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Abstract: Nowadays, with the spread of imaging and examination devices, digital images have become ubiquitous. Satellite and radar 

images are of particular importance due to their diverse applications. In meteorology, where image resolution and pixel accuracy are 

critical for accurate rainfall measurements, the use of lossy compression can degrade image quality and distort pixel value, leading to 

inaccurate results. Hence, maintaining image resolution through lossless compression is essential to maintain the reliability of weather 

data and ensure the accuracy of forecasts and analyses. Satellite images are often very large, posing significant challenges for their 

storage and transmission. Image compression addresses this problem using lossless techniques that allow for perfect reconstruction of the 

original image. Therefore, our study uses a Huffman coding algorithm and two types of predictive coding which are error coding and 

facsimile coding. For the satellite images, predictive coders achieve a higher compression ratio than the Huffman coder and the 

compressed bit rate can even drop below the entropy limit. Moreover, and due to the homogenous zones of pixels with the same intensity 

in the radar image, the facsimile predictive coder generated the lower bit rate than the other coders in relatively shorter time. 
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1. Introduction 

Vision is one of the most developed human senses, where images 

play an extremely important role in the human perception. Today, 

due to the fast development in imaging devices, such as digital 

cameras and different types of scanner, as well as the increasing 

number of screens from televisions to computers and mobile 

phone, digital images have become ubiquitous in people’s daily 

lives. In fact, advanced imaging machines such as the ones 

present on satellites are not limited to the visible band of the 

electromagnetic spectrum and can cover almost the entire 

spectrum using an important number of sensors. The images that 

are obtained by these satellites are called multispectral images 

and have a wide range of applications depending on the band of 

the electromagnetic spectrum that is captured. For instance, the 

LANDSAT satellite, whose main purpose is to take pictures of 

the earth from space to monitor environmental conditions, uses 

multispectral images for plant vigor measurements, soil thermal 

mapping, shorelines definition, etc. This type of images is also 

used to obtain night time images of the World which may be used 

for the detection of human settlement areas or to discover large 

wild fires. In addition to that, multispectral satellite images are 

also extensively used for weather observation and prediction [1].  

It can clearly be understood that such large amounts of 

information give rise to big data storage space requirements [2]. 

Moreover, satellites can only communicate with ground stations 

when the former visit the area of the earth where the later are 

located. Therefore, the communication systems used must be able 

to handle such large data sets in limited time intervals. In order to 

meet such requirements, satellite image compression becomes a 

mandatory step [3]. Satellite image compression is the technique 

used to reduce the size of the data without loss of important 

information. This process is possible by exploiting the 

redundancy in the data and/or by discarding irrelevant 

information. Many compression algorithms such as Arithmetic, 

Lempel-Zilv-Weslh or Goulomb coding are well defined and 

established in the literature [1]. Moreover, in 1987, a new 

technique called multi-resolution technique was developed by 

Mallat which allowed the representation of images at multiple 

resolutions. Using this technique the Discrete Wavelet Transform 

represents an image as a linear combination of a finite function 

with zero average value called the mother wavelet, and scaled and 

shifted versions of it called baby wavelets [4]. This image 

transform is the basis for the JPEG 2000 standard and the 

Consultative Committee for Space Data Systems (C.C.S.D.S.) 

recommendation for image data compression which achieve good 

results for satellite images [5]. Vector Quantization is another 

compression method; it represents blocks of the image using a 

single codeword selected from a codebook that is generated using 

training vectors [6].  

There are two types of image compression; lossless compression 

in which the restored image is perfectly identical to the original, 

and lossy compression in which the decompressed image is not 

exactly the same as the original. In general, lossy compression 

can achieve a greater compression rate than lossless compression 

and depending on the application either one of the methods is 

used. For example, some images with enormous data volume 

necessarily require lossy compression [7] while precision 

applications need lossless compression. In the field of 

meteorological data processing, the pixel’s resolution or intensity 
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in radar or satellite image is very significant for correct rainfall 

estimations this is why lossless compression is the preferred 

choice. 

