

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 1831–1840 | 1831

 An Innovative Approach to Study Various Software Testing

Techniques and Strategies: Review Paper

Mr. V. Kiran Kumar, Dr. P. Vidya Sagar

Submitted: 15/05/2024 Revised: 26/06/2024 Accepted: 06/07/2024

Abstract— There are a few techniques for programmed experiment age has been proposed previously. In any case, most of

these strategies are primary trying procedures that require the comprehension of the inside working of the program. Software

testing is the process to uncover requirement, design and coding errors in the program. It is used to identify the correctness,

completeness, security and quality of software products against a specification. Software testing is the process used to

measure the quality of developed computer software There is less useful inclusion of all testing methods together. In this

paper we conduct a literature review writing concentrate on all testing procedures together that are connected with both

Highly contrasting box testing strategies. In this paper, we have described and compared the two most important and

commonly used software testing techniques for detecting errors, which are: Black Box Testing and White Box Testing. A

recommended procedure for model validation is presented and model accreditation is briefly discussed.

Index Terms—: testing techniques, white box testing, black box, grey box testing, literature review, verification, validation,

simulation theory, etc.

I Introduction

Software testing is a method for identifying system

flaws. It helps us find and fix system flaws, errors,

faults, and failures. Since the idea of software

development first emerged, numerous methods and

strategies have been developed. The purpose of

software testing is to maximize software quality. In

this paper, we discuss the most common testing

methods and approaches. What they can be used for

and how to use them The following describes how

they function and how they differ from one another.

Techniques: Testing with a black box, white box, and

grey box Strategies: Acceptance Testing, System

Testing, and Unit Testing.[1]

According to Naik & Tripathy (2013), software

testing is both a verification procedure for determining

software quality and a method for achieving that

quality. a crucial part of software development. It has

been around as long as software development. The

method by which a software system is tested

determines its quality. Testers and organizations

recommend allocating 40-50% of their time and funds

to testing. The system must be properly tested in order

to attain a high level of reliability, maintainability,

availability, security, survivability, portability,

capability, efficiency, and integrity.[4]

We can be certain that the system will function as

intended thanks to software testing. Modern software

must be accurate and provide all required functionality

for critical applications. The organization, end user,

developer, and tester all benefit greatly from testing.

There are numerous testing methods and strategies for

software testing. which our paper discusses. [5]

The term "testing" refers to the process of

determining whether or not a given system satisfies

the requirements it was designed to meet. It primarily

consists of a validation and verification process to

determine whether the developed system meets the

user's requirements. As a result, the outcome of this

activity differs from what was anticipated. Finding

bugs, errors, or missing requirements in the developed

system or software is known as software testing.

Therefore, this is an investigation that provides the

stakeholders with precise information regarding the

product's quality .[3]

Software testing is also a risk-based activity that

can be considered. During the testing process, it is

essential for software testers to understand how to

Department of Computer Science & Engineering,

Koneru Lakshmaiah Education Foundation

Vaddeswaram,

Andhra Pradesh, India,

India E-mail: kirankumarvanapalli@gmail.com

Department of Computer Science & Engineering,

Koneru Lakshmaiah Education Foundation,

Vaddeswaram, A.P, India E-mail:

pvsagar20@gmail.com.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 1831–1840 | 1832

break down a large number of tests into manageable

sets and make educated decisions regarding which

risks should be tested and which should not [1].

There is a correlation between the testing cost and

errors in Figure 1. Figure 1 makes it abundantly clear

that testing of both functional and nonfunctional types

significantly increases costs. The process of deciding

what to test or how many to test can result in many

bugs being missed. The objective of effective testing

is to conduct the maximum number of tests possible to

minimize additional testing effort [1].

Software testing is an important part of software

quality assurance, as shown in Figure 1. Life-critical

software testing, such as flight control testing, can

illustrate the significance of testing by illustrating the

risk of schedule delays, cost overruns, or even

cancellation [2, and more about this [3][4].

There are various levels and steps to the testing, and

the test taker varies from level to level. Unit testing,

integration testing, and system testing are the three

fundamental stages of software testing. The software

developer or the quality assurance engineer, also

known as a software tester, test each of these steps [5].

