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Abstract: Traffic accidents are among the most important issues facing every nation in the world as they cause many deaths and injuries 
as well as economic losses every year. In this study, the traffic accidents that took place in Adana, have been classified according to injury 
severity (i.e. fatal or non-fatal) and the factors affecting the accident outcome are investigated. The study included the traffic accident 
reports kept by Regional Traffic Division and the weather data provided by the Regional Directorate of Meteorology during 2005-2015. 
Five major machine learning methods (i.e. k-Nearest Neighbor, Naive Bayes, Multilayer Perceptron, Decision Tree, Support Vector 
Machine) and one statistical method, Logistic Regression, were employed for prediction models and performances of the models as well 
as the effective parameters were compared. The main objective of the study is to determine how important weather and other phenomena 
are for the occurrence of traffic accidents. Decision Tree, k-Nearest Neighbor, and Multilayer Perceptron based models yielded higher 
accuracy in classification of accidents compared to other models. Furthermore, in Area Under Curve based analysis of factor importance, 
it was determined that Mean Cloudiness, Existence of Traffic Control and Ground Surface Temperature had higher positive effects, while 
Maximum Temperature and Weather (kept by traffic officers) parameters decreased the accuracy of models. 
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1. Introduction 
Traffic accidents kill around 1.3 million people every year in the 
world. In addition, 20 to 50 million people suffer non-fatal injuries, 
with many incurring a disability as a result of their injury [1]. Also, 
traffic injuries cause considerable economic losses to victims, their 
families, and to nations as a whole. These losses arise from the cost 
of treatment (including rehabilitation and incident investigation) as 
well as reduced/lost productivity (e.g. in wages) for those killed or 
disabled by their injuries, and for family members who need to take 
time off work (or school) to care for the injured. There are few 
global estimates of the costs of injury, but research carried out in 
2010 suggests that road traffic crashes cost countries 
approximately 3% of their gross national product. This figure rises 
to 5% in some low- and middle-income countries [2].  
In Turkey’s case, the number of motor vehicles increases every 
year, nearly doubled between 2005 and 2015 [3]. However, the 
number of traffic accidents increased faster compared to vehicle 
number in the same period, which resulted in a higher ratio of 
killed and injured persons in the total population. Nearly 1% of the 
total population dies and 4% suffers from injuries due to traffic 
accidents, which have become an important risk factor of life in 
Turkey.  
According to the records kept by officers after fatal traffic 
accidents in 2015, driver faults accounted for 89.30% of total 
faults, pedestrian faults 8.80%, road defects 0.91%, vehicle defects 
0.55% and passenger’s faults 0.43% [3].  The records were kept 
only for fatal injuries and lacked many possible additional factors 

that could contribute to the occurrence of the accidents, one of 
which is weather.  
The relationship between traffic accidents and weather condition 
is a well-known fact. A number of studies have attempted to 
develop injury severity models using weather data. The previous 
studies in this area can be divided into two main categories from 
the methodological perspective: statistically based models and the 
machine learning based models: The statistical-based models 
explore the characteristics of crashes using Logistic Regression 
(LR).  Reference [4] used Negative Binominal modeling technique 
to model the frequency of the accident occurrences and 
involvements over 1.606 accidents on a principal highway in 
Florida-USA. They used road and driver characteristics as 
explanatory variables. Their result showed that heavy traffic 
volume, speeding, narrow lane width, larger number of lanes, 
urban roadway sections, narrow shoulder width and reduced 
median width increase the likelihood of accident occurrence. They 
also reported that female drivers experience more accidents than 
male drivers in heavy traffic volume and younger drivers have a 
greater tendency of being involved in accidents. Reference [5] 
analyzed the pattern of traffic accidents based on several severity 
types. They included a total of 11.564 accidents reported in Seul-
Korea and 22 factors such as vehicle and road characteristics. They 
employed Multilayer Perceptron (MLP), LR and Decision Tree 
Classifier (DTC) models to classify accidents into three main 
subgroups, (1) death or major injury, (2) minor injury and (3) 
property damage only. Consequently, they observed no significant 
difference in the classification accuracy of the models. Reference 
[6] analyzed driver injury severities for single-vehicle crashes 
occurring in rural and urban areas using data collected in New 
Mexico from 2010 to 2011. They used nested logit models and 
mixed logit models to identify contributing factors for driver injury 
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severities. The data used in the study include weather information 
such as Clear, Fog, Rain etc. They identified five factors only 
significant for the rural model, including animal involved crashes, 
rainy condition, icy condition, crashes in no passing zone and pick-
up involve crashes. On the other hand, they determined six factors 
significantly influencing driver injury severity in urban crashes, 
which includes crashes during peak hours, curved roadways, 
roadways with multi-lanes, tractor involved crashes, drug-
impaired drivers, and drivers between 16 and 20-year-old. 
Machine learning based models have also been widely used in 
predicting the severity of road traffic crashes: Reference [7] 
analyzed 971 traffic accidents occurred in Abu Dhabi in 2014, 
consisting of 121 fatal and 135 severe injuries. They employed 
DTC, Rule Induction, Naive Bayes Classifier (NBC) and MLP 
methods. The results indicated that key factors associated with 
fatal severity were age, gender, nationality, year of the accident, 
casualty status and collision type and 18-30 years old group as the 
most vulnerable group. Reference [8] investigated the effects of 
certain traffic and weather parameters on the likelihood of a 
secondary accident following the occurrence of a traffic accident. 
They employed MLP and logit models. They identified that traffic 
speed, duration of the primary accident, hourly volume, rainfall 
intensity and a number of vehicles involved in the primary accident 
are the top five factors associated with the secondary accident 
likelihood. In addition, changes in traffic speed and volume, 
number of vehicles involved, blocked lanes, and percentage of 
trucks and upstream geometry also influence the probability of 
having a secondary incident. Reference [9] analyzed a total of 
1.536 accidents on rural highways in Spain using Bayesian 
Network models. They aimed to determine the effects of several 
factors including driver characteristics, highway features, vehicle 
characteristics, accidents and weather parameters on accident 
severity. Consequently, they identified that accident type, driver 
age, lightning and number of injuries are most associated with 
accident severity. Reference [10] investigated the application of 
MLP, DTC and a hybrid combination of DTC and MLP to build 
models that could predict injury severity. Their dataset contained 
traffic accident records from 1995 to 2000, a total number of 
417.670 cases. The total set included labels of year, month, region, 
primary sampling unit, the number describing the police 
jurisdiction, case number, person number, vehicle number, vehicle 
make and model; inputs of drivers’ age, gender, alcohol usage, 
restraint system, eject, vehicle body type, vehicle age, vehicle role, 
initial point of impact, manner of collision, rollover, roadway 
surface condition, light condition, travel speed, speed limit and the 
output injury severity. The injury severity had five classes: no 
injury, possible injury, non-incapacitating injury, incapacitating 
injury, and fatal injury.  Their results revealed that, for the non-
incapacitating injury, the incapacitating injury, and the fatal injury 
classes, the hybrid approach performed better than MLP, DTC and 
Support Vector Machines (SVM). For the no injury and the 
possible injury classes, the hybrid approach performed better than 
MLP. The no injury and the possible injury classes could be best 
modeled directly by DTC. Reference [11] deals with some 
classification models to predict the severity of the injury that 
occurred during traffic accidents. For this purpose, they used the 
dataset that contains 34.575 accident cases belonging to the year 
2008 produced by the transport department of the government of 
Hong Kong. They employed Naive Bayes, J48, AdaBoostM1, 
PART and Random Forest classifiers for predicting classification 
accuracy. They used Genetic Algorithm for feature selection to 
reduce the dimensionality of the dataset. They investigated three 
different cases such as Accident, Casualty, and Vehicle for finding 