2. Data Used 

A digital image could be defined as a two-dimensional sequence 

of sample values I[m,n], where “m” is the vertical spatial 

coordinate also called the row index and “n” is the horizontal 

spatial coordinate also called the column index. Each image 

sample is called a pixel, and the pixel size of a digital image is 

called the resolution. The sample value I[m,n] represents the 

intensity or brightness of the image at location [m,n] [1], [8]. In 

order to obtain the sample values, the image must be sampled and 

then quantized using a digitizer such as a scanner or a digital 

camera. Thus, the digitizer takes samples (pixels) of the 

continuous tone image at given spatial intervals. After that, each 

pixel is assigned a B-bit value, generally B= 8 bits. Each pixel 

value is a scalar that is proportional to the real valued brightness 

quantity; using 8 bits, the pixel values range from 0 to 255. 

Images with multiple components, such as color images are 

represented with separate sequences; one for each component. 

For instance, color images can be represented using the three 

components; Red, Green and Blue color (RGB). If each color 

component is digitized using 8 bits, each pixel will be represented 

using 24 bits, this is known as 24-bit color depth which can 

represent more than 16.7 million colors [9]. 

The data set used in this study consists of three meteorological 

images that are described as follows: 

a. A radar image of a cloud saved as “Im1.tif” file that has a size 

of 18.1 Kbytes. Its resolution is 510 x 510 pixels .This image 

has an associated color map which is not coded. 

b. A satellite images displaying planet Earth from the African 

side and surrounding clouds. They are saved as “Im2.jpeg” 

and “Im3.jpeg” files with the sizes of 2.08 Mbytes and 2.26 

Mbytes respectively, and the resolution of 3712 x 3712 pixels 

(gray scale). 

3. Data pre-processing 

In order to be able to reduce the size of data used to represent the 

amount of information that exists in an image to achieve 

compression, some of this data needs to be redundant. Thus, it is 

either a duplicate, it can be predicted using the rest of data or it is 

simply irrelevant to the application. 

3.1. Spatial redundancy 

The pixels of most images are not statistically independent. In 

other words, they are more or less correlated; especially adjacent 

pixels which are highly correlated [10]. There are two main types 

of neighborhoods in two-dimensional arrays, such as the ones 

used to represent digital images, 4-neighborhoods and 8-

neighboorhoods, as shown in Fig.1. 

 

 
Fig 1.  4-neighborhood (on the left) and 8-neighborhood (on the right) 

Spatial redundancy implies that the value of a given pixel can be 

reasonably predicted from its neighbors [1]. In that sense, the 

actual pixel value does not hold much information since it can be 

guessed using its neighbors. This mainly possible due to the fact 

that, except for the edge regions, the pixel values change 

gradually along a row or a column. Moreover, images; especially 

computer generated ones, may contain regions with uniform pixel 

values in which the inter-pixel redundancy is very high. 

3.2. Coding redundancy 

A code is a system of symbols used to represent a body of 

information. Each part of information is assigned a sequence of 

code symbols, called a code word. The number of symbols in 

each code word is called the code length [1]. In this study bits are 

the symbols used to represent the information which is the pixel 

intensity values. More than often, the 8-bit codes used to 

represent pixel intensity values in digital images are longer than 

needed. Indeed, the number of bits required to code the pixel 

values depends on the statistical properties of the image [8]. 

Thus, in the worst case, if all the 256 levels are equally like; i.e. 

have the same probability, there is no redundancy and all the 8-bit 

codes are needed. However, if all 256 intensity levels are not 

present in the image, it might be possible to code the image with 

fewer bits per code word. Moreover, if the probability 

distribution of the different intensity levels is highly non-uniform 

and a few values are more likely than the others, a variable length 

code can achieve high compression rates. 

3.3. Irrelevance 

It is obvious that removing unnecessary information from a 

dataset contributes to data size reduction. Two main types of 

irrelevant information can be distinguished in the context of 

digital image compression: information that is not useful for the 

intended purpose and information that is ignored by the Human 

Visual System (HVS) [1]. The first type of irrelevance is 

application-specific. For example, only one region of the image is 

of interest in some military and medical applications, which 

makes the rest of the image irrelevant, and can therefore be 

omitted [8]. 

Likewise, some applications do not require the use of all image 

components, such as specific applications of multispectral 

satellite image. The data related to these components are 

therefore removed.  