The Software Development Lifecycle (SDLC)

includes all of the above-mentioned testing steps. The

development of software must be broken down into a

set of modules, with a different team or individual

responsible for each module. The process of testing

each module or unit to see if it performs as expected is

referred to as "Unit Testing" after it has been

completed by the developer. Integration Testing is the

second stage of the SDLC's testing process. After the

modules of a single software system have been

developed independently, they are integrated together,

and once the integration is complete, it is common for

errors to occur during the build. System Testing, or

testing the software as a whole from every angle, is

the final testing step in the software development

lifecycle (SDLC). Software testing also ensures that

the integrated units do not disrupt or interfere with the

programming of any other module. However, testing a

large or extremely complex system can take a very

long time because testing each combination becomes

more difficult as the number of components in the

application increases. and scenario, indicating a

pressing need for a more effective software testing

procedure for premium optimization [6].

From Test Planning to the analysis of Test Results, the

testing cycle mostly consists of several phases. The

plan for all of the test activities that will be carried out

throughout the testing process is the primary focus of

the first phase of test planning. The development of

the test cases that will be utilized during the testing

process takes place during the second phase of the

testing life cycle, known as Test Development. The

next phase of the Testing cycle is Test Execution,

which includes executing the test cases. The relevant

bugs are reported in the Test Reporting phase, which

is the next phase. Test Result Analysis is the final

stage of the testing process. Here, the software or

system developer conducts a defect analysis. This step

can also be handled with the client because it will help

them better understand what to ignore and what to fix,

improve, or just change [7].

II. Existing Testing Methods

The creation of test cases is the first step in the

Testing procedure. To ensure efficient and accurate

testing, a variety of testing methods are used to create

the test cases.

Black box testing, white box testing, and grey box

testing are the most common testing methods [8].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 1831–1840 | 1833

White Box testing is a method of testing that tests

not only the software's functionality but also the

application's internal structure, making it very

effective.

It is necessary to have programming skills in order

to design the test cases in order to carry out white box

testing. Clear box and glass box testing are other

names for white box testing. Unit, integration, and

system testing are all examples of this kind of testing.

The purpose of this kind of testing—also known as

security testing—is to ascertain whether information

systems safeguard data and continue to function as

intended. Because this type of testing makes use of the

software's internal logical arrangement, it can test all

of a module's independent paths, exercise every

logical decision, check all loops at every boundary

level, and use the software's internal data structures.

However, the inclusion of programming expertise

in the testing procedure makes white box testing a

complex procedure [9] [10].

Black Box testing is a type of testing that essentially

tests the application's functionality without going into

the specifics of the implementation. This method can

be used at any stage of the SDLC's testing process. It

mostly carries out the testing in such a way that it

examines each and every feature of the application to

see if it satisfies the user's initial requirements. By

testing their functionality at each minimum,

maximum, and base case value, it can identify

incorrect functions. It is the most common and

straightforward method of testing worldwide [9, 10].

III. Software Testing Life Cycle

The Test Plan is a mandatory document that is geared

toward the application's functional testing; without it,

the testing process is impossible [11].

The test case is created during the test designing

phase, which concludes the test planning process. The

QA team either writes appropriate test cases by hand

or, in some instances, creates automated test cases. A

set of test inputs or data, the conditions of execution,

and the expected outcomes are all specified in a test

case. It is important to select the specified set of test

data in such a way that it produces both the expected

result and data that is intentionally incorrect and will

result in an error during the test. Usually, this is done

to see under what circumstances the application stops

working [11].

The test cases that were developed prior to the

execution phase are carried out in the Test Execution

Phase. Every failed test case will be linked to the error

or bug that was discovered if the functionality passes

the execution phase without receiving any bug reports.

A defect or bug report is the output of such activity.

After the test cases have been run, the generated

results are reported as part of test reporting [11]. Bug

reports are also sent to the development team so that

they can be fixed.

IV. Software Release Life Cycle

 This life cycle follows the STLC and includes

additional testing, including Alpha and Beta testing.

Alpha Testing, where Alpha stands for the initial

developer-level testing of the application, can be

carried out using either the white box technique or the

grey box technique. A black box approach, also

known as an alpha release, could be used for testing at

the system or integration level. When a feature freeze

occurs, alpha testing ends and no more features are

added to improve functionality or serve any other

purpose [13] [14].

Because it is performed by the user following the

Alpha release, the Beta testing phase can be regarded

as formal acceptance testing. It comes after the Alpha

testing phase. For the purpose of testing, the software

or application is made available to a specific set of

intended users. Before an application is officially

released, the beta version is typically made available

to the intended audience for feedback. The intended

audience is frequently referred to as Beta Testers, and

the application may be referred to as a prototype

software version primarily for demonstration

purposes.

