

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4513 - 4522 | 4513

A Comprehensive Survey of Authentication Mechanisms in MQTT

Broker Implementations

A. Renuka Devi1, M. Chandra Mohan2

Submitted:12/03/2024 Revised: 25/04/2024 Accepted: 01/05/2024

Abstract: The MQTT (Message Queuing Telemetry Transport) protocol has emerged as a prominent communication means in the world

and the messaging applications. As MQTT deployments continue to grow in scale and complexity, ensuring robust authentication

mechanisms becomes paramount to safeguarding the confidentiality, integrity and availability of MQTT communication. This survey

paper provides a comprehensive analysis of authentication mechanisms in MQTT protocol, encompassing a wide range of approaches,

from basic username/password authentication to advanced techniques such as client certificates, OAuth 2.0 integration, and token-based

authentication. The paper begins by examining the foundational concepts of MQTT protocol and the importance of authentication in

securing MQTT deployments. It then proceeds to systematically explore various authentication mechanisms available in MQTT,

detailing their strengths, weaknesses. Furthermore, the survey investigates recent advancements in MQTT authentication, and the

authentication schemes in different MQTT broker implementations. Additionally, the paper discusses challenges and open research areas

in MQTT authentication, offering insights into potential future directions for research and development. By synthesizing existing

literature and providing critical insights, this survey paper becomes an invaluable resource for researchers, practitioners, and IoT

stakeholders seeking to understand, evaluate, comprehend and implement authentication mechanisms in MQTT protocol effectively.

Keywords: Internet of Things, MQTT, Authentication, One time password

1. INTRODUCTION

The Internet of Things (IoT) refers to a network of

connected devices with built-in sensors, software, and

other technologies that allow them to collect and

communicate data over the internet. These devices can

range from everyday objects such as home appliances,

wearable devices, and industrial machinery to complex

systems like smart cities and autonomous vehicles.

MQTT is a lightweight messaging protocol that is

frequently used in Internet of Things (IoT) applications.

It follows a publish/subscribe messaging pattern,

facilitating efficient communication between devices and

applications.

MQTT is well-suited for resource-constrained devices,

such as sensors and actuators, and operates efficiently

over low-bandwidth or unstable networks. While MQTT

itself does not mandate specific security mechanisms, it

can be used over secure transport protocols like

TLS/SSL for encryption and authentication.

Authentication and authorization mechanisms can be

implemented at the application level to guarantee secure

communication between clients and brokers.

MQTT has gained widespread implementation in various

IoT applications, including home automation, industrial

automation, smart cities, smart homes, healthcare

monitoring, and smart agriculture. The Organization for

the Advancement of Structured Information Standards

(OASIS) defined it as an open protocol to encourage

compatibility and interoperability across various

implementations.

MQTT implements a publish/subscribe messaging

pattern, where clients (devices or applications) send

messages to topics called as publish and the client acting

as subscriber receives messages from specific topics as

shown in the fig 1.

Fig. 1. Publish/Subscribe Mechanism

MQTT has the following features:

Quality of Service (QoS) Levels: MQTT supports

different levels of message delivery assurance, known as

QoS levels, allowing users to choose the appropriate

level of reliability for their applications. QoS 0 (At most

once): No confirmation or acknowledgment is provided;

messages are delivered at most once. QoS 1 (At least

once): Messages are sent out at least once, which

1 Research Scholar, JNTU, Hyderabad, renuka.adibhatla@gmail.com
2 Professor of CSE, JNTU, Hyderabad, c_miryala@jntuh.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4513 - 4522 | 4514

guarantees message delivery but may cause duplication.

QoS 2 (Exactly once): Despite higher overhead,

messages are only transmitted exactly once, ensuring

message delivery and eliminating duplicates.

Connection-Oriented Protocol: MQTT operates on top

of TCP/IP or other transport protocols, establishing a

connection between clients (publishers and subscribers)

and a central broker. Clients connect to the broker and

can maintain persistent sessions, enabling them to

reconnect and resume communication without losing

message state.

Hierarchical Topic Structure: Messages in MQTT are

published to topics, which form a hierarchical structure

delimited by slashes ("/"). Topics allow for flexible

message routing and filtering, enabling subscribers to

receive messages based on specific topics or using

wildcards to match multiple topics.

Last Will and Testament (LWT): MQTT's "Last Will

and Testament" function enables users to designate a

message that the broker will publish in the case of an

ungraceful disconnection. This function makes sure that

clients can update others on their whereabouts, even in

the event that they unexpectedly disconnect from the

network.

