed. Intrusion detection

techniques are used in any computing environment as a layer

of defense to detect malicious activity before significant

harm is possible [2-4]. Two main approaches are signature-

based detection and anomaly-based detection [3,4].

Signature-based detection defines patterns of known attack

signatures, and if a system processes code similar to those

signatures, it is considered suspicious and marked as an

intrusion. Anomaly-based detection analyses activities

performed on the system, creating a profile for a particular

system. Signature-based detection techniques cannot detect

unknown attacks, while anomaly-based techniques often

result in large false positives or negatives. Cloud

environments are vulnerable and attractive to attacks due to

their distributed nature. Intrusion detection systems (IDSs)

can enhance security by examining logs, network traffic, and

configurations. However, conventional IDSs, such as host-

based and network-based IDSs, are not suitable for cloud

environments as they cannot locate hidden attack trails.

Attackers can gain control over installed virtual machines if

the hypervisor is compromised. Popular attacks on virtual

1Research Scholar

Kaurgurjit858@gmail.com

CT university , Ludhiana

2Professor, Department of CSE

mandeep17209@ctuniversity.in

CT University , Ludhiana

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4782–4791 |4783

machines include DKSM, SubVirt, and Bluepill [5]. IDS

techniques were not designed for virtualization, and they do

not offer the same protection [6-8]. Deploying IDS in virtual

environments requires trade-offs due to their inability to

inspect operating system internals. Virtualization offers

significant benefits but also introduces new security risks.

Cloud computing providers are adopting software-defined

networking (SDN) to achieve on-demand provisioning of

network services, since SDN can provide a centralized

system to manage the network. The network administrator is

empowered by SDN to easily access and manage individual

flows by facilitating them to implement monitoring

applications, i.e., firewall and IDS [9,10]. Furthermore,

scalable monitoring and dynamic reconfiguration

requirements of the network in cloud makes SDN a perfect

choice [11,12]. SDN offers flexibility in a network system

which paves the way to overcome challenges from the

legacy network. Separating the control and data planes and

having a logically centralized control offers the opportunity

to develop the architecture and its application easily and in a

more efficient way.Machine Learning (ML) based IDS has

been on the rise for the past few years and developers are

trying to find out suitable and better ML methods and ways

to implement it in the network [7,11]. The main concern is

the efficiency, training of complex models, and the amount

of different data. It uses statistical methods to train the data

and make prediction based on the training. ML techniques

have become an essential component of attack security

measures. These machine learning-based technologies are

capable of distinguishing between normal and attack traffic

with extreme accuracy. The ML algorithms used are,

Support Vector Machine (SVM), Naive-Bayes (NB),

Decision Tree (DT), and Logistic Regression (LR) [6,8,14].

The aim is to have a detection system which learns from

real-time data.

ML techniques in SDN networks help against the detection

of the malicious flow as in the study [36] detect the

anomalous flows in the SDN network. The information is

taken from the flow tables from the switches and gets the

flow of information. The DPTCM-KNN algorithm in the

detection module process these anomalous flows. The only

issue here is the processing overhead as the process is

repeated after 10 seconds. In another study proposed a trust-

based approach for the detection of malicious devices using

the packet data and device profile. One of the studies [37]

analyses the ML algorithms in the context of the SDN for

providing security, resource optimization, traffic

classification, and quality of service. This further shows that

ML brings intelligence to the controller for the detection and

prevention of attacks. The study [38] demonstrates the use

of machine learning (ML) for DDoS and intrusion detection

in SDN networks, highlighting its pros and cons. Another

study examines traffic scheduling in a hybrid data center

environment, focusing on edge devices for ML-based

elephant flow traffic classification, reducing SDN controller

burden but not providing network-wide information.

Another study [39] suggests using OpenFlow for DDoS

detection using self-organizing maps (SOM), an

unsupervised neural network method. The controller collects

data from switches and devices, monitoring attributes like

packets, bytes, and flow duration. The data is fed into a

classifier for DDoS attack detection, reducing controller

processing overhead.