As a result, the software's final version is released

following beta testing [15, 16].

V. Enhancement Of The Testing Processes

Test Suite Prioritization uses Combinational Criteria

to improve the testing procedure. The primary

approach to this kind of test case prioritization is to

convert the weblogs into test suites that are relevant to

the user session and then write them down in an XML

format. Coverage based on combinatorial test suites

should accurately prioritize the algorithm used in this

method. In addition, empirical studies ought to be

carried out in order to evaluate the efficiency of the

particular application and the relevant test suites it

contains [17]. C-PUT, a tool used in this manner,

basically formats the logs of web applications into

XML-formatted test suites; The functionality for

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 1831–1840 | 1834

prioritizing these tests is then made available through

its use.

The question of whether or not these test suite

prioritization methods can be utilized to improve the

fault detection ratio is the subject of ongoing research

[18, 19]. Another improvement to the software testing

process is the use of genetic algorithms (GAs) to

automate the generation of test data for the

application. Previously, the use of dynamic methods

for the generation of test data remained a significant

issue; genetic algorithm-based testing, on the other

hand, is not only effective for the generation of test

data but also capable of handling the generation of

data in accordance with the degree of program

complexity [20].

VI. Test Automation

Test automation which is the utilization of particular

software to carry out the testing process and also

makes the comparison of actual results with the

expected results, is the most significant improvement

to the testing process.

The Test Automation technique saves time by

eliminating the need for laborious manual testing.

Test Automation is used in the SDLC both during the

testing phase and the implementation phase. Because

it saves a significant amount of time and completes

the testing processes in a shorter amount of time, Test

Automation is being used worldwide in place of

manual testing. By reducing the need for manual

testing and revealing the number of errors and

deficiencies that cannot be identified through manual

testing, test automation has replaced manual testing.

One of the most common types of testing, regression

testing, takes a lot of time when done manually. After

any bugs or errors have been fixed, it typically checks

to see if the software or application functions

properly. because the error or bug ratio of the code or

application occasionally rises even higher after the

error is fixed. Therefore, to avoid the time required for

regression testing, For this purpose, a collection of

automated test suites is assembled into a regression

test suite. Additionally, Test Automation aids in the

discovery of the issue at a much earlier stage, saving a

great deal of time and money on modifications in

subsequent phases [21].

VII. Testing Frame Works

Testing framework in the Agile Lifecycle Another

innovation in software testing is the agile lifecycle,

which includes short, quick test cycles and frequently

changing requirements. Therefore, any testing

framework can be used in an agile environment;

however, maintaining a test automation suite becomes

quite challenging because of the frequent iterations

and rapid changes in specified requirements.

However, testing frameworks do not work well in an

agile environment because it is difficult to cover as

much code and functionality.

Test Driven Development (TDD) is a method that

uses automated unit tests to force the decoupling of

dependencies and drive the design of software. TDD

provides a crystal clear measure of success when the

test no longer fails, boosting confidence that the

system satisfies its core specifications. In contrast to

the conventional testing process, which frequently

results in the discovery of one or more errors or

defects, TDD does not. When the TDD method is

used, a significant amount of time that might

otherwise be wasted during the debugging process can

be saved [21].

Behaviour Driven Development, or BDD, is primarily

an extension of Test-Driven Development that focuses

on the system's behavior rather than the

implementation level. As a result, increasing the

efficiency of the testing process is made possible by

providing a clear understanding of the system's

intended function. As a result, BDD is primarily Test-

driven Development combined with acceptance

testing, which typically entails testing to determine

whether a product or software requirement is met or

not. User Acceptance Testing is the term for it if it is

carried out by the intended customer or user [22].

VIII. Metrics For Testing

A. Metrics for Prioritization The use of Test Metrics is

crucial because they have the potential to significantly

boost the efficiency of the testing process.