the cause of the accident and the severity of the accident. Their 
final result showed that the Random Forest outperformed other 
four algorithms. Reference [12] investigated common features 
between accidents. They researched road accident data of major 
national highways that pass through Krishna district for the year 
2013 by applying machine learning techniques. They formed 
clusters using K-medoids, and applied expectation maximization 
algorithms to discover hidden patterns using a priori algorithm. 
Their aim was to generate association rules that could analyze how 
to discover hidden patterns that are the root causes for accidents 
among different combinations of attributes of a larger dataset. 
They used density histograms for visualizing region-wise such as 
fatal versus weather, fatal versus time, time versus day, fatal versus 
month, fatal versus traffic, and fatal versus age. Their results 
showed that the selected machine learning techniques are able to 
extract hidden patterns from the data.   
The motivation of this study is to examine the role of detailed 
meteorological weather reports in determining the results of (fatal 
or non-fatal) motor vehicle accidents. It is known that weather 
affects every single dimension of our daily life, even our moods. 
However, weather condition information in traffic accident 
datasets is kept very simple in previous studies. The injury severity 
of accidents can be estimated accurately if detailed meteorological 
weather reports could be combined with accident records.   
In this work, machine learning based prediction models are 
developed to estimate the results of the accidents occurred in 
Adana (a southern city of Turkey); in addition, LR method is also 
used to give a statistical comparison basis for machine learning 
methods.   

2. MATERIAL AND METHODS 
2.1. Accident Data and Meteorological Data 

This study is conducted based on ten-year crash data consisting of 
fatal and non-fatal traffic accidents and meteorological records 
collected in Adana from 2005 to 2015, provided by the General 
Directorate of Security-Traffic Services Department and Turkish 
State Meteorological Service. The dataset is composed of two 
major sub-datasets:  The first one includes Day of Week, Crash 
Time Period, Location, Division of Road, Roadway Surface, 
Weather Information, Traffic Control, Pavement Marking, 
Shoulder, Slope, and Crossing. This dataset consists of 25.015 
accident record, of which only 246 are fatal and the rest non-fatal. 
Due to the unbalanced distribution of the original accident records, 
it would be impossible to develop accurate prediction models 
because any method can just classify all cases as nonfatal and still 
achieve over 90% accuracy. Therefore, we kept all the fatal 
accident records in the dataset and arbitrarily reduced the size of 
non-fatal accidents to three-fold (1:3) and one-fold (1:1) of the 
fatal accidents. We obtained two different datasets after this 
process: the first one consisted of 246 fatal (25%) and 738 non-
fatal (75%) accidents, while the second one included 246 fatal 
(50%) and 246 non-fatal (50%) accidents. In this way, all fatal 
accidents were included in both dataset, and nonfatal accidents 
were randomly selected. Then, 10-fold cross-validation was used 
for both datasets before the application of each method to eliminate 
chance factor.   The detailed meteorological data is obtained from 
the Turkish State Meteorological Service. The parameters used are 
Mean Wind Speed (m/sec), Mean Pressure (hPa), Maximum 
Temperature (°C), Minimum Temperature (°C), Mean Cloudiness, 
Mean Relative Humidity (%), Total Global Solar Radiation 
(cal/cm²), Total Precipitation (mm) and Ground Surface 
Temperature (°C). All meteorological data are daily measured. 
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Table 1 shows descriptive statistics of the meteorological dataset. 
Considering the period of the study 2005-2015, only these 
parameters fulfilled the requirement of continuity. Some part of the 
meteorological observations had so many missing values that it 
would be impossible to complete the series with statistical 
methods. 

Table 1. Descriptive Statistics for Meteorological Data 

Attribute Name Min. Max. Mean St.Dev. 

