
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

 

International Journal of Intelligent Systems and Applications in Engineering                         IJISAE, 2024, 12(4), 4470–4479  |  4470 

 
 

A Novel Machine Learning Technique by Several Meta and Naïve 

Bayes Method to Predict Full Load Electrical Power Output of 

Base Load Operated Combined Cycle Power Plant  

Dr. Koppisetti Giridhar 1,S. Madhanmohan2, Dr. A. Karthikayen3, Dr. P. Jona Innisai Rani4  

K.V.L.N. Prasad5 , Dr. A.Thankaraj6    

Submitted: 12/03/2024     Revised: 21/04/2024     Accepted: 04/05/2024 

Abstract: Avoiding technical concerns, such blackouts, is crucial to the efficient and cost-effective operation of 

a combined cycle power plant (CCPP). In this paper, we suggest making use of machine learning methods to 

estimate the hourly electricity output of a CCPP. For this purpose, we take into account the exhaust vacuum, 

ambient temperature, atmospheric pressure, and relative humidity as basic parameters that affect the generated 

power. The output power and other parameters are measured and utilized to train and test machine learning 

models. This paper explores the Logit Boost with Bagging perform well as well it showing an efficient outcome. 

It has the greatest accuracy result of 85.80%. The Logit Boost with Bagging produces the greatest precision result 

of 0.87. The Logit Boost with Bagging and Random Committee Bagging produce the maximum recall of 0.87. 

The Logit Boost with Bagging has the greatest F-Measure result of 0.87. The Logit Boost with Bagging model 

has the highest MCC value of 0.66. The Logit Boost with Bagging model has the greatest kappa value of 0.67. 

The Logit Boost with Bagging model has an optimal results compare with other models. 

Keywords: Bagging, Logit Boost, F-Measure, Random Committee, Combined cycle power plant. 

 

I Introduction 

One of the most popular fuels nowadays is 

natural gas, which is used in the production of 

electricity (to the tune of 23.6% of the entire 

structure) [1]. CCGT plants are the most effective at 

transforming the chemical energy of natural gas into 

electricity, as their working flow consists primarily 

of the byproducts of combustion of the air and fuel 

mixture (Brayton cycle) and steam from water 

(Rankine cycle). Modern CCGT plants have a net 

electric efficiency of over 63%.At an upstream 

working flow temperature of around 1550 °C and an 

exhaust gas temperature of 670 °C, CCGT using 

Siemens SGT5-9000HL gas turbine plants 

demonstrates particularly high efficiency values. 

Although GTE-160 gas turbine plants are popular in 

Russia, their lower exhaust gas temperature (537 °C) 

and initial operating flow temperature (about 1100 

°C) make them less efficient than their Western 

counterparts. When used in conjunction with the 

CCP-220T CCGT power plant, the net efficiency of 

these GTPs rises to 50.4% from 34.4% in free 

operating mode.Raising the working flow 

temperature before the gas turbine is the most direct 

way to improve CCGT performance. Nevertheless, 
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high-temperature technology for electric power 

generation [2,3] is required before this approach can 

be put into practise.Using low-potential heat sources 

is another option for improving CCGT plant 

efficiency (by 2%-3%; see [4,5,6]). To better utilise 

the exhaust gas heat or to lower the cold source 

temperature [7,8,9], CCGT facilities might 

incorporate the organic Rankine cycle. Most low-

temperature cycle heat carriers (most notably 

freons) are, however, more hazardous than water 

and have lower availability and chemical compound 

stability. However, the capital costs of the power 

plant rise with the addition of even a single 

additional cycle. All of these issues combined to 

make widespread adoption of this technology 

unlikely [10,11]. 

The rest of the paper is organized as follow: 

Section 2 outlines the related work. Section 3 

introduces the proposed methodology, and the 

results and discussion are briefly discussed in 

Section 4. Finally, we conclude the paper in Section 

5. 

II Literature Survey 

An accurate prediction of a plant's power 

output can help avoid power outages, financial 

losses, and technical obstacles [1, 2]. Specifically 

due to excessive fuel consumption, erroneous 

predictions raise the per-unit cost of electric power 

[3]. Through this research, we hope to reduce the 

cost per unit of electricity generated [4] by 

accurately predicting the electric output of a base 

load CCPP under full load conditions.The efficiency 

of thermodynamic power plants can be predicted 

using intricate mathematical models [5]. These 

models' reliance on a wide range of assumptions and 

parameters reflect the system's inherent uncertainty. 

Although time-consuming, these mathematical 

models are founded on a deterministic approach [5]. 