On the other hand, the second type of irrelevance is concerned 

with the characteristics of the HVS. In fact, the human eye’s 

perception of images is complicated and is different from that of 

camera sensors [10]. The HVS is more sensitive to some visual 

information rather than the other. Therefore, using fewer data to 

represent less visually important information, also referred to as 

psycho-visually redundant data, does not affect the visual quality 

of the image. Consequently, image compression is achieved. For 

instance, the HVS is more sensitive to the luminance of color 

image rather than their hue or saturation. Thus, for compression 

purposes the original RGB image is mapped to a luminance-

chrominance space using a linear transformation. After that, the 

chrominance components are sub-sampled in both the horizontal 

and vertical directions, reducing the number of chrominance 

components by 4. 

4. Compression system 

A typical compression system consists of two parts: a compressor 

and a decompressor which can be modeled as mapping operations 

M and M* respectively [1], [8]. The compressor may be preceded 

by a pre-processor that can perform various application-specific 

image processes such as image enhancement or noise elimination 
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to prepare the image for compression [6]. Additionally, the 

decompressor might be followed by a post-processor to improve 

the final look of the image. 

After the pre-processing of the original input image, if the 

application requires such a step, it is fed onto the compressor 

which generates a compressed representation of the input, also 

referred to as the bit stream. This bit stream may have a fixed 

length or a variable length depending of the type of encoder used 

by the compressor. Generally, variable length encoding is 

preferred since it takes advantages of the statistical redundancy 

present in the input. This resulting compressed representation is 

the one that is stored or transmitted to a remote location in a 

communication system. On the other hand, the decompressor 

receives the bit stream which it decodes creating a reconstructed 

output image. If the decompression mapping M* is exactly the 

inverse of the compression mapping M; i.e. M*= M-1, the system 

performs lossless compression. Finally, the reconstructed image 

is post-processed if it is necessary for the application. A 

systematic view of a typical compression/decompression system 

is given in Fig.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.  Compression/Decompression system. 

4.1. Measures of compression 

In order to quantitatively measure the amount of compression that 

is performed by a given compression system, two main quantities 

are defined, the Compression Ratio (C.R) and the Compressed 

Bit Rate (C.B.R). 

Without compression, an input image of size “m x n” is 

represented by “m x n x B” bits if each pixel value is represented 

by B bits. The generated bit stream is denoted “c” and its length 

is ||c|| [8].  

Thus, the Compression Ratio (C.R) achieved by the compressor 

is defined as follows: 

C.R= 
m ×n ×B (size of the input)

‖c‖ (size of the bit stream)
  (1) 

The Compressed Bit Rate (C.B.R) is defined as in the following 

equation and is expressed in bits per pixel (bpp). 

C.B.R= 
‖c‖ (size of the bit stream)

m  x n (total number of pixels)
 (2) 

4.2. Lossless compression 

Information theory provides the mathematical framework for the 

study of the statistical properties of information and how it can be 

compressed without losses [1]. The first person to formally 

introduce this theory is Claude Elwood Shannon, an electrical 

engineer at Bell Labs [11]. Indeed, he developed a quantity to 

measure the amount of information conveyed by an event, which 

he called a message “s”. This quantity is self-information i(s) 

which he defined as follows: 

i(s)= logb
1

p(s)
=- logb p(s)  (3) 

Where p(s) is the probability of occurrence of the message “s”. 

Note that the base of the logarithm, “b”, determines the 

information unit. If b=2, the unit is bits and the self-information 

is then, roughly speaking, the number of bits needed to represent 

the message without losses [12]. This definition implies that 

totally deterministic messages for which p(s) =1, i(s) = 0. In other 

words, they hold no information since they always occur.  

For 8-bit intensity levels the alphabet is AX = {α0, α1, 

α2,…}={0,1,2,…,255}. Thus, the self-information conveyed by 

the occurrence of a given pixel intensity is computed as follows. 

i(αi)= logb
1

p(αi)
=- logb p(αi) (4) 

Where, p(αi) is the probability of the occurrence of a pixel with 

intensity value αi  computed with considering that all pixel values 

are statistically independent. 

p(αi)=
Number of pixels with intensity value αi

Total number of pixel (m ×n )
  (5) 

In addition to the concept of self-information, Shannon has also 

defined entropy which he has borrowed from physics where it 

measures the disorder and randomness of a system [12]. For a 

random variable X, the entropy is defined as follows and is 

measured in the unit of bits/pixel [1]. 