Mean Wind Speed 
(m/sec) 

0.0 4.2 1.2 0.5 

Mean Pressure (hPa) 999.9 1027.4 1010.6 5.2  
Maximum 
Temperature(°C)  

8.0 39.9 26.7 7.6 

Minimum Temperature 
(°C)  

-3.0 27.6 15.5 7.1 

Mean Cloudiness* 0.0 10.0 3.8 1.5 
Mean Relative Humidity 
(%)  

27.8 95.3 70.2 12.9 

Total Global Solar 
Radiation (cal/cm²)  

29.4 673.8 390.4 137.8 

Total Precipitation (mm)  0.0 53.0 1.1 4.9 
Ground Surface 
Temperature (°C) 

-6.1 26.4 13.2 7.8 

* Mean cloudiness is measured based on the division of the sky into 10 equal parts. Thus, 10.0 

means fully cloud covered the sky, while 0.0 means clear cloudless sky. 

2.2. Naive Bayes Classifier (NBC) 

Bayes theorem provides a way of calculating the posterior 
probability, P(c|x), from P(c), P(x) and P(x|c). NBC assumes that 
the effect of the value of a predictor (x) on a given class (c) is 
independent of the values of other predictors. This assumption is 
called class conditional independence [13-14]. 
 

P(y|x�⃗ ) =  
P�x�⃗ �c�P(y)

P(x�⃗ )   (1) 

 
• P(y|x�⃗ ) is the posterior probability of class (target) 

given predictor (attribute).  
• P(y) is the prior probability of class.  
• P(x�⃗ |c) is the likelihood which is the probability 

of predictor given class.  
• P(x�⃗ ) is the prior probability of predictor. 
 
Estimating P(x⃗ |y), however, is not easy. The additional 
assumption is the Naive Bayes assumption:  
 
𝑃𝑃(�⃗�𝑥|𝑦𝑦) =  ∏ 𝑃𝑃(𝑥𝑥∝|𝑦𝑦)𝑑𝑑

∝=1   (2) 
ℎ(�⃗�𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑦𝑦𝑃𝑃(𝑦𝑦|�⃗�𝑥)   (3) 

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑦𝑦
𝑃𝑃��⃗�𝑥�𝑦𝑦� 𝑃𝑃(𝑦𝑦)

𝑃𝑃(�⃗�𝑥)    (4) 

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑦𝑦𝑃𝑃(�⃗�𝑥|𝑦𝑦)𝑃𝑃(𝑦𝑦)  (5) 

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑦𝑦 ∏ 𝑃𝑃(𝑋𝑋∝|𝑦𝑦)𝑃𝑃(𝑦𝑦)𝑑𝑑
∝=1   (6) 

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑦𝑦 ∑ 𝑙𝑙𝑙𝑙𝑎𝑎�𝑃𝑃(𝑥𝑥∝|𝑦𝑦)� + 𝑙𝑙𝑙𝑙𝑎𝑎(𝑃𝑃(𝑦𝑦))𝑑𝑑
∝=1   (7) 

Estimating log(P(xα|y)) is easy as we only need to consider one 
dimension. And estimating P(y) is not affected by the assumption.  
 

2.3. k-Nearest Neighbor (kNN) Method  

The kNN methodology relies on a simple distance learning 
approach whereby an unknown member is classified according to 
the majority of its k-nearest neighbors in the training set. The 

nearness is measured by an appropriate distance metric [15]. It is 
used for classifying objects based on the closest training examples 
in the feature space. kNN algorithm is among the simplest of all 
machine learning algorithms. In the classification process, the 
unlabeled query point is simply assigned to the label of its k-
nearest neighbors. Typically, the object is classified based on the 
labels of its k-nearest neighbors by majority vote [13], [16]. If k 
equals 1, the object is simply classified as the class of the object 
nearest to it. When there are only two classes, k must be an odd 
integer. However, there can still be a tie when k is an odd integer 
during multiclass classification. In the study, Euclidean distance is 
used as the distance function for kNN: 
 
𝑑𝑑(𝑥𝑥,𝑦𝑦) =  �x− y‖ =  �(x− y). (x − y)  (8) 

= (∑ ((𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2))1 2�𝑚𝑚
𝑖𝑖_1   (9) 

where x and y are in X = Rm.  
 

2.4. Decision Tree Classifier (DTC) 

DTCs are decision trees used for classification. As any other 
classifier, the DTCs use values of attributes/features of the data to 
make a class label (discrete) prediction. Structurally, DTCs are 
organized like a decision tree in which simple conditions on 
(usually single) attributes label the edge between an intermediate 
node and its children [13], [14], [16], [17]. In the study, CART 
implementation of MATLAB according to Breiman et al. 1984 was 
used.  In this model, Gini Index (GI) was used as splitting measure. 
GI is an impurity-based criterion that measures the divergences 
between the probability distributions of the target attributes. The 
Gini index is defined as:  

 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑦𝑦,𝑆𝑆) = 1 −  ∑ (�𝜎𝜎𝑦𝑦=𝑐𝑐𝑐𝑐𝑆𝑆�|𝑆𝑆| )2𝑐𝑐𝑐𝑐𝜖𝜖𝑑𝑑𝜖𝜖𝑚𝑚(𝑦𝑦)                                    (10)  
 
And, the evaluation criterion for selecting the attribute ai is defined 
as: 

 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺(𝑎𝑎𝑖𝑖 , 𝑆𝑆) = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑦𝑦, 𝑆𝑆) −

∑
�𝜎𝜎𝑎𝑎𝑖𝑖=𝑣𝑣𝑖𝑖,𝑐𝑐𝑆𝑆�

|𝑆𝑆|𝑣𝑣𝑖𝑖∈𝑑𝑑𝜖𝜖𝑚𝑚(𝑎𝑎𝑖𝑖) .𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 �𝑦𝑦,𝜎𝜎𝑎𝑎𝑖𝑖=𝑣𝑣𝑖𝑖,𝑐𝑐𝑆𝑆�   (11)
  
Error–based pruning is employed in the model. The error rate is 
estimated using the upper bound of the statistical confidence 
interval for proportions.  
 