They are a crucial indicator of the accuracy,

efficiency, and analysis of specified metrics. They

may also be of assistance in determining the areas that

need to be improved and the subsequent action or step

that must be taken to eliminate them. Software Testing

Metrics focus on the quality aspects relevant to the

process and product and are divided into Process

Quality Metrics and Product Quality Metrics, both of

which aim to provide enhancements in both the testing

process and the quality of the product [23, 24]. Test

Metrics are not just a single step in STLC; rather, they

serve as an umbrella for the continuous improvement

of the entire testing process itself [23, 24].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 1831–1840 | 1835

However, the matching of the testing approach to the

application under development is a critical issue for

the existing testing process. In every application that

needs to be developed, not every testing strategy can

be used. For instance, the testing of a network

protocol software will be very different from testing a

specific e-commerce application because the

complexity of the test cases will be very different.

This 180 demonstrates how important it is to involve

humans in the testing process rather than just relying

on the existing test cases. The number of HTTP

requests in a test case determines the length of the test,

which is one of the priority metrics. Frequency-based

prioritization improves the testing process by

prioritizing the test cases that use the most frequently

used pages over those that use less frequently used

pages [25] [26].

B. Process Quality Metrics A process is the most

important part because it can produce a high-quality

product in the shortest amount of time and at the

lowest cost. This is the main reason why businesses

all over the world have focused on making processes

work better. This is also where the need for metrics

came from because metrics are needed to accurately

measure a process from a variety of angles.

The most important metric for process quality is

process efficiency, which includes things like the Test

progress Curve, which shows how far along the test

plan the Testing Phase is expected to go [27] [28].

The next important step in the metric, both in terms of

the phases and the components, is the cost of testing.

The primary objective is to assist in determining

which parts will require extensive testing and how

much they will pay for it. Another metric that shows

how long it takes the testing team on average to verify

defects is the average defect turnaround time. An

indicator of operational efficiency is the metric known

as Average Defect Response Time. It is the average

amount of time it takes the team to correct errors.

Metrics for Process Effectiveness guarantee that the

application or products that are produced will be of

high quality. Major components of it include test

coverage, defect removal efficiency, the requirement

volatility index, failed and completed test cases, and

ensuring an improved testing process overall.

Additionally, since RTM (Requirement Traceability

Matrix) maps each test case with a specific

requirement, it can improve it.

IX. Objectives Of Software Testing Applied

➢ Detection All of the system's deficiencies, errors,

flaws, and failures are discovered through detection.

Detection defines the system's capabilities and

limitations, as well as the quality of each system

component, the products that work, and the system as

a whole. Testing must be carried out several times on

the system with incorrect input to ensure that what

will happen and what should not will be detected.

➢ B. Prevention This information provides details on

how to prevent errors and decrease the number of

flaws in order to clarify the system's overall

specification and required performance. It identifies

the factors that lead to errors and helps us avoid them

in the future.

➢ C. Improvement of quality:

"Quality cannot be achieved by evaluating a product

that has already been completed." [1] A software

system's poor quality and unreliability can kill and

cause disasters in critical environments. If there are

bugs in the system

An efficient test helps to reduce the number of errors

and ensures an increase in software quality.

➢ D. Confirmation:

to make sure the software has the necessary features.

At the beginning of the development process,

verification is completed. The fulfillment of specified

requirements is the primary objective of verification.

In essence, verification asked, "Are we building the

product correctly?"

➢ E. Checking:

Validation guarantees that we are evaluating the

appropriate software in accordance with the user's

instructions. Validation can be carried out either at the

beginning or end of the development process. The

question posed by validation was, "Are we building

the right product?"

X. Related Work

Testing software is an important part of the software

development life cycle. It assures us that the system

will function as required. Various software testing

methods and strategies are utilized for this purpose.

White box, black box, and grey box testing are these

methods. The tester tests the requirements and the

final result with a black box. The tester tests the

internal design and source code using a white box.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 1831–1840 | 1836

Gray box testing combines the advantages of black

box and white box testing.

Unit testing is testing only a small number of

units. Integration testing is used to test various

integrated modules.

System testing, on the other hand, is used to test

the system as a whole.

In this paper, we compare and discuss these strategies

and techniques to determine which one is appropriate

for which situation. We go into great detail about

them.

XI. Methods For Testing Software

A. Tests with black boxes:

a method for testing software that plays a significant

role in testing software. Black box testers do not have

access to source code or any knowledge of the internal

design when they are testing. Testers only have

system architecture knowledge. This method is

intended to guarantee that all system inputs are

accepted in the specified manner and that the output is

correct.

[2] The following are the most well-known black box

software testing methods.

1) Analysis of boundary values:

The boundary failure of the system is a possibility.

because programming at the edges of equivalence

classes increases the likelihood of error. This is why

this method focuses on choosing values or edges at

extreme boundaries.