II. Related Work

Devi, et.al (2024) presents detection and avoidance of DDoS

attacks in software-defined cloud advanced support vector

machine (ASVM) networks. A three-class multiclass

classification approach is the ASVM methodology. In

addition, wedescribe a method for utilizing SDN features to

identify DDoS attacks in Software Defined Clouds. They

analyze the outcomes, by evaluating a Precision, Accuracy,

Recall and Detection Rate. The overall accuracy, False

alarm rate and Precision values are 97.6%, 97.5% and 97.5%

respectively. They demonstrated that the ASVM and

transmitted firewalls with IPS security successfully identify

and prevent the DDoS attacks based on their simulation

results and discussions. Shaji, et.al (2024) proposes an

Intelligent Intrusion Detection System for Software-Defined

Networks (SD-IIDS) combines two Machine Learning (ML)

models to detect Distributed Denial of Service (DDoS)

attacks in SDN. The models are Support Vector Classifier

bagged with Random Forest (SVC-RF) and Random Forest

bagged with Logistic Regression (RF-LR). The multi-class

models detect DDoS attacks with 98.83% and 99.54%

accuracy, respectively. The binary models classify network

traffic into malicious and legitimate classes with 99.42% and

99.79% accuracy. The multi-class RF-LR ensemble

outperforms the multi-class SVC-RF with 99.45% precision

and 99.46% sensitivity. Ma, et.al (2023) proposes a DDoS

attack detection algorithm using heterogeneous integrated

feature selection and random forest algorithm. It is deployed

on edge equipment switches of a SDN for distributed edge

parallel computing, enabling fast and accurate detection of

DDoS attacks. Simulation experiments using the CIC-

DDoS2019 dataset evaluate the effectiveness and feasibility

of the proposed scheme. Results show that the algorithm

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4782–4791 |4784

achieves 99.99% accuracy, precision, recall, and F-value,

with a prediction time of only 0.4 seconds.

III. The Proposed Method

3.1 Proposed Methodology

The provided diagram appears to represent a high-level

architecture of a system designed for secure communication

and attack detection within a network, likely using a

machine learning-based approach. The diagram consists of

several components:

1. Applications: This includes various applications

(Application 1, Application 2, etc.) that generate data.

2. Encryption: Data from applications is encrypted

before transmission.

3. Graph Neural Network (GNN): The central

component appears to be a graph neural network (GNN) that

processes the encrypted data.

4. Decoders: Post-GNN processing, decoders are used

to interpret the processed data.

5. Attack Detection: This section outlines the process

of detecting potential attacks using the decoded data.

3.1.1. Detailed Breakdown

1. Applications and Data Encryption

• Applications: In the context of a network, different

applications generate data. This data could be anything from

text, images, or any form of communication that needs to be

transmitted securely.

• Encryption: Before this data is transmitted across

the network, it is encrypted. The encryption algorithm

mentioned is "optimized-AES," which suggests an

Advanced Encryption Standard (AES) that has been

optimized, possibly for speed or security.

o Encryption Equation:

𝐶 = 𝐸𝑘𝑒𝑦(𝑀) (1)

 Where:

• C is the cipher (encrypted data)

• E is the encryption function,

• Key is the encryption key,

• M is theoriginal message or data.

The AES encryption ensures that the data is secured as it

travels across the network, protecting it from unauthorized

access.

2. Graph Neural Network (GNN)

Once the data is encrypted, it is transmitted to a central

network, represented here as a GNN. A GNN is a type of

neural network designed to process data structured as

graphs. In this scenario, the network likely models the

relationships between various entities (like devices, users,

etc.) in the network, represented as nodes and edges.

• Nodes and Edges:

o Nodes: Represent entities in the

network, such as devices, servers, or users.

o Edges: Represent connections or

interactions between these entities, such as data

transmission, communication links, etc.

o Graph Representation:

𝐺 = (𝑉, 𝐸) (2)

Where:

• G is the graph

• V is the set of vertices or nodes,

• E is the set of edges connecting the nodes,

• GNN Operation: The GNN processes this graph to learn and

encode the relationships and interactions between the nodes.

This encoding can be used to detect anomalies or patterns

that might indicate malicious activity.

o GNN Equation:

ℎ𝑣
(𝑘)

= 𝜎 (𝑊(𝑘). 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ({ℎ𝑢
(𝑘−1)|𝑢𝜖 𝑁(𝑣)})

+ 𝑏(𝑘)) (3)

Where:

• ℎ𝑣
(𝑘)

is the hidden state of node v at the kth layer,

• 𝑊(𝑘) is the weight matrix at the kth layer,

• 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 is a function that aggregates messages from

neighboring nodes,

• 𝑏(𝑘)is the bias term,

• 𝜎is the activation function (e.g., ReLU).