H(X) = − ∑ p(αi)log2 p(αi)αi∈AX
 (6) 

4.3. Huffman coding 

Huffman codes are optimal prefix codes generated by the 

Huffman Coding Algorithm (HCA) developed by David Albert 

Huffman in the 1950’s [13]. In general in computer science, 

fixed-length codes are used to associate each message with a 

codeword of a predetermined length such as the ASCII code that 

maps each printable character to a 7-bit code-word [12]. 

However, such codes do not take advantage of the statistical 

redundancy that may exist in a data set. For this reason variable-

length codes which assign to each element of the alphabet or 

message αi a distinct codeword  𝒄𝜶𝒊
 of length 𝑳𝜶𝒊

 are used [8]. 

The sequence of messages is thus represented by concatenating 

the individual codeword of each message in the sequence. In the 

context of digital image compression, the messages are pixel 

intensity values and the sequence of pixels is the image. 

Therefore, the compressed bit stream is generated by 
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concatenating the codeword of each pixel intensity values as it 

appears on the original image. In fact, assigning shorter code-

words for messages with higher probabilities and vice versa will 

contribute to the reduction of the data size. 

In order to avoid ambiguity and allow the decoder to clearly 

identify the code-words from the concatenated bit stream, it is 

necessary to design a code that is uniquely decodable. One 

interesting type of uniquely decodable is prefix codes in which 

no code is the prefix of any other. Prefix codes can be represented 

as binary tree where each message is a leaf of the tree, and the 

codeword for each message is obtained by following the path 

from the root of the tree until the leaf and assigning either 1 or 0 

when going left or right down the tree.  

For the purpose of compression, the average code rate of the 

prefix code, which is defined as follows, must be minimized 

(close to the entropy). 

𝑅 = ∑ 𝐿𝛼𝑖
𝑝(𝛼𝑖) ≥ 𝐻𝛼𝑖∈𝐴  (7) 

A particular type of Huffman codes is taken into consideration for 

this algorithm; it is canonical Huffman codes [14]. Canonical 

Huffman codes are characterized by two main properties. The 

first is that when shorter codes are filled with zeros to the right, 

their numerical value is superior to that of longer codes. 

Secondly, the numerical values of canonical Huffman code-words 

increase alphabetically within fixed lengths. In the context of 

digital image compression the numerical values of canonical 

Huffman code-words increase with the increase of the coded 

pixel intensity value within fixed lengths. (Example: if both pixel 

intensity values “7” and “19” are coded using codewords of 

length “1”1, the numerical value of the codeword for “19” must 

be greater than that of the codeword for “7”). 

4.4. Predictive coding 

4.4.1. Facsimile predictive encoding 

It is called facsimile predictive encoding because it is one of the 

techniques used for FAX telecommunication [9]. Unlike the 

previous approach where the error between the actual and 

predicted pixel intensity values is encoded,  

 

This method uses a tag for spatially correlated pixels. In fact, the 

algorithm checks the similarity between the actual pixel intensity 

value and the predicted pixel intensity value, if they match, the 

actual pixel intensity value is replaced by the marker, 256; 

otherwise, the actual value is encoded. At the end of the process, 

homogeneous areas of the images are represented as blocks of the 

marker 256, thus converting spatial redundancy into statistical 

redundancy. These new values are then injected to the entropy 

coder.  

4.4.2. Predictive error encoding 

The predictive error e[i, j], is computed as the difference between 

the actual pixel intensity value I[m, n] and the predicted pixel 

intensity value Ip[i, j] which is defined as the intensity value of 

the previous pixel in the row if its row index is higher than 1 and, 

as the intensity value of the above pixel if the row index is 1. 