∈ 𝑈𝑈𝑈𝑈(𝑇𝑇, 𝑆𝑆) = ∈ (𝑇𝑇, 𝑆𝑆) +  𝑍𝑍𝛼𝛼 .�∈(𝑇𝑇,𝑆𝑆).(1−∈(𝑇𝑇,𝑆𝑆))
|𝑆𝑆|

  (12) 

 
Where, ∈ (𝑇𝑇, 𝑆𝑆) denotes the misclassification rate of the tree T on 
the training set S. Z is the inverse of the standard normal 
cumulative distribution and α is the desired significance level. The 
growing phase continues until a stopping criterion is triggered [19]. 

2.5. Support Vector Machine (SVM) 

SVM is a kernel-based learning algorithm in which only a fraction 
of the training examples is used in the solution (these are called the 
support vectors), and where the objective of learning is to 
maximize a margin around the decision surface. The basic idea of 
applying SVM to classification can be stated briefly as first map 
the input vectors into one feature space (possibly with a higher 
dimension), either linearly or nonlinearly, which is relevant with 
the selection of the kernel function; then within the feature space, 
seek an optimized linear division, i.e. construct a hyperplane which 
separates two classes [18].  Considering classification for two 
classes with training vectors 𝑥𝑥𝑖𝑖𝜖𝜖𝑅𝑅+, 𝐺𝐺 = 1 …𝐺𝐺 and 𝑦𝑦 𝜖𝜖 {1,−1}, 
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SVC solves the following problems [20]: 
 
min
𝑤𝑤,𝑏𝑏,𝛿𝛿

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑ 𝛿𝛿𝑖𝑖  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑙𝑙 𝑦𝑦𝑖𝑖�𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥𝑖𝑖)� +  𝑠𝑠 ≥ 1 −𝑛𝑛

𝑖𝑖=1

𝛿𝛿𝑖𝑖, 𝛿𝛿𝑖𝑖 ≥ 0, 𝐺𝐺 = 1, …𝐺𝐺   (13) 
 
The dual of this formula is, 
 

min
𝛼𝛼

1
2
𝛼𝛼𝑇𝑇𝑄𝑄𝛼𝛼 − 𝑠𝑠𝑇𝑇𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑙𝑙 𝑦𝑦𝑇𝑇𝛼𝛼 = 0,   0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶,  

𝐺𝐺 = 1, … ,𝐺𝐺    (14) 
 
Where 𝑠𝑠 is the vector of all ones, C > 0 is the upper bound, Q is an 
n by n positive semidefinite matrix, 𝑄𝑄𝑖𝑖𝑖𝑖 ≡ 𝑦𝑦𝑖𝑖𝑦𝑦𝑐𝑐𝐾𝐾(𝑥𝑥𝑖𝑖𝑥𝑥𝑐𝑐) where 
𝐾𝐾�𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑖𝑖� =  𝜑𝜑(𝑥𝑥𝑖𝑖)𝑇𝑇𝜑𝜑(𝑥𝑥𝑖𝑖). Here training vectors are implicitly 
mapped into a higher dimensional psace by the function 𝜑𝜑. The 
decision function is: 
 
𝑠𝑠𝑎𝑎𝐺𝐺(∑ 𝑦𝑦𝑖𝑖𝛼𝛼𝑖𝑖𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) +  𝑝𝑝)𝑛𝑛

𝑖𝑖=1    (15) 
 

2.6. Multilayer Perceptron (MLP) 

MLP is a supervised neural network based on the original simple 
perceptron model with back propagation for training the network. 
It commonly consists of an input layer of source nodes, an output 
layer and one or more hidden layers of computation nodes 
(neurons) that increasing the learning power of the MLP model. 
The number of hidden neurons determines the learning capacity of 
MLP network. It is most recommended to select the network which 
performs best with the least possible number of hidden neurons 
[19]. Considering an MLP consisting of a single input, hidden and 
output layers, n-dimensional feature or input vector is denoted by 
X = (x1, …, xn) and weight vector by W= (w1,…,wn), then the 
weighted outputs of each neuron in the hidden layer will be:  

 
𝑦𝑦 = ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1    (16) 
 

After that, the calculated value is passed through an activation 
function to yield an output value. Taking the activation function at 
layer j as 𝑓𝑓(𝑖𝑖)(𝑥𝑥), the output can be determined as follows: 
 
𝐺𝐺𝑠𝑠𝑠𝑠 = 𝑓𝑓(2)�∑ 𝑓𝑓(1)(∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ).𝑤𝑤𝑖𝑖𝑖𝑖 �   (17) 
 
Hyperbolic tangent is commonly used as the standard sigmoid 
activation function in MLPs, of which values range between 0 and 
1.  
 
𝑓𝑓(𝑥𝑥) = tanh(𝑥𝑥) = 2𝑠𝑠𝐺𝐺𝑎𝑎𝑎𝑎𝑙𝑙𝐺𝐺𝑑𝑑(2𝑥𝑥) − 1,𝑓𝑓(−𝑥𝑥) = −𝑓𝑓(𝑥𝑥)   (18) 
The hyperbolic tangent is the solution to the differential equation 
𝑓𝑓 ′(−𝑥𝑥) = 1 − 𝑓𝑓(𝑥𝑥)2 with 𝑓𝑓(0) = 0 and the non-linear boundary 
value problem: 1

2
𝑓𝑓 ′′ = 𝑓𝑓3 − 𝑓𝑓;𝑓𝑓(0) = 𝑓𝑓 ′(∞) = 0. 