This equation essentially describes how each node’s

representation is updated by aggregating information from

its neighbors, which is crucial for detecting complex patterns

in the network.

3. Decoders

After the GNN has processed the data, it is sent to decoders.

The decoders' role is to interpret the encoded data back into

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4782–4791 |4785

a form that can be analysed or acted upon. This is crucial

because the GNN encodes data into complex, high-

dimensional representations that are not human-readable.

• Decoding Process: The decoding can involve

various techniques, including decryption and interpretation

of the GNN's output to identify specific features or patterns.

o Decoding Equation:

𝑀′ = 𝐷𝑘𝑒𝑦(𝐶) (3)

Where:

• 𝑀′are the decoded messages

• D is the decryption function,

• Key is the decryption key,

• C is theciphertext.

The decoders output the data in a format suitable for further

analysis, particularly for attack detection.

4. Attack Detection

The final stage of the process involves detecting potential

attacks using the decoded data. This process is broken down

into several steps:

• Input Data: The data, once decoded, is fed into the

attack detection system.

• Feature Extraction: The system extracts relevant

features from the data that could indicate an attack. This

could involve analysing traffic patterns, data anomalies, or

unusual behaviors in the network.

o Feature Extraction Equation:

𝐹 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑀′) (4)

Where:

• F is the set of features extracted from the decoded message

𝑀′.

o Feature Selection:

𝐹′ = 𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹) (5)

Where:

• 𝐹′is the selected subset of features from F.

o Learning & Classification: The selected features are then

used to train a machine learning model that can classify

whether an attack is occurring. Common algorithms used

could include Support Vector Machines (SVM), Random

Forests, or Deep Learning models.

o Classification Model Equation:

𝑦 = 𝑀𝑜𝑑𝑒𝑙 (𝐹′) (6)

Where:

• y is the predicted label (attack or no attack).

• Model represents the trained classification model.

PSEUDOCODE

 // Step 1: Data Generation by Applications

 FOR each application IN applications_list:

 data = application.generateData()

 // Step 2: Encryption of Data

 encrypted_data = AES_Encrypt(data,

encryption_key)

 // Step 3: Transmission of Encrypted Data to

Graph Neural Network (GNN)

 graph_network = createGraph(encrypted_data)

 // Step 4: Processing Data using Graph Neural

Network (GNN)

 FOR each node IN graph_network.nodes:

 FOR each neighbor IN node.neighbors:

 node_representation =

GNN_Aggregate(node, neighbor)

 END FOR

 node_representation =

GNN_Update(node_representation)

 END FOR

 encoded_data = GNN_Output(graph_network)

 // Step 5: Decoding the Encoded Data

 decoded_data = Decoder(encoded_data)

 // Step 6: Attack Detection

 attack_detected = False

 // 6a: Feature Extraction

 features = ExtractFeatures(decoded_data)

 // 6b: Feature Selection using Correlation

 selected_features =

SelectRelevantFeatures(features)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4782–4791 |4786

 // 6c: Train or Load Machine Learning Model

 model = LoadOrTrainModel(selected_features)

 // 6d: Classify and Detect Attack

 attack_detected =

model.Predict(selected_features)

 // Step 7: Evaluate Performance Metrics

 IF attack_detected == True THEN

 recordDetection(attack_detected)

 print("Attack detected!")

 ELSE

 print("No attack detected.")

 END IF

END FOR

// Utility Functions

FUNCTION AES_Encrypt(data, key):

 RETURN encrypted_data

FUNCTION createGraph(encrypted_data):

 RETURN graph_network

FUNCTION GNN_Aggregate(node, neighbor):

 RETURN aggregated_data

FUNCTION GNN_Update(node_representation):

 RETURN updated_representation

FUNCTION GNN_Output(graph_network):

 RETURN encoded_data

FUNCTION Decoder(encoded_data):

 RETURN decoded_data

FUNCTION ExtractFeatures(decoded_data):

 RETURN features

FUNCTION SelectRelevantFeatures(features):

 RETURN selected_features

FUNCTION

LoadOrTrainModel(selected_features):

 IF model exists THEN

 RETURN loadModel()

 ELSE

 RETURN trainModel(selected_features)

 END IF

FUNCTION recordDetection(attack_detected):