Nevertheless, probabilistic approaches rather than 

mathematical models are used in supervised ML 

systems for power prediction [6]. Due to the 

abundance of information, the ML technique of 

prediction is preferable to other approaches since it 

eliminates the need to model the complete system. It 

can also be seen in adjacent domains like 

groundwater hardness vulnerability forecasting [7], 

soil erosion susceptibility estimate [8], groundwater 

level forecasting [9], and groundwater potential 

forecasting [10]. Our suggested ML algorithms 

evaluate the power plant's historical data to generate 

optimal power projections in a shorter amount of 

time [11]. Unfortunately, ML algorithms are not 

perfect predictors because of their probabilistic 

foundation. This is why we suggest trying out a few 

different algorithms for CCPP power forecasting. In 

addition, we seek for the parameters of these 

algorithms that produce the least amount of 

inaccuracy for the available information.During the 

course of a year, the amount of electricity produced 

by a CCPP could fluctuate for a variety of reasons 

[12]. Some of these reasons include changes in the 

surrounding environment's temperature, 

atmospheric pressure, humidity, and exhaust flow. 

Hence, these parameters have both direct and 

indirect effects on the CCPP's output power [13]. 

Controlling these variables effectively allows for 

increased power generation with less fuel use [14]. 

This research avoids the common practise of 

attempting to control the parameters by instead 

analysing their effect on the expected output power. 

To do this, we apply various machine learning 

techniques [4] to these environmental factors in 

order to forecast electrical output. 

There have been previous attempts to 

anticipate CCPP power using a variety of 

probabilistic approaches, including bagging and 

regression ANN [4, 15]. Due to the relatively large 

prediction error [16], this study presents machine 

learning algorithms for forecasting electric power of 

CCPP operated at full load using the aforementioned 

four criteria. The usage of a gradient-boosted 

regression tree (GBRT), a linear regression (LR), an 

artificial neural network (ANN), and a k-nearest 

neighbour algorithm all lead to more accurate 

predictions of future power consumption (KNN). 

We evaluate the effects of each parameter on output 

power prediction and their interaction using these 

four machine learning methods. By comparing our 

algorithms against those of other studies, we can 

determine which ones do the best. The best 

performing of these four ML models is chosen based 

on its RMSE and AE values. 

The remainder of the paper's outline is as 

follows: Section 2 details the associated work. Part 

3 provides an introduction of the suggested method, 

while Section 4 summarizes the findings and 

discusses them briefly. The results of the paper are 

summarized in Section 5. 

III Materials and Methods 

UCI's Combined Cycle Power Plant Data 

Collection was the repository we were looking for. 

Throughout a six-year period (2006-2011), 9568 

data points were gathered from a Combined Cycle 

Power Plant while the facility was operating at full 

load. Predicting the net hourly electrical energy 

output (EP) of the plant requires features such as the 
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hourly average of ambient variables Temperature 

(T), Ambient Pressure (AP), Relative Humidity 

(RH), and Exhaust Vacuum (V).Gas turbines (GT), 

steam turbines (ST), and heat recovery steam 

generators (HRSG) make up the components of a 

combined cycle power plant (CCPP). The CCPP 

gets its power from a single cycle of gas and steam 

turbines that exchanges energy with itself. The GT 

is affected by the Vacuum, which is gathered by the 

Steam Turbine, and by the other three environmental 

factors as well. We supply the data shuffled five 

times to ensure consistency with our baseline 

investigations and to provide 5x2 fold statistical 

tests. Ten readings are taken after each 

randomization cycle thanks to a 2-fold CV 

procedure. 

Features Information: 

Features consist of hourly average ambient variables 

- Temperature (T) in the range 1.81°C and 

37.11°C, 

- Ambient Pressure (AP) in the range 

992.89-1033.30 milibar, 

- Relative Humidity (RH) in the range 

25.56% to 100.16% 

- Exhaust Vacuum (V) in teh range 25.36-

81.56 cm Hg 

- Net hourly electrical energy output (EP) 

420.26-495.76 MW 

The averages are taken from various sensors located 

around the plant that record the ambient variables 

every second. The variables are given without 

normalization. 

Methods: 

The following method are applied in this 

research work 

• Borrowed dataset 

• Data preprocessing 

• Apply for Ensemble machine learning algorithms: 

• Multi Class Classifier with Bagging (MCC with 

Bag) 

• Logit Boost with Bagging(LB with Bag) 

• Random Committee with Bagging(RC with Bag) 

• Multi Scheme with Bagging ( MS with Bag) 

• Input Mapped Classifier with Bagging (IMC with 

Bag) 

• Evaluate models 

• Find a best Model 

To produce an efficient result, these 

strategies were applied in python API. This study 

uses only 10% of the total dataset and uses tenfold 

cross validation for all categories. 
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Figure 1: Proposed System 

 

 

 

 

 

 

Table 2: Performance of selected classifiers 
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S.No Classifiers Accuracy Precision Recall F-Measure MCC Kappa 

1 
MCC with 

Bagging 
84.15% 0.85 0.85 0.84 0.57 0.56 

2 
LB with 

Bagging 
85.80% 0.87 0.87 0.87 0.66 0.67 

3 
RC with 

Bagging 
85.05% 0.86 0.87 0.85 0.59 0.60 

4 
MS with 

Bagging 
79.07% 0.82 0.81 0.80 0.55 0.55 

5 
IMC with 

Bagging 
83.90% 0.84 0.84 0.85 0.57 0.59 

The above table shows that the various 

selected ensemble classifiers. 