MQTT packet structure: The structure of an MQTT

packet consists of three main components: the Fixed

Header, the Variable Header, and the Payload as shown

in Fig.2. The Fixed Header is always there and includes

the Packet Type, flags for DUP (duplicate delivery), QoS

(Quality of Service), and RETAIN (whether the message

should be retained by the broker), along with the

Remaining Length, which indicates the number of bytes

left in the packet. The Variable Header is optional and

varies depending on the packet type, containing fields

like the Protocol Name, Packet Identifier, and other

relevant information depending on the packet type, such

as CONNECT, PUBLISH, or SUBSCRIBE. The

Payload, also optional, contains the actual message

content, such as a client identifier, topic filters, or

application messages, depending on the type of packet.

This compact structure allows MQTT to be highly

efficient, making it ideal for environments with limited

resources.

Fig 2. MQTT Packet Structure

The remainder of this paper is structured as follows.

In Section 2, the previous works are reviewed. The

importance of authentication and types of authentication

are introduced in Section 3. Then, the types of

authentication in MQTT are analyzed in Section 4. The

authentication methods in MQTT and different MQTT

broker implementations are discussed in 5.

Implementation challenges are summarized in 6. The

paper is summarized and conclusion is given in Section

7 .

2. RELATED WORKS

This section provides review of the current work related

to MQTT authentication.

Authentication can be based on credentials such as

username and password or using an identification token

created by the server. [1], [2], [3] have presented

different surveys on the authentication mechanisms of

MQTT brokers and different authentication schemes.

The security mechanisms implemented by different

MQTT brokers is studied by Jaidip et. al in [4]. In

addition to the traditional authentication using username

and password, token based authentication and JWT

based authentication have been used for additional

security of the system.

By employing token-based authentication and utilizing

the secret key for both encryption and decryption, the

study in [5] presented a lightweight authentication

technique. Niruntasukrat [6] introduced an authorization

mechanism for MQTT-based IoT systems. The

authorization mechanism presented in this work is based

on OAuth 1.0a, an open authorization standard for web

applications. [7] have proposed the design and

implementation of token based authentication of MQTT

protocol in constrained devices. . In order to secure the

communication protocol between the device and cloud

using an SSL certificate, [8] have introduced a novel

security mechanism for MQTT environments called

MQTT-Auth, which is based on AugPAKE, on an

authorization token and an authentication token. Authors

in [9] have proposed a prototype access control system to

manage the device node(publisher) and the

authentication server(gateway). SSL certificate is used

for establishing the secure connection and

communication between the device and the

authentication server. [10] proposed JWT based client

authorization for MQTT systems. [11] have used the

JSON Web Token (JWT) to build a token-based

authentication mechanism on MQTT as a second

authentication factor other than username and password.

3. TYPES OF AUTHENTICATION IN IOT

Authentications in IoT environments are crucial to

ensure security, integrity, and trustworthiness of the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4513 - 4522 | 4515

interconnected devices and systems. Some of the

authentication types used in IoT are:

3.1 Device Authentication

IoT has variety of heterogeneous, networked devices that

vary in terms of size, shape, storage capacity, processing

speed, and battery life. Tracing back the device's who,

what, when, where, and other actions is a laborious task

when there are so many devices connected to the

network. Numerous studies have also demonstrated how

difficult it is to authenticate devices because of the

variety of connected gadgets. Pre-shared keys and

public-key certificates have formed the foundation for

several inter-device authentication methods that have

been suggested thus far [12, 13]. Nguyen et al. [14] put

forth a symmetric key protocol for peer-to-peer device

authentication that makes use of identity-based

encryption and is appropriate for a variety of application

areas. An approach to IoT device authentication based on

behavioral usage patterns was developed by Ashibani

and Mahmoud [15]. Their authentication approach based

on behavioral usage pattern. Their authentication model

employs ML to detect any deviation from the normal

pattern.

3.2 Identity-Based Authentication

Users, administrators, or applications interacting with

IoT devices and systems should undergo authentication

to access data, control devices, or perform administrative

tasks. These authentication mechanisms help prevent

unauthorized access and protect sensitive information.

The author of [16] proposed the identity based

authentication for IoT. An anonymous, secure, efficient,

and unlinkable architecture for authentication was given

by the authors in [18]. Their approach requires a lot of

time due to the frequent session key modifications. For

privileged devices, authors in [19] suggested a fast and

error-free key agreement and authentication scheme that

used channel state information as the common secret

key. The author proposes in [20] an Identity-based

Encryption (IBE) system as part of a Function-based

Access Control (FAC) strategy for the Internet of

Things. This proposed method prevents unauthorized

functions from operating by offering incredibly fine-

grained access control. The experimental results

demonstrate that the proposed method is successful

against a range of attack types, and the security analysis

certifies the security of the suggested system.