 LOG detection_event

 RETURN

IV. Result Analysis

4.1 Result Analysis

Table 1 displays the time intervals for encryption and

decryption, which are determined by the specific

applications provided. For video-based encryption

applications, the AES, RSA, Blowfish, and Fernet

algorithms yield values of 0.001, 2.7, 0.001, and 0.0009,

respectively. When decrypting video-based apps, the

resulting values for AES, RSA, Blowfish, and Fernet are

0.0008, 0.004, 0.001, and 0.009, respectively. In the context

of decrypting text-based applications, the AES, RSA,

Blowfish, and Fernet algorithms yield the following values:

0.0009, 1.3, 0.0009, and 0.0008, respectively. When

decrypting text-based applications, the AES, RSA,

Blowfish, and Fernet algorithms yield values of 0.0008,

0.003, 0.0008, and 0.0007, respectively. In CyberShake, the

encryption values achieved for AES, RSA, Blowfish, and

Fernet are 0.0008, 0.3, 0.0008, and 0.0008, respectively. The

decryption values for AES, RSA, Blowfish, and Fernet are

all 0.0007, 0.003, 0.0007, and 0.0007, respectively. The

encryption values achieved for AES, RSA, Blowfish, and

Fernet in Genome are 0.0008, 0.5, 0.0008, and 0.0008

respectively. The decryption values attained for AES, RSA,

Blowfish, and Fernet are 0.0007, 0.003, 0.0008, and 0.0007

respectively. The encryption values achieved for AES, RSA,

Blowfish, and Fernet in LIGO are 0.0008, 0.4, 0.0008, and

0.0008 respectively. Similarly, the decryption values gained

for AES, RSA, Blowfish, and Fernet are 0.0007, 0.003,

0.0007, and 0.0007 respectively.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024,

12(21s), 4782–4791 |4787

Table 1: Encryption and decryption time span parameters

Applications
AES

(Encrypt)

RSA

(Encrypt)

Blowfish

(Encrypt)

Fernet

(Encrypt)

AES

(Decrypt)

RSA

(Decrypt)

Blowfish

(Decrypt)

Fernet

(Decrypt)

Videos 0.001 2.7 0.001 0.0009 0.0008 0.004 0.001 0.0008

Text 0.0009 1.3 0.0009 0.0008 0.0008 0.003 0.0008 0.0007

CyberShake 0.0008 0.3 0.0008 0.0008 0.0007 0.003 0.0007 0.0007

Genome 0.0008 0.5 0.0008 0.0008 0.0007 0.003 0.0008 0.0007

LIGO 0.0008 0.4 0.0008 0.0008 0.0007 0.003 0.0007 0.0007

Figure 3: Encryption and decryption time span

parameters

Figure 3 illustrates the comparison between the

time it takes to encrypt and decrypt data. Video-

based encryption is the most advanced form of

encryption, surpassing text, Genome, LIGO, and

Cybershake. When it comes to decryption, video-

based decryption has the highest priority, with RSA

(Decrypt) being the most preferred, followed by

Blowfish (Decrypt), AES (Decrypt), and Fernet

(Decrypt). Text-based decryption follows a similar

pattern, with RSA (Decrypt) being the most

preferred, followed by Blowfish (Decrypt), AES

(Decrypt), and Fernet (Decrypt). For both

CyberShake and LiGO, RSA (Decrypt) has the

highest value, followed by other methods that have

the same values. The greatest level of decryption

for Genome RSA is followed by Blowfish, AES,

and Fernet.

Figure 4: Confusion matrix comparison

Figure 4 represents the comparison of confusion

matrix using different methods. The model that has

been designed using the XGBoost method yields a

total of 41 True Positive (TP), 63 True Negative

(TN), 56 False Positive (FP), and 40 False

Negative (FN) predictions. Random Forest

generates a set of predictions, including 41 true

positives, 60 true negatives, 56 false positives, and

43 false negatives. However, the SVM confusion

matrix provides the following prediction numbers:

29 true positives, 60 true negatives, 68 false

positives, and 43 false negatives. Finally, the

confusion matrix for Logistic Regression shows the

following predictions: 37 true positives, 70 true

negatives, 60 false positives, and 33 false

negatives.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4782–4791 |4788

Figure 4: Comparison of detection performance parameters proposed and existing

Table 2: Comparison of the proposed and existing

detection performance parameters.