 
𝑦𝑦 = 1

1+𝑒𝑒−𝑛𝑛𝑛𝑛𝑛𝑛
   (19) 

 
Where 𝑠𝑠 is the euler number and 𝑦𝑦 is the output of the MLP. 
Thereafter, the error for the computation is calculated as follows: 
 
𝑠𝑠𝑎𝑎𝑎𝑎(𝑡𝑡) = 𝑇𝑇(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)   (20) 
 
Where err denotes the difference between the real target (T) and 
the obtained output of the MLP (𝑦𝑦(𝜖𝜖𝑜𝑜𝑡𝑡)). Then, the system can be 
optimized by minimizing the following equation: 
 
𝐸𝐸 = 1

2
∑ (𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖)2𝑖𝑖    (21) 

 

In order to update the weights, the amount of change is calculated 
for each weight by partial differentiation and the chain rule as 
follows: 
∆𝑤𝑤𝑖𝑖𝑖𝑖 = −𝜑𝜑 𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝑖𝑖𝑐𝑐
= −𝜑𝜑 �𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦𝑐𝑐
� � 𝜕𝜕𝑦𝑦𝑐𝑐

𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡𝑖𝑖
� �𝜕𝜕𝑛𝑛𝑒𝑒𝑡𝑡𝑖𝑖

𝜕𝜕𝑤𝑤𝑖𝑖𝑐𝑐
�   (22) 

 
Where 𝜑𝜑 denotes the learning rate. In the final step, each weight is 
updated as follows: 
 
𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛𝑒𝑒𝑤𝑤 = 𝑤𝑤𝑖𝑖𝑖𝑖𝜖𝜖𝑜𝑜𝑑𝑑 +  ∆𝑤𝑤𝑖𝑖𝑖𝑖   (23) 
 
The procedure given above comprises only one “epoch” and the 
same calculations are repeated until reaching the stopping criteria. 
MLP is capable of modeling complex functions, good at ignoring 
irrelevant inputs and noise, it can adapt its weights and it is easy to 
use. MLPs have been used as the main method in many studies 
conducted in the field of traffic accidents or to make comparisons. 
 

2.7. Logistic Regression (LR) 

LR is a predictive analysis and used to describe data and to explain 
the relationship between one dependent binary variable and one or 
more nominal, ordinal, interval or ratio-level independent 
variables. It is a frequently used and well known statistical analysis 
[13], [21]. Suppose we have a binary output variable Y, and we 
want to model the conditional probability Pr(Y=1|X=x) as a 
function of x, any unknown parameters in the functions are to be 
estimated by maximum likelihood. Let log p(x) be a linear function 
of x so that changing an input variable multiplies the probability 
by a fixed amount. The logarithms are unbounded in only one 
direction, and linear functions are not. Through logistic (or logit) 
transformation of log p(x), we obtain: 

 
𝑙𝑙𝑙𝑙𝑎𝑎 𝑝𝑝(𝑥𝑥)

1−𝑝𝑝(𝑥𝑥)
= 𝛽𝛽0 + 𝑥𝑥.𝛽𝛽   (24) 

 
Solving this equation for p gives: 

 
𝑝𝑝(𝑥𝑥; 𝑠𝑠,𝑤𝑤) = 𝑒𝑒𝛽𝛽0+𝑥𝑥.𝛽𝛽

1+𝑒𝑒𝛽𝛽0+𝑥𝑥.𝛽𝛽 = 1
1+𝑒𝑒−(𝛽𝛽0+𝑥𝑥.𝛽𝛽)   (25) 

 
When 𝑝𝑝 ≥ 0.5,𝑌𝑌 = 1 and when 𝑝𝑝 < 0.5,𝑌𝑌 = 0. This means 
guessing 1 whenever 𝛽𝛽0 + 𝑥𝑥.𝛽𝛽 is non-negative, and 0 otherwise. 
So, LR gives a linear classifier. The decision boundary separating 
the two predicted classes is the solution of 𝛽𝛽0 + 𝑥𝑥.𝛽𝛽 = 0, which is 
a point if x is one dimensional, a line if it is two dimensional [22]. 
 

3. Results and Discussion 
3.1. Performance Metrics 

The performance of a classifier model is defined from a matrix, 
known as confusion matrix, which shows the correctly and 
incorrectly classified instances for each class. TP, TN, FP, FN 
metrics can be described as follows  [23]: 
• True Positive (TP): instances that are positive and classified as 
positive 
• True Negative (TN): instances that are negative and classified 
as negative 
• False Positive (FP): instances that are negative but classified as 
positive 
• False Negative (FN): instances that are positive but classified as 
negative instances that are negative and classified as negative 
 
 
The measures that are used to evaluate the performance of a 
classifier are computed from the generated confusion matrix. 
Sensitivity and specificity are the most widely used statistics in a 
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diagnostic test. Sensitivity (True Positive Rate (TPR)) is the 
proportion of instances correctly labeled positive in all positive 
instances tested (1); Specificity (True Negative Rate (TNR)) is the 
proportion of instances correctly labeled negative in all the 
negative instances tested (2); the Positive Predictive Value (PPV) 
is defined as (3) where a "true positive" is the event that the test 
makes a positive prediction; the Negative Predictive Value (NPV) 
is defined as (4) where a "true negative" is the event that the test 
makes a negative prediction. Accuracy (ACC) is the likelihood of 
a correctly predicted total number of modules (5) [24];  
 
𝑇𝑇𝑃𝑃𝑅𝑅 = 𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹)   (26) 
𝑇𝑇𝐹𝐹𝑅𝑅 = 𝑇𝑇𝐹𝐹/(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃)  (27) 
𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)   (28) 
𝐹𝐹𝑃𝑃𝑃𝑃 = 𝑇𝑇𝐹𝐹/(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)   (29) 
𝐴𝐴𝐶𝐶𝐶𝐶 (%) = [(𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹)/(𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹)] ∗ 100      (30) 
 
In other words, sensitivity measures the ability of a test to detect 
the condition when the condition is present. Specificity measures 
the ability of a test to correctly exclude the condition (not detect 
the condition) when the condition is absent. Nonfatal predictive 
value is the proportion of nonfatal cases that correspond to the 
presence of the condition. Fatal predictive value is the proportion 
of fatal cases that correspond to the absence of the condition [23]. 
 