3.3 Mutual Authentication

Mutual authentication ensures that both the IoT device

and the server or service it interacts with authenticate

each other. This two-way authentication mechanism

provides security against impersonation attempts and

guarantees that only reliable parties can communicate

with one another. Nivethitha et al[21] proposed a mutual

authentication scheme for managing end devices. Lu,

Yanrong, et al. proposed a safe and efficient mutual

authentication scheme for session initiation for IoT

networks. Yanbin Zhang et al. suggested a mutual

authentication approach to facilitate secure device-to-

device communication [23]. Qingru Ma, Haowen Tan,

and Tianqi Zhou suggested a mutual authentication

mechanism for smart devices in Internet of Things (IoT)-

enabled smart home systems[24].

3.4 Role-Based Access Control (RBAC)

RBAC mechanisms allow IoT devices, users, and

applications to be assigned specific roles and

permissions based on their identities and privileges.

Niruntasukrut[6] used role-based access control ensures

that only authorized entities can access certain resources,

perform specific actions, or access sensitive data within

the IoT ecosystem. A model-driven framework was

developed by Bisma, Mariam, et al.[25] to guarantee

role-based access management in Internet of Things

devices.

3.5 Levels of Authentication

3.5.1 One-Factor Authentication (1FA)

It relies on a single type of credential to verify a user's

identity. This is the most basic form of authentication.

The authentication method can be a password which the

user provides or a PIN, which is a personal identification

number that the user must remember and input.

3.5.2 Two-Factor Authentication (2FA)

It requires two different types of credentials from two

different categories to verify correct identity of the user.

An extra layer of security is added to one-factor

authentication. The methods can be a password or PIN

along with a physical device like a Smartphone, security

token, or smart card or biometrics like fingerprints, facial

recognition, or iris scans.

• Password + SMS Code: The user enters their

password and then an SMS containing code is

sent to their mobile phone.

• Password + Authenticator App: The user

enters their password and then a time-based

code from an authenticator app (like Google

Authenticator).

3.5.3 Three-Factor Authentication (3FA):

It involves three different types of credentials from three

different categories, providing an even more secure

method of verifying a user's identity. A password or PIN,

a physical device like a smartphone, security token, or

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4513 - 4522 | 4516

smart card along with Biometric details such as

fingerprints, facial recognition, or iris scans.

• Password + Security Token + Fingerprint:

The user enters their password, inserts a

security token, and provides a fingerprint scan.

• PIN + Smart Card + Iris Scan: The user

inputs a PIN, uses a smart card, and undergoes

an iris scan.

Table. 3.1. Comparison of Different authentication factors

Type
Factors

Used
Examples Merits Challenges

Single-Factor

Authentication (SFA)

Single

factor Password, PIN Simple, low cost

Low security,

password

management issues

Two-Factor

Authentication (2FA) Two factors

Password + SMS

code, Password +

Authenticator app

Enhanced security,

deters unauthorized

access

User experience,

reliance on additional

factors

Multi-Factor

Authentication (MFA)

Two or

more

factors

Password + Security

Token + Fingerprint

Highest security

level, mitigates

various threats

Complexity, user

convenience, cost and

infrastructure

Each level of authentication adds an additional layer of

security but also introduces more complexity and

potential inconvenience for users. The choice of which

authentication method to use depends on the security

requirements and the potential threats faced by the

system or organization.

4. AUTHENTICATION MECHANISMS IN

MQTT

Authentication mechanisms are typically implemented

by MQTT brokers or servers as part of their extended

functionality rather than being inherent to the MQTT

protocol itself. However, MQTT does support a flexible

authentication process, enabling clients and servers to

authenticate each other through various methods.

Fig 3: Authentication types in MQTT

4.1 Basic Authentication schemes

 There are 2 basic authentication methods used in

MQTT. They are username and password (credentials)

and using client certificates.