Algorithm Accuracy Precision Recall F-score

lr_newton-

cg
0.767559 0.722817 0.839271617 0.751222

lr_lbfgs 0.767559 0.722817 0.839271617 0.751222

lr_liblinear 0.767687 0.722716 0.839008473 0.751421

lr_sag 0.767559 0.722817 0.839271617 0.751222

lr_saga 0.767559 0.722817 0.839271617 0.751222

proposed 0.994479 0.991708 0.99468449 0.994201

Table 2 displays a comparison between the proposed and

existing algorithms, focussing on the performance of

detection parameters. It is evident that the proposed

algorithm achieved the highest accuracy, followed by recall,

f-score, and precision values. In addition, the lr_liblinear

algorithm achieved the second highest recall value, with

accuracy, f-score, and precision following closely behind.

Among all the other existing approaches, the highest recall

value is achieved, followed by accuracy, f-score, and

precision.

Figure 4 highlights the comparison between the proposed

and existing algorithms, with a specific focus on the

performance of detection parameters. As evident from all the

figures, the proposed method demonstrated superior

performance in terms of accuracy, precision, recall, and F-

score when compared to other algorithms.

IV Conclusion

To ensure a secure architecture we introduce an optimized

encryption techniques along with a GNN (Graph Neural

Network) and advance machine learning algorithms which

detects any attack within the network. It is based on start by

encrypting data generated across a variety of applications

through an Advanced Encryption Standard (AES)

implementation that has been optimized for both security

and speed. During this process, data is encrypted in order to

protect it while on the network so that outsiders cannot

access or interfere with it.

The data that is encrypted, it goes through a Graph Neural

Network (GNN), this GNN processes the encoded input as a

graph which indicates the complex relationship in between

these entities from the network side. In this context, nodes

are entities like devices or users and edges represent

interactions/ communications among them. The GNN parses

these connections to uncover trends or discrepancies that

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4782–4791 |4789

could lead suspicious behavior with the data security intact.

The GNN can model and analyse these interactions on a

much high level of abstraction, making it an excellent

candidate for detection sophisticated threats that only skilled

human analysts might able to notice (at least if new rules are

specifically crafted) but cannot without almost perfect

knowledge about the network.

Decoders interpret the encoded data back into forms of

information that can be used to analyze for potential threats,

and further passed through more layers of GNN processing.

These learnings is then applied to a set of feature extractors

and machine learning algorithms: XGBoost, Random

Forests, SVM which works on classification algorithm

where a given data instance must be classified as either one

label or the other. The performance analyses revealed the

proposed system to be extremely higher than traditional

methods, reaching an accuracy of 99.44% as well with high

precision and recall and F-score. By providing this level of

performance, the STORDIS Athena ETH1 system confirms

that it is a strong and efficient solution against traffic

visibility challenges in modern networking to improve

security defenses in detecting and preventing cyber threats.

Bibliography:

[1] Kiswani, J. H., Dascalu, S. M., & Harris Jr, F. C.

(2021). Cloud computing and its applications: A

comprehensive survey. International Journal of

Computer Applications IJCA, 28(1), 3-24.

[2] Attou, H., Mohy-eddine, M., Guezzaz, A., Benkirane,

S., Azrour, M., Alabdultif, A., & Almusallam, N.

(2023). Towards an intelligent intrusion detection

system to detect malicious activities in cloud

computing. Applied Sciences, 13(17), 9588.

[3] Alzahrani, A. O., & Alenazi, M. J. (2021). Designing a

network intrusion detection system based on machine

learning for software defined networks. Future

Internet, 13(5), 111.

[4] Liu, Z., Xu, B., Cheng, B., Hu, X., & Darbandi, M.

(2022). Intrusion detection systems in the cloud

computing: A comprehensive and deep literature

review. Concurrency and Computation: Practice and

Experience, 34(4), e6646.

[5] Chiba, Z., Abghour, N., Moussaid, K., El Omri, A., &

Rida, M. (2016, September). A survey of intrusion

detection systems for cloud computing environment.

In 2016 international conference on engineering & MIS

(ICEMIS) (pp. 1-13). IEEE.

[6] Ibrahim, O. J., & Bhaya, W. S. (2021, February).

Intrusion detection system for cloud-based software-

defined networks. In Journal of Physics: Conference

Series (Vol. 1804, No. 1, p. 012007). IOP Publishing.