Finally, the predictive error values are fed to the entropy encoder 

[6]. In the decoder, the predictive errors are reconstructed and the 

decoded pixel intensity values are obtained by adding the 

predictive error values to the previous pixel intensity values 

according to how the error is calculated in the compressor. Fig.3 

illustrates the diagram for a predictive error encoder system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.  The structure of a predictive error compression system 

4.5. Lossy compression 

A typical lossy compressor consists of three successive main 

components [1]. The first part is a transformer that maps the 

digital image matrix representation “I” into another 

representation “T(I)”, usually non visual, that is more adequate 

for coding [6]. After that, the transform values are fed into a 

quantizer which diminishes the number of possible values for 

the mapper’s output to discard irrelevant information. 

Quantization is the step responsible for introducing distortion 

since it causes information loss [8]. Finally, the quantization 

values are encoded using a symbol encoder which assigns fixed 

or variable length symbols (or codewords) to the quantizer’s 

output to generate a compressed bit-stream which will be stored 

or transmitted.  

On the other hand, the decoder is composed of a symbol decoder 

and an inverse transformer. Since the quantization step is 

irreversible, an inverse quantizer cannot be used in the 

decompression procedure.  

The Joint Photographic Experts Group (JPEG) baseline mode is 

the most adequate for the majority of image compression 

applications and it only supports lossy compression [6]. The 

compression occurs in four successive steps:  

a. 8x8 pixels image blocking. If the image resolution is not a 

multiple of 8, the border blocks are padded either using zeros 

or some symmetry of the original pixels. 

b. Discrete Cosine Transform (DCT) coefficients computation 

for each block to generate a set of 64 DCT coefficients [9]. 

Next, these coefficients are normalized using a normalization 

array. The standard provides a default normalization array 

which can be scaled by a quality factor that ranges up to 

100% to reduce the compressed file size even further. 

c. Quantization: is achieved by rounding the normalized DCT 

coefficients to the nearest integer.  

d. Variable-length encoding. 

 

I[i,j] 
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Input image I 
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5. Results and discussions 

MATLAB is the language chosen to implement the compression 

algorithms developed for the sake of this study. The three images 

have been compressed and decompressed using the two 

predictive coding schemes, and the canonical Huffman coding 

algorithm. The use of the faster Huffman compression scheme for 

the satellite images is due to their big size because the execution 

time of original Huffman algorithm is about 167 hours which is 

highly inefficient. For each compression type, the entropy, the 

compression ratio, the compressed bit rate and the execution time 

are recorded in the tables,1, 3 and 4. 

Table 1. The experimental results for Radar image Im1.tif. 

Compression type Huffman 
Predictive 

error 

Facsimile 

prediction 

Entropy (bpp) 0.476 

Compression ratio 6.951 7.343 7.451 

Compressed bit rate (bpp) 1.151 1.089 1.073 

Coder execution time (s) 34.323 2.160 5.320 

Decoder execution time (s) 6.940 7.131 1.538 

In addition to the lossless techniques, and in order to compare our 

results, the radar image “Im1.tif” was compressed using the lossy 

pseudo JPEG algorithm. The entropy, the compression ratio 

(C.R), the compressed bit rate (C.B.R) and the coding and 

decoding execution times for this image with the different quality 

factors (1, 0.5 and 0.25) are recorded in Table 2  

Table 2. The experimental results for Radar image Im1.tif using the lossy 

compression.. 

Quality factor 1 0.5 0.25 

Entropy (bpp) 0.476 

Compression ratio 66.108 86.740 106.370 

Compressed bit rate (bpp) 0.121 0.092 0.075 

Coder execution time (s) 1.182 1.660 1.501 

Decoder execution time (s) 1.800 1.442 1.055 

The original radar image and the reconstructed compressed image 

for both lossy compression, with the quality factors (1 and 0.5), 

and lossless compression are shown in Fig.4.1, 4.2, Fig.4.3 and 

Fig.4.4 respectively. 

 

Fig 4.1.  The original Radar image “im1.tif”. 

 

Fig 4.2.  The reconstructed Radar image ’im1.tif’ using lossly 

compression with quality factors =0.5. 

 

Fig 4.3.  The reconstructed Radar image ’im1.tif’ using lossly 

compression with quality factors =1. 

 

Fig 4.4.  The reconstructed Radar image ’im1.tif’ using lossless 

compression. 