4.1. 1 Username/password authentication in MQTT

Username/password authentication in MQTT provides a

basic yet effective method for authenticating clients

(devices or applications) when connecting to an MQTT

broker. MQTT clients are configured with a username

and password, which is typically provided by the MQTT

broker administrator during client setup. The

username/password combination, serves as the

credentials that clients use to authenticate themselves to

the MQTT broker when establishing a connection. Upon

successful authentication, the connection has been

accepted and the client can now proceed to publish

messages, subscribe to topics, or perform other MQTT

operations on the broker. The advantage of this method

is that it provides basic security but it is very important

to safeguard the passwords by storing them securely and

then transmitting to prevent unauthorized access but the

disadvantage is that the username/password

authentication in MQTT is relatively simple and may not

be suitable for high-security applications.

4.1.2 Client certificates

In MQTT (Message Queuing Telemetry Transport)

protocol, client certificates play a vital role in ensuring

secure communication between MQTT clients and

brokers. Client certificates are part of the Secure Sockets

Layer/Transport Layer Security (SSL/TLS) protocol,

which is used for a secure connection between clients

and brokers. When a client connects to an MQTT broker,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4513 - 4522 | 4517

it can present a client certificate to authenticate itself. A

trusted Certificate Authority (CA) issues this certificate

and contains all the information about the client, such as

its identity and public key. The broker verifies the

client's certificate against its list of trusted CAs to ensure

the client's authenticity.

The advantage of this method is that client certificates

offer stronger authentication compared to

username/password, as they are based on cryptographic

principles and MQTT messages exchanged between the

client and broker are encrypted using SSL/TLS,

providing confidentiality and integrity of data in transit

but the limitation is that the MQTT clients need to be

configured to use client certificates for authentication.

This involves specifying the client's private key and

presenting the client certificate during the SSL/TLS

handshake with the MQTT broker

4.2 Advanced authentication schemes

The two advanced authentication schemes widely used

are OAuth2.0 integration and token based authentication.

a) OAuth 2.0 integration: OAuth 2.0 is an

authorization framework designed to enable

secure access to resources on behalf of a user by

third-party applications without requiring the

user's credentials to be shared.

 OAuth 2.0 offers several advantages as an

authorization framework for securing access to

resources in web and API-based applications.

One of its key strengths is its flexibility, which

allows it to be adapted to various use cases and

scenarios. It provides a standardized approach

to authentication and authorization, promoting

interoperability between different systems and

services. It supports fine-grained access control

through the use of scopes, allowing clients to

request only the permissions they need to

perform specific actions, thereby minimizing

the risk of unauthorized access.

b) Token-based authentication: It provides a

secure method for clients to authenticate

themselves to the MQTT broker using access

tokens. Clients obtain an access token from an

authentication server or authorization server

using an authentication mechanism such as

OAuth 2.0 or JWT (JSON Web Tokens).

 Token-based authentication offers several advantages in

securing web and API-based applications. One of its

primary strengths is its statelessness, which eliminates

the need for servers to store session data, resulting in a

more scalable and distributed architecture. Tokens can be

easily distributed and verified across different services

and servers, allowing for seamless integration and

interoperability. Additionally, token-based authentication

enhances security by reducing the risk of attacks such as

session hijacking and cross-site request forgery (CSRF).

Since tokens are typically generated using cryptographic

algorithms and contain limited information, they are less

susceptible to tampering and exploitation compared to

traditional session-based authentication mechanisms.

Furthermore, token-based authentication facilitates the

implementation of single sign-on (SSO) and federated

identity management solutions, enabling users to access

several different applications and services with a pair of

credentials.

Token-based authentication also has some limitations.

One challenge is the need to securely transmit and store

tokens to prevent unauthorized access. If tokens are

compromised or leaked, they can be used by attackers to

impersonate legitimate users and gain unauthorized

access to resources. Additionally, token-based

authentication introduces additional complexity to the

authentication process, particularly in scenarios where

tokens need to be refreshed or revoked to maintain

security

4.3 Enhanced security measures in MQTT

Enhancing security in MQTT deployments involves

implementing various measures to protect the data

confidentiality, integrity of data, and availability of the

data in MQTT communication. Some enhanced security

measures specific to MQTT:

4.3.1 Transport Layer Security (TLS)

Transport Layer Security (TLS) provides a secure

communication channel between a client and a server. A

secure communication channel is offered by Transport

Layer Security (TLS) between a client and a server.TLS

is a cryptographic protocol that establishes a secure

connection between the client and the server by

negotiating different parameters through a handshake

procedure. Once the handshake is finished, the client and

server can communicate with ecncrypted messages,

making it impossible for an attacker to listen in on any

part of the conversation. Clients utilize an X509

certificate that servers offer to confirm the server's

identity. TLS encrypts data transferred between the client

and the server, guaranteeing that it cannot be intercepted

and interpreted by unauthorized parties. It offers security

and data integrity. TLS ensures that there hasn't been any

tampering with the data during transmission between the

client and server.