2) Partitioning by equivalence:

We are able to reduce the number of test cases thanks

to these methods. This method basically divides the

program's input domain into equivalence classes based

on input values. These input domain-derived

equivalence classes are used to create test cases.

3) Testing with Orthogonal Arrays:

Orthogonal array testing is a statistical method of

testing that helps reduce the number of test

combinations and is used when the input domain is

very small. Columns are used to represent variables,

and rows are used to represent test cases.

4) Diffusing:

Barton Miller invented the black box testing method

known as "fuzzing" in 1989 at the University of

Wisconsin. The application is fed random input in this

method. Implementation flaws can be identified

through fuzzy testing, which employs malformed or

partially malformed data injection in automated or

semi-automated session fuzz tests.

5) Testing based on graphs:

Black box testing method that begins with the creation

of a graph. The input modules are used to create the

graph. An identifier is given to input modules.

Through graph a connection is established between

effect and its causes. 6) All Pair Testing: A sort of

black box technique in which the purpose of test cases

is to execute all discrete combinations which are

possible for input parameter of each pair.to cover all

the pairs we need to use a number of test cases. 7)

State Transition Diagrams (or) State Graphs: A

brilliant tool which is used to capture several types of

system requirements and documented internal system

design. This tool is also used to test state machine and

to navigate GUI (graphical user interface).

Tests in white boxes:

Structural Testing and Code-Based Testing are two

other names for this method [6, 7, 8, 9, 10, 11, 12].

This testing method focuses primarily on examining

the internal logic and structure of source code. It can

be used at the integration, unit, and integration levels.

A tester must have complete knowledge of the source

code in order to use this technique [13, 14, 15, 16].

The following are the most well-known white box

software testing methods.

1) Checking the desk:

Desk checking is a manual method for verifying

programs' logic. Typically, the programmer conducts

this test and records the results with a pen and paper.

2) A Guide to the Code:

It is a type of peer review in which the programmer

leads the review process and asks other team members

questions about the system to find errors.

3) Inspection in writing:

This formal, cost-effective, and effective method is

used to find design and code errors. supervised by an

outside contractor. The most formal method is this

one. Its primary objective is to find errors, side effects,

and violations.

4) Testing of Control Flow:

a fundamental approach that works for all software.

This is used with almost all software and is based on

code coverage structure, which refers to the number of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 1831–1840 | 1837

programs that have been tested. 100% coverage is the

technique's criterion and goal.

5) Testing the Basis Path:

This method will be utilized to assess procedural

design's logical complexity [17, 18, 19]. Each distinct

path of code is tested separately for this purpose. In

the program, control flow will be represented by flow

graphs.

6) Testing the data flow [20, 21, 22]:

The control flow graph can be used to learn how this

method defines and uses program variables.

7) Testing a Loop:

Errors in loops typically occur near the beginning and

end. The validity of the loop construct—is there a

possibility that the loop will successfully terminate—

is the primary focus of this method.

Testing in a gray box:

This is a testing method in which little is known about

the internal application work. This method works on

any platform or language.

Grey box testing combines the advantages of black

box and white box testing. It uses algorithms and

internal data structure to design test cases less

frequently than white box testing, but more frequently

than black box testing.

Grey box is the combination of a white box and a

black box. This method will be used to test a piece of

software against its specification without knowing

everything about how it works inside. It is frequently

used in integration testing, but it can also be used in

most phases of testing.

The following are the most well-known grey box

software testing methods.

1) An oblique array:

Utilizing a subset of all possible combinations, this

testing strategy This is statistical and systematic.

2) Testing matrices:

The project static report is stated using this method.

3) Testing for Regression:

Running test cases is necessary for regression testing.

if the system is to undergo new changes.

4) Testing Patterns:

to make sure the application's architecture and design

are good. This method will be utilized.

The following is a list of various integration testing

techniques.

➢ Test of Module Interface:

This method is used to determine whether or not the

flow of information into the program unit and out is

correct.

➢ 2) Local data models:

This is used to determine whether the temporary data

are properly stored and maintain their integrity.

➢ 3) Boundary circumstances:

to make sure that the module boundary conditions are

met so that the program can run properly at

boundaries.

➢ 4) Alternative routes:

to guarantee that each independent path is tested at

least once after each module's statements have been

executed.