[7] Vaid, P., Bhadu, S. K., & Vaid, R. M. (2021, July).

Intrusion detection system in software defined network

using machine learning approach-survey. In 2021 6th

International Conference on Communication and

Electronics Systems (ICCES) (pp. 803-807). IEEE.

[8] Schueller, Q., Basu, K., Younas, M., Patel, M., & Ball,

F. (2018, November). A hierarchical intrusion detection

system using support vector machine for SDN network

in cloud data center. In 2018 28th International

Telecommunication Networks and Applications

Conference (ITNAC) (pp. 1-6). IEEE.

[9] Kranthi, S., Kanchana, M., & Suneetha, M. (2022). A

study of IDS-based software-defined networking by

using machine learning concept. In Advances in Data

and Information Sciences: Proceedings of ICDIS

2021 (pp. 65-79). Singapore: Springer Singapore.

[10] Hande, Y., & Muddana, A. (2021). A survey on

intrusion detection system for software defined

networks (SDN). In Research Anthology on Artificial

Intelligence Applications in Security (pp. 467-489). IGI

Global.

[11] Abbasi, A. A., Abbasi, A., Shamshirband, S.,

Chronopoulos, A. T., Persico, V., & Pescapè, A. (2019).

Software-defined cloud computing: A systematic

review on latest trends and developments. Ieee

Access, 7, 93294-93314.

[12] Logeswari, G., Bose, S., & Anitha, T. J. I. A. (2023).

An intrusion detection system for sdn using machine

learning. Intelligent Automation & Soft

Computing, 35(1), 867-880.

[13] Sudar, K. M., & Deepalakshmi, P. (2020). Comparative

study on IDS using machine learning approaches for

software defined networks. International Journal of

Intelligent Enterprise, 7(1-3), 15-27.

[14] Rengaraju, P., Ramanan, V. R., & Lung, C. H. (2017,

August). Detection and prevention of DoS attacks in

Software-Defined Cloud networks. In 2017 IEEE

Conference on Dependable and Secure Computing (pp.

217-223). IEEE.

[15] Bhardwaj, A., Tyagi, R., Sharma, N., Khare, A., Punia,

M. S., & Garg, V. K. (2022). Network intrusion

detection in software defined networking with self-

organized constraint-based intelligent learning

framework. Measurement: Sensors, 24, 100580.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4782–4791 |4790

[16] Iqbal, M., Iqbal, F., Mohsin, F., Rizwan, M., & Ahmad,

F. (2019). Security issues in software defined

networking (SDN): risks, challenges and potential

solutions. International Journal of Advanced Computer

Science and Applications, 10(10), 298-303.

[17] Chi, Y., Jiang, T., Li, X., & Gao, C. (2017, March).

Design and implementation of cloud platform intrusion

prevention system based on SDN. In 2017 IEEE 2nd

international conference on big data analysis

(ICBDA) (pp. 847-852). IEEE.

[18] Brugman, J., Khan, M., Kasera, S., & Parvania, M.

(2019, November). Cloud based intrusion detection and

prevention system for industrial control systems using

software defined networking. In 2019 Resilience Week

(RWS) (Vol. 1, pp. 98-104). IEEE.

[19] Danish Raza. (2021). Software Defined Networking

(SDN) and Cloud Computing. URL:

https://medium.com/@danish_raza/software-defined-

networks-sdn-7b5e3c25ba97 [Accessed on 19-07-2024].

[20] What Is Software Defined Networking? Definition &

FAQs. URL:

https://medium.com/@danish_raza/software-defined-

networks-sdn-7b5e3c25ba97 [Accessed on 19-07-2024].

[21] Ribeiro, A. D. R. L., Santos, R. Y. C., & Nascimento,

A. C. A. (2021, April). Anomaly detection technique for

intrusion detection in sdn environment using continuous

data stream machine learning algorithms. In 2021 IEEE

international systems conference (SysCon) (pp. 1-7).

IEEE.

[22] Kumar, G., & Alqahtani, H. (2023). Machine Learning

Techniques for Intrusion Detection Systems in SDN-

Recent Advances, Challenges and Future

Directions. CMES-Computer Modeling in Engineering

& Sciences, 134(1).

[23] Melvin, A., Kathrine, G. J., & Johnraja, J. I. (2021,

January). The practicality of using virtual machine

introspection technique with machine learning

algorithms for the detection of intrusions in cloud.

