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Abstract: Renewable energy resources are regarded as clean energy sources and effective utilization of these resources reduces ecological 

effects, produces little secondary waste and they are feasible in light of present and future economic and social societal demands. Solar 

energy is a radiant light and heat from the sun that may be harvested through a variety of methods, including solar power for producing 

electricity, solar thermal energy, and solar architecture. Solar technologies generate electricity from the sun, which is considered to be a 

clean energy source. Solar energy technologies offer a tremendous chance for mitigating greenhouse gas emissions and lowering global 

warming by replacing traditional energy sources. However, the technologies are not exempted from the operational challenges such as the 

ever-fluctuating ambient conditions. The intention of this study is to present the experimental outcomes of an application of the closest pair 

of points algorithm to detect outliers on the fixed solar system. The closest pair of points algorithm is used to find outliers in the system 

based on the measured voltage from the photovoltaic (PV) panel. The algorithm examines the PV panel’s immediate voltage and compares 

it to earlier voltage samples to assess whether there is a significant voltage variation that might turn into outliers. The algorithm proved to 

be extremely precise and efficient in detecting outliers on the fixed solar system. However, the efficiency of the algorithm should yet be 

verified for larger PV arrays to determine whether it will withstand the test. 
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I.  INTRODUCTION  

Renewable energy is generated from infinite, naturally 

replenished resources such as the sun, tides, and wind [1]. 

Renewable energy may be used to generate power [2]. In 

contrast, non-renewable energy is derived from finite 

sources such as coal, natural gas, and oil (fossil fuels) [3]. 

Fossil fuel burning accounts for the bulk of air pollution 

produced worldwide [4]. When fossil fuels are burnt, 

nitrogen oxides infiltrate the atmosphere, contributing to 

the formation of smog and acid rain [5]. Replacing fossil 

fuel-based power plants with renewable energy sources 

such as wind and solar is critical to stabilizing climate 

change and attaining net zero carbon emissions [6]. 

One of the cleanest methods for generating electricity is 

the use of solar energy resources [7]. The most significant 

advantages of solar technologies are that they do not emit 

carbon dioxide or harm the atmosphere when used to 

generate electricity [8]. Greenhouse gases are emitted 

over the lifetime of some technologies, such as during 

production, although overall emissions are substantially 

lower than those from fossil fuels [9]. Solar energy is 

captured from the sun and converted into electricity, 

which is then sent into a power system or stored for future 

use [10]. When sunlight strikes a solar cell, a tiny electric 

voltage emerges due to the photovoltaic (PV) effect, 

which occurs between a metal and a semiconductor such 

as silicon, or two distinct semiconductors. [11]. The PV 

action releases electrons, which flow across an external 

circuit because semiconductors have a natural difference 

in electric potential (voltage) [12]. 

Thousands of kilowatts of electricity may be produced by 

building solar panel arrays out of a huge number of solar 

cells [13]. An average of 342 watts of solar energy are 

received by each square meter of Earth over the course of 

a year [14]. The amount of solar radiation that reaches 

Earth in an hour is more than sufficient to power the globe 

for the entire year [15]. The black dots in fig. 1 depict 

places that might create enough energy from sunlight to 

power the entire world for the year [16]. Despite how 

much energy the sun gives the globe, there are still certain 

obstacles for solar systems to overcome. Ensuring the 

quality of data is crucial for analyzing the performance 

and dependability of solar energy systems [17]. 

When it comes to data integrity, incorrect data is a typical 

concern with PV monitoring systems [18]. Actual infield 

measurements frequently show inaccurate data (i.e. gaps, 

missing data, erroneous and outlier values) due to 

equipment/component failures, power outages, 

communication issues, or maintenance-related 

interruptions, all of which can seriously skew the data-

based analysis’s conclusions [19]. For this reason, before 

beginning any analysis, erroneous data should be found 

and dealt with accordingly [20]. The purpose of this paper 

is to present the empirical findings of applying the closest 

pair of points (CPP) algorithm in order to detect the 

outliers in a fixed solar system’s data for optimization.
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Fig. 1. Annual average solar irradiance distribution over the surface of the Earth [21] 

II. LITERATURE REVIEW  

Solar power data analysis is a useful tool to utilize when 

making energy policy decisions since it may assist improve 

the performance, dependability, and sustainability of solar 

energy systems [22]. It is necessary to adhere to certain 

best practices that may guarantee the quality, accuracy, and 

relevance of the data in order to use it successfully [23]. 

The initial stage of analysing data on solar power involves 

gathering pertinent and dependable information from 

several sources, including weather stations, inverters, 

meters, sensors, solar panels, and grid operators [24]. 

Regular checks on data quality and validity, as well as 

correcting any anomalies such as missing values, outliers, 

or errors, are critical in PV systems data analysis [25]. It is 

imperative that the algorithms employed for gathering data 

are standardized, consistent, and work harmoniously with 

the tools used for analysis [26]. 

Determining the readiness of the solar power data analysis 

involves cleaning, filtering, converting, and aggregating 

the data in accordance with the objectives and criteria [27]. 

Appropriate strategies and algorithms for handling data 

volume, diversity, and velocity have to be considered [28]. 

It is critical to derive meaningful insights and patterns from 

acquired data while analyzing solar power [29].  

The closest pair of points (CPP) algorithm can be used to 

detect outliers in a fixed solar system subsequently 

enhance its performance [30]. The closest pair between the 

two halves and the minimum of the closest pairings inside 

each half is called the CPP [31]. The CPP algorithm is a 

key approach for stiff registration between two-point sets 

[32]. The algorithm offers several applications ranging 

from 3D reconstruction to robotics [33]. The algorithm’s 

essential elements include resilience and sensitivity to 

outliers, missing data, and partial overlaps [34]. The 

algorithm alternates between finding the closest point in 

the target set and minimizing the distance between related 

points, resulting in a locally optimum alignment [35]. 