4.3.2 Message-level security

It refers to the practice of securing individual messages

exchanged between software components or services

within a distributed system. Unlike transport-level

security, which focuses on securing the entire

communication channel, message-level security is

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4513 - 4522 | 4518

concerned with securing the contents of each individual

message. Messages are encrypted before transmission

and decrypted upon receipt, to ensure that only the

devices/clients that are authorized will access the content

of the message. This helps prevent eavesdropping and

unauthorized access to important, sensitive information.

Data integrity, non repudiation and interoperability are

guaranteed by the message level security.

Even if an attacker can gain access to the transmission

channel or network, they cannot access the contents of

the messages without the appropriate cryptographic keys.

It is particularly useful in environments where messages

may pass through multiple servers or intermediaries,

ensuring that only the intended recipients can read the

content. It is commonly used in secure email

communications, messaging applications, and any other

scenarios where data security at the message level is

crucial.

Table 4.1. Summary of different authentication mechanisms

Authentication Type Description Pros Cons

Username/Password

Clients authenticate

by sending a

username and

password with the

connection.

Simple to implement

and widely supported.

Less secure, passwords need to be

stored and managed securely.

Client Certificates

Uses SSL/TLS with

X.509 certificates for

client authentication.

Highly secure, mutual

authentication.

More complex setup, certificate

management needed.

Pre-shared Keys (PSK)

Clients use pre-

shared keys for

authentication over

SSL/TLS.

Secure and efficient.
Key distribution and management can

be challenging.

OAuth 2.0

Uses OAuth 2.0

tokens for

authentication.

Modern, flexible,

integrates with many

identity providers.

More complex implementation,

requires additional infrastructure.

JWT (JSON Web

Token)

Clients use JWTs for

stateless

authentication.

Compact, self-

contained tokens, can

carry metadata.

Token management and expiration

handling needed.

SASL (Simple

Authentication and

Security Layer)

Provides a flexible

framework for

various

authentication

mechanisms.

Supports multiple

authentication methods.

Complexity depends on the chosen

mechanism.

Anonymous
No authentication,

open access.

Very simple, no setup

required.

Not secure, should only be used in

trusted environments.

5. IMPLEMENTATION OF AUTHENTICATION

TECHNIQUES IN DIFFERENT MQTT

BROKERS

There are several MQTT brokers available, each with its

own features, advantages, and specific use cases. Here

are some of the popular MQTT brokers:

5.1 Mosquitto

Eclipse Mosquitto is an open-source MQTT broker that

is widely used for its simplicity and compliance with

MQTT standards. It is Lightweight and efficient,

supports MQTT versions 3.1, 3.1.1, and 5.0., easy to set

up and configure and available on multiple platforms

including Windows, macOS, and Linux.

5.2 HiveMQ

HiveMQ is a commercial MQTT broker designed for

high scalability and enterprise-grade deployments. It

supports MQTT versions 3.1.1 and 5.0 It has high

availability and clustering capabilities, provides an

intuitive management interface and has extensive

integration options with other enterprise systems.

5.3 Amazon AWS IoT Core

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4513 - 4522 | 4519

Amazon AWS IoT Core is a managed cloud service that

provides MQTT broker functionality as part of the AWS

IoT suite. It is a fully managed service with auto-scaling,

supports MQTT versions 3.1.1 and 5.0. It integrates

seamlessly with other AWS services and has built-in

security features including mutual authentication and

end-to-end encryption.

5.4 Azure IoT hub

Azure IoT Microsoft Azure offers a managed service

called Azure IoT Hub, which serves as a central

messaging hub for two-way communication between IoT

applications and the devices it manages. It offers an

extremely scalable and secure platform for managing,

connecting, and keeping an eye on IoT devices.

5.5 Google Cloud IoT Core

Google Cloud IoT Core is a fully managed service that

includes MQTT broker functionality within the Google

Cloud Platform. It is a fully managed and scalable

MQTT broker. It supports MQTT version 3.1.1.It

integrates with other Google Cloud services and provides

robust security and data analytics capabilities.

5.6 EMQX

EMQX (formerly known as EMQ) is an open-source,

highly scalable, and extensible MQTT broker. It supports

MQTT versions 3.1, 3.1.1, and 5.0. It has high

throughput and low latency, clustering and load

balancing capabilities and built-in support for various

protocols (CoAP, LwM2M, etc.) and databases.