➢ 5) Paths for handling errors:

After each test has been successfully completed, error

handling paths must be used to ensure that errors are

handled appropriately.

Integration Testing Integration testing is the process

of merging software modules and testing them as a

group. Between unit testing and system testing is this

testing.

This method simultaneously builds program structure

and uncovers errors. The interface between modules

or units is the purpose of this method.

The following is a list of various integration testing

techniques.

➢ Integration from the top:

This incremental approach is used to build program

structure. The procedure repeats itself until all

modules have been integrated and tested, starting with

the most advanced module.

➢ Integration from the bottom up:

Test the application as a whole as single unit

integration continues until all modules are integrated,

starting with the application's innermost unit.

➢ 3) Big bang experiments:

This is not an incremental strategy. Start by

combining all of the parts, then test the program as a

whole and a set of errors. Because errors occur after

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 1831–1840 | 1838

they are corrected, this method can be used

indefinitely.

Testing A System:

When a system meets its specified requirements, this

kind of testing is carried out. This testing does not

necessitate familiarity with source code. This is a

collection of various tests. This kind of testing aims to

fully test the application. The purpose of each test on

the system is different. This verifies that the system is

capable of carrying out required functionality and is

properly integrated.

The following are different methods for testing a

system:

1) Recovery testing:

Non-functional testing is one type. The primary

objective is to compel the software to fail to verify

how quickly and effectively recovery is carried out.

Re-initialization, restart, and data recovery are

evaluated if recovery is automated to ensure that the

system check pointing mechanisms are functioning

correctly.

2) Testing for security:

It ensures that there are no loopholes that result in

significant losses. This test aims to uncover all system

flaws and loopholes. Testers use customer software

designed to break the system's defenses to attack the

system.

3) Testing of graphical user interfaces:

This method is used to test the user's graphic user

interface to make sure it meets the requirements.

Testing screen controls like menus, toolbars, buttons,

windows, and dialog boxes, among others, is part of

this.

4) Testing for compatibility:

This testing is not functional. By running the software

on various operating systems, networks, hardware,

browsers, and databases, compatibility is checked.

XII. Conclusion Work

This paper explains what software testing is and what

its methods and strategies are. Software testing is the

process of running a software system to look for

errors and make sure it meets the requirements.

Provide an independent perspective on the system.

Risk, which may arise from the implementation of

software, enables the company to appreciate and

comprehend risk. When testing is based on user

requirements and for large code segments, the black

testing technique should be used. In order to get rid of

extra lines of code that aren't needed, white box

testing is used to find implementation and internal

code errors. The testing of interface and functional

specification is done with grey box testing. Software

and hardware units that are either separate units or

related units that are grouped together are subject to

unit testing.

The purpose of integration testing is to evaluate the

interaction between software and hardware

components, as well as combinations thereof. The

purpose of system testing is to evaluate the system as

a whole. We compare and elaborate on various

strategies and methods.

such as the Black-Box, White-Box, and Grey-Box

tests. System testing, integration testing, and unit

testing are also compared.

Because the product's final delivery is dependent on

testing, it is the most important step in the Software

Development Lifecycle. Because it is a laborious and

time-consuming process, improved methods and

novel approaches are required. This makes it possible

to use automated testing and other test metrics both

before and during the testing process. It can improve

the testing methods that are already in place, making

them more efficient in terms of time and producing a

reliable and effective product that not only meets the

specified requirements but also maximizes

operational efficiency.

The platform on which software development and

testing are carried out continues to grow in

importance. Testing, on the other hand, is an

extremely important and significant step that typically

occurs quite late in the software development process.

For better understanding and early review,

specification writers and testers should interact as

much as possible. This could eliminate ambiguity

issues and save money on software maintenance in

the future. Before releasing the project for official

testing, testers should provide developers with a

specific lightweight test model so that they can verify

that the primary specifications have been met.

Exception testing and methods for handling

exceptions can be best determined with the help of

simulation tools, which can greatly assist testers in

creating a similar environment to that of the product.

By incorporating simulation into the testing process,

the product can be tested in a similar testing

environment to that intended for the product. As a

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 1831–1840 | 1839

result, the work that is relevant to the testing process

in the future will be much more dependent on

technology, using a model-based simulation and

automated testing approach to not only speed up the

testing life cycle but also provide optimal bug

prevention and effective quality assurance.

XIII. References

[1] P. Ron. Software testing. Vol. 2.