Receiver Operating Characteristic (ROC) curve is a plot of the 
TPR against the False Positive Rate (FPR) (6) at various threshold 
settings which shows the trade-offs between true positive 
(benefits) and false positive (costs). The area under the ROC curve 
(AUC) quantifies the overall discriminative ability of a test. An 
entirely random test has an AUC of 0.5, whereas a perfect test has 
an AUC of 1.00 [27] [28] [29].  
 
𝐹𝐹𝑃𝑃𝑅𝑅 = 𝐹𝐹𝑃𝑃/(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃)   (31) 

 

3.2. Performance of the Prediction Models 

In the study, NBC, kNN, DTC, SVM, MLP and LR methods were 
chosen as classifiers in order to provide a deep understanding into 
the nature of classification with a wide range of machine learning 
methods. The machine learning methods were all applied using 
MATLAB software, and LR method was performed with IBM 
SPSS Statistics software. For each method, twenty predictor 
variables obtained from two abovementioned datasets were 
provided as input variables. And the severity of accident (fatal and 
nonfatal) was set as output. Specificity, Sensitivity, Accuracy, 
ROC and AUC results were measured to compare the 
performances of classifiers.  
As mentioned in Section 2.1, the original accident dataset has an 
unbalanced structure; therefore, two different datasets were created 
(the first one has (25-75%) fatal/nonfatal ratio; the second one has 
(50-50%) fatal/nonfatal ratio. Then, 10-fold cross-validation was 
carried out for these two different combinations of inputs. For this 
purpose, cvpartition method of MATLAB software was used with 
a for-loop. 10-fold cross-validation is performed by separating 
90% training and 10% test data in each fold randomly. Then, all 
analysis methods are applied in turn. kNN classification is 
achieved by ‘fitcknn‘ method of MATLAB, where distance is set 
to Euclidean and number of neighbors is set to 1, as there are two 
output classes, fatal and nonfatal. NBC is made by ‘fitcnb‘ method 
of MATLAB, where Gaussian distribution is specified to model 
data. DTC is performed by ‘fitctree‘ method of MATLAB, which 
automatically selects the optimal subset of algorithms for each split 
using the known number of classes and levels of a categorical 
predictor. The parameters are chosen as follows: 

‘prune=on‘,‘minparentsize=10‘,‘AlgorithmForCategorical = 
PCA‘,‘qetoler=1E-6‘ and ‘mergeleaves=on‘. SVM classification 
model was designed by running ‘fitcsvm‘ function in MATLAB. 
Several combinations have been tried and Radial Basis Function is 
chosen as the kernel for performance comparison, while Sequential 
Minimal Optimization is chosen as a solver for gradient difference 
between upper and lower violators.  
MLP model, a supervised neural network model, is designed with 
‘patternnet‘ function of MATLAB. It takes three parameters, 
which are set as ‘hiddenSizes=10‘,‘trainFcn=trainscg‘ and 
‘performFcn=crossentropy‘. 
The mean results of the first dataset (25/75 fatal/nonfatal) are given 
in Table 2.  
 

Table 2. Prediction results of methods on the initial dataset (25/75 dataset 
of fatal/nonfatal) 

Performance 
Metrics 

kNN NBC DTC SVM MLP LR 

TNFR 0.884 0.881 0.914 0.849 0.856 0.961 
TFR 0.857 0.613 0.846 0.762 0.766 0.441 

NFPV 0.963 0.862 0.955 0.946 0.946 0.838 
FPV 0.622 0.651 0.727 0.492 0.521 0.791 
ACC 0.878 0.809 0.898 0.832 0.839 0.831 
AUC 0.792 0.756 0.841 0.824 0.719 0.798 

 
R-square is 0.467 for LR. Based on the results given in Table 2, 
the following remarks can be made: 
• In terms of TNFR values, LR had the highest results (0.961) and 
it was followed by DTC (0.914), kNN (0.884), NBC (0.881), MLP 
(0.856), and  SVM (0.849).  
• In terms of TFR values, kNN yielded the highest result (0.857) 
and it was followed by DTC (0.845), MLP (0.766), SVM (0.762), 
NBC (0.613) and LR (0.441).  
• In terms of NFPV, kNN yielded the highest result (0.963), and 
it was followed by DTC (0.955), SVM (0.946), MLP (0.946), NBC 
(0.862) and LR (0.838). All the models were quite good at 
predicting nonfatal instances. Actually, this was an expected and 
normal outcome considering that the percentage of nonfatal 
instances is quite high.  
• In terms of FPV, LR had the highest result (0791) and it was 
followed by DTC (0.727), NBC (0.651), kNN (0.622), MLP 
(0.521) and SVM (0.492). 
• In terms of ACC, DTC yielded the highest total accuracy 
(0.898) and it was followed by kNN (0.878), MLP (0.839), SVM 
(0.832), LR (0.831) and NBC (0.809).  
• In terms of AUC values, DTC yielded the highest result (0.841) 
and it was followed by MLP (0.824), LR (0.798), kNN (0.792), 
NBC (0.756) and SVM (0.719).  
• In conclusion, only the DTC and LR methods provided a fair 
classification for fatal instances. As known, the highly non-linear 
relationship between variables will result in failure for models and 
thus make such models invalid. However, DTC does not require 
any assumptions of linearity in the data. This could have triggered 
the success of DTC in the analysis. On the other hand, LR’s 
success mainly derived from its high accuracy of the non-fatal 
instance. This could be attributed to the fact that LR is great at 
simple classification problems. The initial data set contains a large 
amount of non-fatal instances, which could have contributed to the 
success of LR. As a result, DTC and LR can be seen as good 
classifiers due to their high AUC values despite their relatively low 
FPVs.  
For the next analysis, the methods with the same parameter settings 
were applied to the second dataset consisting of an equal number 
of nonfatal and fatal (50/50) instances. The obtained results are 
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given in Table 3. 
 