The MCC with Bagging results in an 

accuracy level of 84.15%, a precision value of 0.85, 

a recall value of 0.85, an F-Measure value of 0.84, 

an MCC value of 0.57 and a kappa statistic value of 

0.56.  

The LB with Bagging has an accuracy level 

of 85.80%, a precision value of 0.87, a recall value 

of 0.87, an F-Measure value of 0.87, an MCC value 

of 0.66 and a kappa statistic value of 0.67.  

The RC with Bagging results in an 

accuracy level of 85.05%, a precision value of 0.86, 

a recall value of 0.87, an F-Measure value of 0.85,an 

MCC value of 0.59 and a kappa statistic value of 

0.60.  

The MS with Bagging produces a yield of 

79.07% an accuracy, a precision value of 0.82, a 

recall of 0.81, an F-Measure of 0.80, an MCC of 

0.55 and a kappa statistic of 0.55.  

The IMC with Bagging produces accuracy 

level 83.90%, a precision value 0.84, recall value 

0.84, an F-Measure value 0.85,an MCC value 0.57 

and a kappa statistic value 0.59. 

 

Figure 2: Performance of Ensemble classifiers with their accuracies 

MCC with
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  The above diagram shows that the 

accuracy performances of selected models.  The LB 

with Bagging has the greatest accuracy result of 

85.80%. The MS with Bagging produces the lowest 

accuracy result of 79.07%. The accuracy of the IMC 

with Bagging, MCC with Bagging, and RC with 

Bagging is 83.90%, 84.15%, and 85.05%, 

respectively. 

 

 

Figure 3: Performance of Ensemble Classifiers with their Precision values 

 The precision performances of 

selected models are depicted in the diagram above. 

The LB with Bagging produces the greatest 

precision result of 0.87. The MS with Bagging 

produces the lowest accuracy result of 0.82. The 

accuracy levels of the IMC with Bagging, MCC with 

Bagging, and RC with Bagging are 0.84, 0.85, and 

0.86, respectively. 

 

Figure 4: Performance of Ensemble Classifiers with their Recall values 

 The graph above depicts the recall 

performances of selected models. The LB with 

Bagging and RC with Bagging produce the 

maximum recall of 0.87. The MS with Bagging 

produces the lowest recall result of 0.81. The recall 

levels for the IMC with Bagging and the Extreme 

MS with Bagging are 0.84 and 0.85, respectively. 
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Figure 5: Performance of Ensemble Classifiers with their F-Measure values 

 The graph above depicts the F-

Measure performances of selected models. The LB 

with Bagging has the greatest F-Measure result of 

0.87. The MS with Bagging produces the lowest F-

Measure result of 0.80. The MCC with Bagging has 

an F-Measure of 0.84, whereas the IMC with 

Bagging and RC with Bagging have the same value 

of 0.85. 

 

 

Figure 6: Performance of Ensemble Classifiers with their MCC values 

 The graphic above depicts the 

MCC performance of selected models. The LB with 

Bagging model has the highest MCC value of 0.66. 

The MS with Bagging produces the lowest MCC 

result (0.55). The remainder of the models, such as 

the MCC with Bagging model and the Light 

Gradient Boosting Machine with NB Decision Trees 

model, have the same MCC value of 0.57. The MCC 

value for RC with Bagging 0.59. 
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Figure 7: Performance of Ensemble classifiers with their Kappa statistic values 

 The graph above depicts the kappa value 

performances of selected models. The LB with 

Bagging model has the greatest kappa value of 0.67. 

The MS with Bagging produces the lowest kappa 

result of 0.55. Other models with kappa values 

between 0.56 and 0.60 are MCC with Bagging, IMC 

with Bagging, and RC with Bagging. 

 V Conclusions 

Based on this study's findings, the MCC 

with Bagging yields an 84.15% accuracy rate, 0.85 

precision, 0.85 recall, 0.84 F-Measure, 0.57 MCC, 

and 0.56 kappa statistic. The LB with Bagging 

achieves an impressive 85.80% accuracy, 0.87 

precision, 0.87 recall, 0.87 F-Measure, 0.66 MCC, 

and 0.67 kappa statistic. The resulting RC with 

Bagging has an accuracy of 85.05%, precision of 

0.86, recall of 0.87, precision of 0.85, recall of 0.87, 

F-Measure of 0.85, MCC of 0.59, and kappa statistic 

of 0.60. With Bagging applied to the MS, we get an 

accuracy of 79.07%, precision of 0.82, recall of 

0.81, sensitivity of 0.80, specificity of 0.80, mean 

correlation coefficient of 0.55, and kappa of 0.55. 

Accuracy of 83.90 percent, precision of 0.84, recall 

of 0.84, F-measure of 0.85, mean correlation 

coefficient of 0.57, and kappa statistic of 0.59 are all 

generated by the IMC with Bagging. The LB with 

Bagging has the greatest accuracy result of 85.80%, 

a precision result of 0.87, a recall of 0.87, an F-

Measure result of 0.87, an MCC value of 0.66 and a 

kappa value of 0.67.This model recommends the LB 

with Bagging compare with other models. 
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