However, the algorithm may have delayed convergence 

owing to its linear convergence rate [28]. The two most 

popular approaches for detecting outliers are density-based 

and distance-based approaches (fig. 2) with points found 

to be outside the predetermined range classified as outliers 

[36]. 

Initially, finding outliers was driven by data cleansing, 

which involved eliminating outliers from the dataset to 

improve the fit of parametric statistical models to training 

data [38]. In recent years, there has been an increased focus 

on outliers themselves, as they frequently provide 

significant and intriguing information. Examples of such 

information include network cyberattacks, mechanical 

issues resulting from faulty industrial machinery, and more 

[39]. Outliers can be categorized in two categories: one (1) 

point outlier and two (2) collective outliers, depending on 

how many data examples make up a deviant pattern [40]. 

A single data point that significantly differs from the rest 

of the dataset is called a point outlier [41]. Collective 

outliers are data points that stand out from the rest of the 

dataset [42]. 
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Fig. 2. Closest pair of points [37] 

Outlier identification is currently one of the primary 

responsibilities of time series data mining and has drawn 

interest from several scholars and practitioners [43]. 

Abnormal behaviours throughout time are examined 

through the examination of outliers in time series data [44]. 

Outliers in time series might have two alternative 

interpretations (fig. 3), depending on the analyst’s interest 

or the circumstance under consideration [45]. These 

observations are connected to noisy, erroneous, or 

undesirable data, which are not of interest to the analyst 

[46]. To improve the quality of the data and generate a 

cleaner dataset that can be utilized by other data mining 

algorithms, outliers in these situations should be 

eliminated or rectified [47]. 

 

Fig. 3. Meaning of the outliers in time series data depending on the aim of the analyst [48] 

The paper aims to provide the experimental results of the 

closest pair of points algorithm used for detecting outliers 

on the fixed solar system for optimization purposes. 

III. RESEARCH METHODOLOGY  

A 310 W YL310P-35b polycrystalline PV panel was used 

in this study. It was utilized since it is less expensive and 

performs better in locations with direct sunlight [49]. 

LabVIEW program was used to measure and analyze data 

from the PV panel. The system was erected on the top of 

the Euclid building at the University of South Africa 

(UNISA) science campus in Florida. The algorithm was 

programmed using LabVIEW software. 

The algorithm sorts points in accordance with their X-Y 

coordinates. It then divides the sorted set into half, making 

equal-sized. Recursively, it solves the problem in the left 

and right subsets. This provides the minimal distances on 

the left and right, respectively. Then, the algorithm 

establishes the shortest distance between two places that 

are on opposite sides of the vertical line. The final solution 

is the minimal distance between the point pairs. The points 

that fall beyond the established distance are considered to 

be outliers. 

IV. RESULTS AND DISCUSSION  

The basic principle is that an outlier point may be located 

in a sparse zone, whereas normal points can be found in a 

denser region. Table 1 lists the PV panel voltage readings 

for each time slot that was subsequently used to establish 

fig. 4. From table 1, it can be noted that immediately at 7 

am, there is a voltage-shooting of 67,48 V that is even 

greater than the maximum reading at 12 noon. It is worth 

noting that this is an alarming reading as compared to table 

2 (that was also used to establish fig. 5). At the same period 

(7 am) the system’s voltage is 10,06 V which is reasonable 

looking at the time of the day, resulting with the leaner-

graph. The same behaviour (voltage shooting/drop) repeats 

again 2 pm and 5pm. 
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TABLE I: Hourly voltage readings with outliers  

Time 

(Hrs) 

Voltage 

(V) 

06:00 0,2 

07:00 64,78 

08:00 23,34 

09:00 36,24 

10:00 48,37 

11:00 58,27 

12:00 63,77 

13:00 61,97 

14:00 4,6 

15:00 42,73 

16:00 30,21 

17:00 66,11 

16:00 3,83 

TABLE II: Hourly voltage readings without outliers  

Time 

(Hrs) 

Voltage 

(V) 

06:00 0,2 

07:00 10,06 

08:00 23,34 

09:00 36,24 

10:00 48,37 

11:00 58,27 

12:00 63,77 

13:00 61,97 

14:00 53,9 

15:00 42,73 

16:00 31,21 

17:00 17,08 

16:00 3,83 

 

Fig. 4 depicts collective outlier points that are significantly 

apart from the rest of the densely packed clusters and hence 

are outlier points in the dataset, while fig. 5 depicts the data 

set without outliers after the CPP algorithm intervention. 

The fundamental principle of outlier point detection is that 

normal points are found in higher density populations, but 

outlier points persist in sparse populations. The basic 

presumption of the closest pair of points approach is that 

the distances between outlier points are wider than those 

between normal data points. It is evident from fig.5 that the 

algorithm is reliable as far as handling outliers in the 

dataset is concerned. The data set without outliers after the 

CPP algorithm intervention is shown in fig. 5. 
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Fig. 4. Voltage readings with outliers 

 

Fig. 5. Voltage readings without outliers. 

V. CONCLUSION 

This paper presented the results of CPP algorithm in 

approach for outlier detection. The significance of the 

algorithm was outlined together with the effects of the 

outliers in data mining. It was discovered that the 

algorithm does not rely on underlying distribution of data 

to detect outliers and it is easy to implement. Subsequently, 

the algorithm detects and eliminates outliers vigorously. 

As much as the algorithm was discovered to be robust in 

dealing with outliers, it is critical to test it on large-scale 

PV panels. 
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