5.7 VerneMQ

VerneMQ is an open-source MQTT broker that focuses

on high availability and scalability. It supports MQTT

versions 3.1, 3.1.1, and 5.0. It is designed for clustering

and horizontal scaling. It has robust plugin architecture

and supports various authentication and authorization

mechanisms.

Table 5.1. Summary of different MQTT broker implementations for security

MQTT Broker Authentication Methods Description

Mosquitto

Username and Password Clients provide credentials during the connection process.

Client Certificates

Devices authenticate using SSL/TLS certificates during the

TLS handshake.

External Authentication

Integration with external mechanisms through plugins (e.g.,

LDAP, OAuth 2.0).

ACL (Access Control List)

Fine-grained access control policies based on client identities

or topics.

HiveMQ

Username and Password Clients provide credentials during the connection process.

Client Certificates SSL/TLS certificates required for client connections.

OAuth 2.0

Clients obtain access tokens from OAuth 2.0 authorization

servers.

Custom Authentication

Plugins Custom logic or integration with LDAP/Active Directory.

Token-Based Authentication Clients present tokens (e.g., JWT) for authentication.

AWS IoT Core

X.509 Certificates

Devices use unique certificates signed by a trusted CA for

authentication.

AWS Signature Version 4 HTTP-based authentication using AWS credentials.

AWS IAM Integration

Fine-grained access control with policies based on device ID,

certificate attributes, or IAM roles.

Azure IoT Hub

SAS (Shared Access

Signature) Tokens

Devices authenticate using SAS tokens in the MQTT

CONNECT packet.

X.509 Certificates

Client certificates used for secure connection with the IoT

Hub.

Azure Active Directory

Integration
Fine-grained access control based on roles and permissions.

Google Cloud IoT

JWT (JSON Web Tokens)

Devices present JWTs signed by a Google Cloud service

account.

Mutual TLS (mTLS)

Both device and server present certificates during the TLS

handshake.

Google Cloud IAM

Integration

Define access policies and permissions for IoT resources

based on roles.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4513 - 4522 | 4520

EMQX Cloud

Username and Password Clients provide credentials during the connection process.

Client Certificates

Devices present SSL/TLS certificates for mutual

authentication.

External Authentication

Integration with external systems through plugins (e.g.,

LDAP, OAuth 2.0).

Token-Based Authentication

Clients authenticate using pre-generated tokens, such as

JWT.

VerneMQ

Username and Password Clients provide credentials during the connection process.

Client Certificates

Devices authenticate using SSL/TLS certificates during the

TLS handshake.

External Authentication

Integration with external systems through plugins (e.g.,

LDAP, OAuth 2.0).

Token-Based Authentication

Clients authenticate using pre-generated tokens, such as

JWT.

6. IMPLEMENTATION CHALLENGES

Implementing authentication in MQTT presents several

challenges. One key difficulty is achieving a balance

between security and performance, as more robust

authentication methods like TLS certificates enhance

security but may strain the limited computational power

of IoT devices, potentially slowing data flow.

Additionally, managing and scaling device credentials,

whether through usernames, passwords, or token-based

approaches, can become complex and resource-intensive.

Securing the storage and distribution of these credentials

is another logistical challenge, particularly for devices in

unsecured or remote locations. Some of the

implementation challenges associated with MQTT

authentication techniques which are encapsulated in the

table below.

Table 6.1. Different Research challenges in MQTT broker security

Challenge Description

Resource

Constraints

Many MQTT clients run on resource-constrained devices with limited processing power,

memory, and energy. Because of the memory requirements and computational complexity,

implementing sophisticated authentication mechanisms like public key infrastructure (PKI)

or digital certificates might be difficult.

Compatibility and

Interoperability

MQTT is designed to be interoperable across different platforms and programming

languages. Authentication mechanisms need to be compatible with various MQTT client

libraries and brokers to ensure seamless integration. Achieving compatibility while

maintaining security can be a challenging task.

Key Management

In environments with a large number of MQTT clients, managing authentication credentials

such as usernames, passwords, client certificates, or API keys can be cumbersome. Key

management becomes particularly challenging in scenarios where devices are frequently

added, removed, or updated.

Secure

Communication

Channels

MQTT typically relies on TCP/IP as its underlying transport protocol. Ensuring the security

of communication channels is essential to prevent eavesdropping and man-in-the-middle

attacks. However, securing TCP/IP connections using Transport Layer Security (TLS) can

introduce additional complexity, especially on resource-constrained devices.