In Proceedings of the First International Conference on

Advanced Scientific Innovation in Science, Engineering

and Technology, ICASISET 2020, 16-17 May 2020,

Chennai, India.

[24] Isa, M. M., & Mhamdi, L. (2020, October). Native SDN

intrusion detection using machine learning. In 2020

IEEE eighth international conference on

communications and networking (ComNet) (pp. 1-7).

IEEE.

[25] Le, L. T., & Thinh, T. N. (2021, December). On the

improvement of machine learning based intrusion

detection system for SDN networks. In 2021 8th

NAFOSTED Conference on Information and Computer

Science (NICS) (pp. 464-469). IEEE.

[26] Ma, R., Wang, Q., Bu, X., & Chen, X. (2023). Real-

Time Detection of DDoS Attacks Based on Random

Forest in SDN. Applied Sciences, 13(13), 7872.

[27] Indira, K., & Sakthi, U. (2020). A hybrid intrusion

detection system for sdwsn using random forest (RF)

machine learning approach. International Journal of

Advanced Computer Science and Applications, 11(2).

[28] Dey, S. K., & Rahman, M. M. (2019). Effects of

machine learning approach in flow-based anomaly

detection on software-defined

networking. Symmetry, 12(1), 7.

[29] Wang, P., Chao, K. M., Lin, H. C., Lin, W. H., & Lo, C.

C. (2016, November). An efficient flow control

approach for SDN-based network threat detection and

migration using support vector machine. In 2016 IEEE

13th international conference on e-business engineering

(ICEBE) (pp. 56-63). IEEE.

[30] Phan, T. V., & Park, M. (2019). Efficient distributed

denial-of-service attack defense in SDN-based

cloud. IEEE Access, 7, 18701-18714.

[31] RM, B., K Mewada, H., & BR, R. (2022). Hybrid

machine learning approach based intrusion detection in

cloud: A metaheuristic assisted model. Multiagent and

Grid Systems, 18(1), 21-43.

[32] Devi, D. N., Sreenivasulu, K., & Janardhan, M. (2024).

Detection and Prevention of DDoS Attacks in Software-

Defined Cloud Networks Using Advanced Support

Vector Machine. In Disruptive technologies in

Computing and Communication Systems (pp. 46-51).

CRC Press.

[33] Sultana, N., Chilamkurti, N., Peng, W., & Alhadad, R.

(2019). Survey on SDN based network intrusion

detection system using machine learning

approaches. Peer-to-Peer Networking and

Applications, 12(2), 493-501.

[34] Shaji, N. S., Muthalagu, R., & Pawar, P. M. (2024). SD-

IIDS: intelligent intrusion detection system for

software-defined networks. Multimedia Tools and

Applications, 83(4), 11077-11109.

[35] Abou El Houda, Z., Senhaji Hafid, A., & Khoukhi, L.

(2021). A novel unsupervised learning method for

intrusion detection in software-defined networks.

In Computational Intelligence in Recent

https://medium.com/@danish_raza/software-defined-networks-sdn-7b5e3c25ba97
https://medium.com/@danish_raza/software-defined-networks-sdn-7b5e3c25ba97
https://medium.com/@danish_raza/software-defined-networks-sdn-7b5e3c25ba97
https://medium.com/@danish_raza/software-defined-networks-sdn-7b5e3c25ba97

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4782–4791 |4791

Communication Networks (pp. 103-117). Cham:

Springer International Publishing.

[36] Peng, H., Sun, Z., Zhao, X., Tan, S., & Sun, Z. (2018).

A detection method for anomaly flow in software

defined network. IEEE Access, 6, 27809-27817.

[37] Xie, J., Yu, F. R., Huang, T., Xie, R., Liu, J., Wang, C.,

& Liu, Y. (2018). A survey of machine learning

techniques applied to software defined networking

(SDN): Research issues and challenges. IEEE

Communications Surveys & Tutorials, 21(1), 393-430.

[38] Ashraf, J., & Latif, S. (2014, November). Handling

intrusion and DDoS attacks in Software Defined

Networks using machine learning techniques. In 2014

National software engineering conference (pp. 55-60).

IEEE.

[39] Braga, R., Mota, E., & Passito, A. (2010, October).

Lightweight DDoS flooding attack detection using

NOX/OpenFlow. In IEEE local computer network

conference (pp. 408-415). IEEE.