Table 3. Prediction results of methods on the second dataset (50/50 dataset 
of fatal/nonfatal) 

Performance 
Metrics 

kNN NBC DTC SVM MLP LR 

TNFR 0.864 0.828 0.902 0.858 0.830 0.781 
TFR 0.956 0.931 0.912 0.926 0.943 0.714 

NFPV 0.960 0.935 0.910 0.931 0.947 0.732 
FPV 0.845 0.793 0.894 0.838 0.797 0.766 
ACC 0.903 0.864 0.902 0.884 0.872 0.748 
AUC 0.902 0.867 0.904 0.894 0.925 0.824 

 
R-square is 0.401 for LR. Based on the analysis results given in 
Table 3, the following remarks can be made: 
• In terms of TNFR values, DTC yielded the highest result 
(0.902), which was followed by kNN (0.864), SVM (0.858), MLP 
(0.830), NBC (0.828) and LR (0.781).  
• In terms of TFR values, kNN had the highest score (0.956), and 
it was followed by MLP (0.943), NBC (0.931), SVM (0.926), DTC 
(0.912) and LR (0.714). All methods achieved quite high and 
similar scores in this parameter except for LR.  
• In terms of NFPV, kNN had the highest score (0.960) and it was 
followed by MLP (0.947), NBC (0.935), SVM (0.931), DTC 
(0.910) and LR (0.732). Machine learning methods are quite 
successful in classifying nonfatal instances with over 90% 
accuracy, while LR could not achieve a significant classification 
rate. 
• In terms of FPV, DTC yielded the highest result (0.894), which 
was followed by kNN (0.845), SVM (0.838), MLP (0.797), NBC 
(0.793) and LR (0.766). The most important problem encountered 
in the study is to reach an acceptably high precision in the 
classification of fatal instances. From this respect, DTC, kNN, and 
SVM attained good classification rates between 80-90%, while 
MLP, NBC, and LR scored only a little below 80%. Especially, 
DTC came first in both analyses, and kNN is another successful 
method for this parameter. 
• In terms of AUC values, MLP had the highest score (0.925), and 
it was followed by kNN (0.902), DTC (0.902), SVM (0.884), NBC 
•  (0.864) and LR (0.748). AUC is an important parameter to  
illustrate classification accuracy, and in this regard, MLP, DTC, 
and kNN are distinguished from the other methods as they showed 
success in the classification of both fatal and nonfatal instances.  
• In terms of ACC (overall accuracy), kNN yielded the highest 
result (0.903) and it was closely followed by DTC (0.902), SVM 
(0.884), MLP (0.872), NBC (0.864) and LR (0.824). Compared to 
the results of the previous analyses, all methods improved their 
results, DTC and kNN continued their superiority over other 
methods; however, the classification accuracy of LR degraded 
significantly.  
• In conclusion, the results of the second analysis indicated that 
the accuracy of complex classification methods significantly 
increased, and all methods except for LR achieved similar rates of 
overall accuracy, with slightly better results of kNN and DTC. 
kNN’s performance depends on the close neighborhood of similar 
target and can yield good predictive accuracy in low dimensions. 
Likewise, DTC proved to be more accurate in low dimensions, but 

both kNN and DTC have poor run-time performance when the data 
set becomes large. This is because each new node requires the 
computation of distance to every other node in the model for kNN, 
and similarly, the more decisions there are in a tree, the less 
accurate any expected outcomes are likely to be.  On the other 
hand, MLP and SVM are known to produce even more accurate 
results with high dimensions and large datasets.  

 

3.3. Predictor Importance Analysis 

The AUC-based method was carried out with the second dataset 
consisting of an equal number of fatal and nonfatal accidents using 
10-fold cross-validation. The obtained results are given for each 
classification method in Table 4. As a whole, no single parameter 
made big difference alone in the classification methods, and they 
all made similar small contributions to the model outputs either it 
was negative or positive.    
The input parameters are listed in descending order by AUC level. 
The following inferences can be made from the results in Table 4: 
• In NBC model, Mean Cloudiness is slightly more effective over 
the classification result and it is somewhat differentiated from 
other variables. It was followed by Mean Pressure and Ground 
Surface Temperature.  
• In kNN, Global Solar Radiation is slightly more effective over 
the classification and similarly, its removal resulted in the highest 
loss of AUC value.  
• In DTC, Slope, Traffic Control, Ground Surface Temperature 
and Division of Road are more effective input variables, 
respectively. On the other hand, removal of Pavement Marking, 
Total Precipitation, Crash Time Period, Crash Location and 
Maximum Temperature variables improved the AUC result for 
good, and there is no such big improvement in other models.  
 
• In SVM, Mean Cloudiness is determined to be more effective 
and it is followed by Traffic Control, Ground Surface Temperature 
and Mean Wind Speed, respectively. It is notable that most of the 
input variables have positive effects on the AUC value, while only 
a few have rather small negative effects.  
• In MLP, Division of Road is more effective, which is followed 
by Pavement Marking and Mean Cloudiness with close rates. 
• Considering all models, Mean Cloudiness, Traffic Control, and 
Ground Surface Temperature variables are observed to be slightly 
more effective on the results, while Maximum Temperature and 
Weather had a negative effect on AUC in all models. Weather is a 
parameter recorded by the traffic officer at the accident location, 
and it only gives the superficial description of the weather. 
Therefore, it is quite normal for this parameter to have an 
inconsistent effect on the result. 