Scalability

As the number of MQTT clients and brokers in a network grows, the authentication

infrastructure must scale accordingly to handle the increased load. Scalability

considerations include authentication server performance, database capacity, and network

bandwidth requirements.

Security Risks

Poorly implemented authentication mechanisms can introduce security vulnerabilities such

as brute-force attacks, credential stuffing, or authentication bypasses. Misconfigured

authentication settings can inadvertently expose sensitive data or compromise the integrity

of the MQTT network.

Organizational

Best Practices

Organizations deploying MQTT-based solutions should conduct thorough security

assessments and follow best practices to mitigate potential risks and ensure the

confidentiality, integrity, and availability of their MQTT deployments.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4513 - 4522 | 4521

7. Conclusion

Authentication in MQTT is a critical aspect of securing

IoT environments and messaging applications. This

paper has reviewed the foundational concepts of MQTT,

various authentication mechanisms, and their

implementation in different MQTT brokers. From simple

username/password authentication to advanced methods

like OAuth 2.0 and JWTs, each approach offers different

levels of security and complexity. By understanding the

strengths and weaknesses of these methods,

organizations can better select and implement the most

appropriate authentication strategy for their specific use

case. while traditional authentication methods provide a

foundational layer of security, they may not suffice in

scenarios requiring higher levels of security and

scalability. Advanced techniques like OAuth 2.0 and

token-based authentication offer more flexibility and

security but introduce additional complexity and

infrastructure requirements. The analysis further reveals

that no single authentication method can address all

security challenges posed by diverse IoT environments.

As such, MQTT broker implementations often provide a

combination of authentication methods, allowing for

layered security strategies tailored to specific use cases

and risk profiles. However, challenges such as managing

certificates, tokens, and integrating external

authentication services remain significant, particularly in

resource-constrained environments typical of many IoT

applications

References

[1] Karthikeyan, S.; Patan, R.; Balamurugan, B.

Enhancement of Security in the Internet of Things

(IoT) by Using X. 509 Authentication Mechanism.

In Recent Trends in Communication, Computing,

and Electronics; Springer: Singapore, 2019; pp.

217–225.

[2] M. Calabretta, R. Pecori and L. Veltri, "A Token-

based Protocol for Securing MQTT

Communications," 2018 26th International

Conference on Software, Telecommunications and

Computer Networks (SoftCOM), Split, Croatia,

2018, pp.1-6,doi:

0.23919/SOFTCOM.2018.8555834.

[3] Calabretta, Marco & Pecori, Riccardo & Vecchio,

Massimo & Veltri, Luca. (2018). MQTT-Auth: a

Token-based Solution to Endow MQTT with

Authentication and Authorization Capabilities.

Journal of Communications Software and Systems.

14. 10.24138/jcomss.v14i4.604.

[4] 4.A. Bhawiyuga, M. Data and A. Warda,

"Architectural design of token based authentication

of MQTT protocol in constrained IoT device," 2017

11th International Conference on

Telecommunication Systems Services and

Applications (TSSA), Lombok, Indonesia, 2017,

pp. 1-4.

[5] A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K.

Meesublak, P. Aiumsupucgul and A. Panya,

“Authorization mechanism for MQTT-based

Internet of Things,” 2016 IEEE International

Conference on Communications Workshops (ICC),

Kuala Lumpur, 2016, pp. 290-295. DOI:

10.1109/ICCW.2016.7503802.

[6] S. Shin, K. Kobara, Chia-Chuan Chuang and

Weicheng Huang, “A security framework for

MQTT,” 2016 IEEE Conference on

Communications and Network Security (CNS),

Philadelphia, PA, 2016,pp.432-436.DOI:

10.1109/CNS.2016.7860532.

[7] M. A. A. da Cruz, J. J. P. C. Rodrigues, P. Lorenz,

V. V. Korotaev and V. H. C. de Albuquerque,

"In.IoT—A New Middleware for Internet of

Things," in IEEE Internet of Things Journal, vol. 8,

no. 10, pp. 7902-7911, 15 May15, 2021, doi:

10.1109/JIOT.2020.3041699.

[8] F. A. Shodiq, R. R. Pahlevi and P. Sukarno,

"Secure MQTT Authentication and Message

Exchange Methods for IoT Constrained Device,"

2021 International Conference on Intelligent

Cybernetics Technology & Applications

(ICICyTA), Bandung, Indonesia, 2021, pp. 70-74.

[9] Shingala, “JSON Web Token (JWT) based client

authentication in Message Queuing Telemetry

Transport (MQTT),” 2019,

doi.org/10.48550/arXiv.1903.02895.