Indianapolis: Sam’s, 2001.

[2] S. Amland, "Risk-based testing:" Journal of

Systems and Software, vol. 53, no. 3, pp.

287–295, Sep. 2000.

[3] Redmill and Felix, “Theory and Practice of

Risk-based Testing”, Software Testing,

Verification and Reliability, Vol. 15, No. 1,

March 2005.

[4] B. Agarwal et al., “Software engineering and

testing”. Jones & Bartlett Learning, 2010.

[5] K. Bogdan. “Automated software test data

generation”. Software Engineering, IEEE

Transactions on 16.8 (1990): 870-879.

[6] Jacobson et al. The unified software

development process. Vol. 1. Reading:

Addison-Wesley, 1999.

[7] Everett et al., “Software testing: testing

across the entire software development life

cycle”. John Wiley & Sons, 2007.

[8] J.Irena. “Software Testing Methods and

Techniques”, 2008, pp. 30-35

[9] Guide to the Software Engineering Body of

Knowledge, Swebok, A project of the IEEE

Computer Society Professional Practices

Committee, 2004.

[10] E. F. Miller, “Introduction to Software

Testing Technology”, Software Testing &

Validation Techniques, IEEE, 1981, pp. 4-

16.

[11] M. Shaw, “Prospects for an engineering

discipline of software,” IEEE Software,

November 1990, pp.15-24.

[12] D. Nicola et al. "A grey-box approach to the

functional testing of complex automatic train

protection systems." Dependable

Computing-EDCC 5. Springer Berlin

Heidelberg, 2005. 305-317.

[13] J. A. Whittaker, “What is Software Testing?

And Why Is It So Hard?” IEEE Software,

2000, pp. 70-79.

[14] N. Jenkins, “A Software Testing Primer”,

2008, pp.3-15.

[15] Luo, Lu, and Carnegie, "Software Testing

Techniques Technology Maturation and

Research Strategies’, Institute for Software

Research International-Carnegie Mellon

University, Pittsburgh, Technical Report,

2010.

[16] M. S. Sharmila and E. Ramadevi. "Analysis

of performance testing on web application."

International Journal of Advanced Research

in Computer and Communication

Engineering, 2014.

[17] S. Sam path and R. Bryce, Improving the

effectiveness of Test Suite Reduction for

User-Session-Based Testing of Web

Applications, Elsevier Information and

Software Technology Journal, 2012.

[18] B. Pedersen and S. Manchester, Test Suite

Prioritization by Cost based Combinatorial

Interaction Coverage International Journal of

Systems Assurance Engineering and

Management, SPRINGER, 2011.

[19] S. Sprenkle et al., "Applying Concept

Analysis to User-session based Testing of

Web Applications", IEEE Transactions on

Software Engineering, Vol. 33, No. 10,

2007, pp. 643 – 658

[20] C. Michael, “Generating software test data

by evolution, Software Engineering”, IEEE

Transaction, Volume: 27, 2001.

[21] A. Memon, “A Uniform Representation of

Hybrid Criteria for Regression Testing”,

Transactions on Software Engineering

(TSE), 2013.

[22] R. W. Miller, “Acceptance testing”, 2001,

Data retrieved

from(http://www.dsc.ufcg.edu.br/~jacques/c

ursos/map/recursos/Testin g05.pdf)

[23] Infosys, “Metric model”, white paper, 2012.

Data retrieved from , ijsaet,vol25, issue5,pp-

78-89.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 1831–1840 | 1840

[24] B. Boehm, “Some Future Trends and

Implications for Systems and Software

Engineering Processes”, 2005, pp.1-11.

[25] R. Bryce, “Test Suite Prioritization and

Reduction by Combinational based

Criteria”, IEEE Computer Society”, 2014,

pp.21-22.

[26] M. I. Babar, “Software Quality

Enhancement for value based systems

through Stakeholders Quantification”, 2005,

pp.359-360. Data retrieved from

(http://www.jatit.org/volumes/Vol55No3/10

Vol55No3.pdf)

[27] R. Ramler, S. Biffl, and P. Grünbacher,

"Value-based management of software

testing," in Value-Based Software

Engineering. Springer Science Business

Media, 2006, pp. 225– 244.

[28] D. Graham, "Requirements and testing:

Seven missing-link myths," Software, IEEE,

vol. 19, 2002, pp. 15-17