The Huffman coder achieved a relatively good compression ratio 

for the Radar image “im1.tif” in a relatively moderate time, but it 

couldn’t approach the entropy because of the 1bpp limit imposed 

by the nature of Huffman coding. Concerning the predictive 

coders, they both achieved a compression ratio that is higher than 

the one of the simple Huffman coder. 
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The results of the pseudo JPEG reconstruction of the radar image 

were theoretically good; the reconstructed image itself does not 

visually resemble the original. This can be explained by the 

nature of this image which consists of a large homogenous zone 

of pixels with intensity value of “1” interspersed with a small 

number of pixels with different values in a small scattered region 

which cause significant high frequency components in the DCT 

spectrum of the image. Since, these high frequency components 

are highly quantized by the pseudo JPEG compression, the 

reconstructed image is poor in visual quality despite the good 

theoretical objective quality assessment measurements values. 

Table 3. The experimental results for satellite image Im2.jpeg. 

Compression type 
Faster 

Huffman 

Predictive 

error 

Facsimile 

prediction 

Entropy (bpp) 6.640 

Compression ratio 1.202 1.707 1.313 

Compressed bit rate (bpp) 6.656 4.687 6.092 

Coder execution time (s) 501.566 139.723 471.468 

Decoder execution time (s) 2019.886 610.719 1865.544 

 

Table 4. The experimental results for satellite image Im3.jpeg. 

Compression type 
Faster 

Huffman 

Predictive 

error 

Facsimile 

prediction 

Entropy (bpp) 6.568 

Compression ratio 1.213 1.751 1.350 

Compressed bit rate (bpp) 6.595 4.569 5.924 

Coder execution time (s) 458.635 180.035 426.332 

Decoder execution time (s) 1604.596 489.694 1505.247 

The original and reconstructed compressed satellite images using 

the lossless compression are shown in Fig.5.1, Fig.5.2, Fig.6.1 

and Fig.6.2. 

 

Fig 5.1.  The original Satellite image “im2. Jpeg”. 

 

Fig 5.2.  The reconstructed Satellite image “im2. Jpeg”. 

 

Fig 6.1.  The original Satellite image “im3. Jpeg”. 

 

Fig 6.2.  The reconstructed Satellite image “im3. Jpeg”. 
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We can see through the results of the lossless compression of the 

two satellite images, “im2.Jpeg” and “im3.Jpeg”, that the 

Huffman coder was able to closely approach the entropy. 

However, the execution time for these two images; especially the 

decoder time, was considerably high despite the use of the faster 

algorithm. Concerning the predictive coders, they both achieved 

compression ratios that are higher than the one of the Huffman 

coder, and were even able to go below the entropy limit for the 

two images. 

6. Conclusion 

Satellite images serve nowadays a wide spectrum of applications 

ranging from mapping and cartography to meteorology and 

weather forecast. With an increasing file size especially with the 

improvement of the sensors used to capture the images and the 

rise of multi- and even hyper-spectral satellite images, the storage 

space requirements and the transmission times necessary to 

communicate the images to the Earth station increase 

dramatically. In order to overcome both these issues image 

compression is the most adequate solution.  

In this paper, we were able to successfully implement a various 

algorithms, lossless compression, such as Huffman and predictive 

error coders and lossy compression given by the pseudo JPEG 

reconstruction for only radar image in order to compare the two 

techniques of compression. 

For the satellite images, the predictive error coder generated bit 

streams with a lower bit rate than those of the facsimile predictive 

coder and the faster Huffman coder in a considerably shorter 

time.  

In the case of radar images, the facsimile predictive coder 

generated bit streams with a lower bit rate than those of the 

predictive error coder and the Huffman coder in a considerably 

shorter coder and decoder execution time. Hence, Huffman 

coding performs the highest compressed bit rate in relatively long 

execution time. 

However, lossy compression achieved a higher compression ratio 

and subsequently a lower compressed bit rate and execution time 

compared to the lossless compressor, mainly because lossy 

schemes remove a given part of the information present in the 

image which gives a considerable loss in the useful data. 

Depending on the properties of the image especially the inter- 

spatial pixel correlation, the optimal lossless compression can be 

achieved using the predictive error scheme when no particular 

homogenous zones of pixels with the same intensity value appear 

in the image. 
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