[10] B.S.Bali, F. Jaafar, P.Zavarasky, “Lightweight

authentication for MQTT to improve the security of

IoT communication” ICCSP '19: Proceedings of the

3rd International Conference on Cryptography,

Security and Privacy, January 2019, Pages 6–12,

https://doi.org/10.1145/3309074.3309081.

[11] A. A. Wardana and R. S. Perdana, "Access Control

on Internet of Things based on Publish/Subscribe

using Authentication Server and Secure Protocol,"

2018 10th International Conference on Information

Technology and Electrical Engineering (ICITEE),

Bali, Indonesia, 2018, pp. 118-123, doi:

10.1109/ICITEED.2018.8534855.

[12] Bersani, Florent, and Hannes Tschofenig. The

EAP-PSK protocol: A pre-shared key extensible

authentication protocol (EAP) method. No.

rfc4764. 2007.

[13] Clancy, T., and H. Tschofenig. Extensible

Authentication Protocol-Generalized Pre-Shared

Key (EAP-GPSK) Method. No. rfc5433. 2009.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4513 - 4522 | 4522

[14] Nguyen, Kim Thuat, Nouha Oualha, and Maryline

Laurent. "Authenticated key agreement mediated

by a proxy re-encryptor for the internet of

things." Computer Security–ESORICS 2016: 21st

European Symposium on Research in Computer

Security, Heraklion, Greece, September 26-30,

2016, Proceedings, Part II 21. Springer

International Publishing, 2016.

[15] Ashibani, Yosef, and Qusay H. Mahmoud. "A

multi-feature user authentication model based on

mobile app interactions." IEEE Access 8 (2020):

96322-96339.

[16] Salman, Ola, et al. "Identity-based authentication

scheme for the Internet of Things." 2016 IEEE

Symposium on Computers and Communication

(ISCC). IEEE, 2016.

[17] P. Kumar, A. Braeken, A. Gurtov, J. Iinatti and P.

H. Ha, "Anony-mous secure framework in

connected smart home environments", IEEE

Transactions on Information Forensics and

Security, vol. 12, no. 4, pp. 968-979, 2017.

[18] W. Xi, C. Qian, J. Han, K. Zhao, S. Zhong, X.-Y.

Li, et al., "Instant and robust authentication and key

agreement among mobile devices", Proceedings of

the 2016 ACM SIGSAC Conference on Computer

and Communications Security, pp. 616-627, 2016.

[19] H. Yan, Y. Wang, C. Jia, J. Li, Y. Xiang and W.

Pedrycz, "IoT-FBAC: Function-based access

control scheme using identity-based encryption in

IoT", Future Generation Computer Systems, vol.

95, pp. 344-353, Jun. 2019.

[20] B. B. Gupta, A. Gaurav, K. T. Chui and C. -H. Hsu,

"Identity-Based Authentication Technique for IoT

Devices," 2022 IEEE International Conference on

Consumer Electronics (ICCE), Las Vegas, NV,

USA, 2022, pp. 1-4, doi:

10.1109/ICCE53296.2022.9730173.

[21] Annashree Nivethitha, S., Chanthini Baskar, and

Manivannan Doraipandian. "Mutual Authentication

Scheme for the Management of End Devices in IoT

Applications." Advances in Electrical and

Computer Technologies: Select Proceedings of

ICAECT 2019. Singapore: Springer Singapore,

2020. 221-231.

[22] Lu, Yanrong, et al. "A secure and efficient mutual

authentication scheme for session initiation

protocol." Peer-to-Peer Networking and

Applications 9 (2016): 449-459.

[23] Qingru Ma, Haowen Tan, Tianqi Zhou, Mutual

authentication scheme for smart devices in IoT-

enabled smart home systems,Computer Standards

& Interfaces,Volume 86,2023,

[24] Zhang, Yanbin, et al. "A mutual authentication

scheme for establishing secure device-to-device

communication sessions in the edge-enabled smart

cities." Journal of Information Security and

Applications 58 (2021): 102683.

[25] Ma, Qingru, Haowen Tan, and Tianqi Zhou.

"Mutual authentication scheme for smart devices in

IoT-enabled smart home systems." Computer

Standards & Interfaces 86 (2023): 103743.

[26] Bisma, Mariam, et al. "A model-driven framework

for ensuring role based access control in IoT

devices." Proceedings of the 2020 6th International

Conference on Computing and Artificial

Intelligence. 2020.