4. Conclusions 
In this paper, NBC, kNN, DTC, SVM and MLP methods and LR 
statistic method are used to analyze motor vehicle accident data 
according to the accident result (i.e. fatal and non-fatal), also the 
significant factors that are associated with detailed meteorological 
reports in traffic accidents are identified. Property damage–only 
accidents are not included in this study 
 

 
 
 
Table 4. Predictor importance analysis results for NBC, kNN, DTC, SVM and MLP models
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Input 
Sym. 

NBC 
Input 
Sym. 

kNN 
Input 
Sym. 

DTC 
Input 
Sym. 

SVM 
Input 
Sym. 

MLP 

Change 

in AUC 
% 

Change 

in AUC 
% 

Change 

in AUC 
% 

Change 

in AUC 
% 

Change 

in AUC 
% 

MCL 0.036 4.136 GSR 0.02 2.226 SLO 0.02 2.189 MCL 0.034 3.807 DIV 0.026 2.798 
MXMP 0.013 1.465 CRO 0.008 0.896 TRA 0.018 1.986 TRA 0.019 2.111 MAR 0.016 1.732 

GST 0.011 1.292 PER 0.006 0.683 GST 0.014 1.543 GST 0.012 1.376 MCL 0.016 1.716 
MNTP 0.009 1.022 GST 0.006 0.674 DIV 0.014 1.524 MWS 0.01 1.121 SLO 0.011 1.22 
MWS 0.008 0.964 MNTP 0.004 0.48 CRO 0.01 1.109 MXTP 0.008 0.933 TRA 0.01 1.069 
MRH 0.006 0.742 LOC 0.002 0.212 MCL 0.006 0.711 SUR 0.008 0.924 GSR 0.01 1.04 
GSR 0.004 0.463 DAY 0 0 SHO 0.006 0.619 GSR 0.008 0.858 CRO 0.009 0.937 
DAY 0.003 0.309 MAR 0 -0.009 MRH 0.004 0.388 SHO 0.006 0.707 MWS 0.008 0.903 
MAR 0.003 0.299 MWS 0 -0.037 GSR 0.003 0.388 MXMP 0.006 0.679 MXMP 0.004 0.43 
TRA 0.002 0.289 MRH 0 -0.037 MXMP -0.002 -0.203 CRO 0.004 0.499 DAY 0.004 0.391 

MXTP 0.002 0.27 TRA -0.002 -0.222 DAY -0.002 -0.231 MNTP 0.004 0.462 MRH 0.003 0.369 
DIV 0.002 0.241 SLO -0.002 -0.268 MWS -0.002 -0.268 PER 0.002 0.254 PER 0.002 0.202 
LOC 0.002 0.231 SUR -0.002 -0.277 WET -0.005 -0.508 DAY 0.001 0.066 SHO 0.001 0.073 
SLO 0 -0.019 MXMP -0.003 -0.388 MNTP -0.006 -0.665 TP 0 0.019 TP -0.003 -0.374 
TP -0.001 -0.135 TP -0.004 -0.425 SUR -0.009 -0.97 LOC -0.002 -0.207 GST -0.004 -0.416 

PER -0.003 -0.337 MXTP -0.004 -0.434 MXTP -0.01 -1.145 DIV -0.002 -0.283 MNTP -0.005 -0.586 
CRO -0.003 -0.386 WET -0.004 -0.452 LOC -0.011 -1.164 WET -0.004 -0.452 SUR -0.006 -0.634 
WET -0.005 -0.607 SHO -0.004 -0.48 PER -0.013 -1.386 MRH -0.004 -0.471 LOC -0.006 -0.657 
SUR -0.005 -0.627 MCL -0.008 -0.859 TP -0.018 -2.042 MAR -0.004 -0.49 MXTP -0.01 -1.114 
SHO -0.006 -0.685 DIV -0.008 -0.877 MAR -0.023 -2.55 SLO -0.004 -0.509 WET -0.011 -1.211 

MCL: Mean Cloudiness; MXMP: Mean Pressure; GST: Ground Surface Temperature; MNTP: Minimum Temperature; MWS: Mean Wind Speed; MRH: 
Mean Relative Humidity; GSR: Global Solar Radiation; DAY: Day of Week; MAR: Pavement Marking; TRA: Traffic Control; MXTP: Maximum 
Temperature; DIV: Division of Road; LOC: Location; SLO: Slope; TP: Total Precipitation; PER: Crash Time Period; CRO: Crossing; WET: Weather; SUR: 
Roadway Surface; SHO: Shoulder. 

A total of 20 parameters were used as input to classify accidents 
into two classes, fatal or non-fatal. The most difficult part of the 
study is to classify fatal instances accurately due to their low 
percentage value in total. The first dataset consisted of 246 fatal 
and 738 non-fatal cases, while the second included 246 fatal and 
246 non-fatal cases. 
As a result, DTC and kNN algorithms yielded slightly more 
accurate results in classifying fatal instances in both datasets. On 
the other hand, MLP yielded the highest accuracy in both nonfatal 
and fatal instances combined as well as the highest AUC rate. 
Although LR performed well in the first dataset, its accuracy 
significantly decreased with the second dataset. The success of 
kNN and DTC could be attributed to the low dimensionality of the 
datasets.  
To analyze predictor importance of the prediction models, AUC-
based input ranking method is used. Based on this method, Mean 
Cloudiness, Traffic Control and Ground Surface Temperature 
variables were found to have a higher weight on classification 
results; in addition, Maximum Temperature and weather 
parameters negatively affected the classification performance of 
all models.  
The dataset lacks information on driver and vehicle characteristics, 
which was the main disadvantage of the study. The current traffic 
accident report should include information about driver 
characteristics like age, gender, education, etc. as well as vehicle 
characteristics like model, age, and type. With this additional 
information, the more detailed analysis could be carried out in the 
future. 
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