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Abstract: Anomaly detection in video surveillance is a crucial yet challenging task, especially when anomalies exhibit a small difference 

compared to their normal counterparts. The nature of this problem becomes even more complex when relying on weakly-supervised 

approaches with video-level labels. In this study, we leverage a weakly supervised framework, treating each video as a sequence of 

instances and propose a novel method to detect anomalies that utilizes LSTM-based models to effectively capture temporal-dependencies. 

Furthermore, to assess the effectiveness of the model in detecting anomalies, we compared the performance of two feature extraction 

techniques - Inflated 3D ConvNet (I3D) and Vision Transformer (ViT). Extensive experiments conducted on RTX 4090 GPU and large-

scale benchmark dataset - UCF-Crime demonstrate that our model achieves better anomaly detection performance (AUC : 90% with I3D 

and 86% with ViT) compared to existing state-of-the-art methods. The comparative analysis of the I3D and ViT feature extraction methods 

provide insights into their applicability to different types of video anomalies. 
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1. Introduction 

WITH extensive applications in autonomous surveillance 

systems [14, 31, 40, 48] , where the timely and precise 

identification of abnormal events is crucial for public 

safety and security, Video Anomaly Detection(VAD) has 

become a crucial field of study [4, 26]. Unusual 

occurrences such as shoplifting, accident and violence 

present significant hazards, and their prompt 

identification and timely detection can mitigate potential 

harm [12]. However, the very nature of the data poses 

inherent difficulty in defining what constitutes an 

"anomaly" against a backdrop of typical normal activities 

[1, 14, 17, 47]. 

The weakly-supervised approach to Video Anomaly 

detection which uses video level labels [31, 40, 45, 48, 

49], has gained traction as compared to a fully supervised 

learning approach that requires frame-level labels and 

unsupervised methods such as one-class classifiers 

(OCCs), that uses only normal videos for training [14, 15, 

19, 23, 28, 29, 46]. Supervised approaches require 

extensive manual annotation of video frames and OCCs 

struggle with generalization to unseen anomalies and 

suffer from high false alarm rates. 

Weakly-supervised VAD is a promising approach that 

strikes a balance between the effort required to annotate 

and the detection accuracy. However, it still faces 

significant challenges owing to the very nature of the 

problem : a) The majority of the content in the long video 

is normal and only a small portion may contain an 

anomaly. Hence the dataset was highly imbalanced. b) 

Anomalies that exhibit only slight deviations from normal 

events pose a significant difficulty. c) The definition of an 

anomaly depends on the context, for example : playing 

football on the ground is normal but doing the same in the 

classroom is an anomaly. 

To address the aforementioned challenges, recent studies 

have explored the use of Multiple Instance Learning 

(MIL) frameworks where each video is treated as a bag of 

snippets and the model is trained to identify abnormal 

snippets. However, existing MIL-based approaches can 

select non-representative abnormal snippets and lack 

robust mechanisms to capture temporal dependencies in 

video data [9, 19, 23, 32, 39, 40, 48, 49]. 

To address these limitations, we propose a novel approach 

that leverages Long Short-Term Memory (LSTM) 

networks to better model the temporal dependencies and 

detect the anomalous events effectively. We also compare 

the performance of two advanced feature extraction 

techniques-Inflated 3D ConvNet (I3D) and Vision 

Transformer (ViT)-in detecting the anomalies. We aim to 

improve the ability of the model to detect the anomalies 

by integrating the LSTM network with these feature 

extraction methods. For long surveillance videos, the 

proposed approach enhances the robustness of the system. 
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We also throw light on the data cases, where both I3D-

based-LSTM network and ViT-based-LSTM network fail 

to classify correctly. 

The remainder of this paper is organized as follows : 

Section 2 reviews related work with greater focus on 

Weakly-Supervised VAD. Section 3 elaborates on the 

proposed methodology and the model architecture. 

Section 4 discusses the and results on UCF-Crime dataset 

and a comparison to other state-of-the-art approaches. 

Finally, we conclude the paper in Section 5 and discuss 

potential research directions for future work. 

2. Related Work 

Video Anomaly Detection (VAD) has garnered 

significant research interest owing to its critical 

applications in surveillance systems, transportation, 

public safety and security. In real-world scenarios, due to 

the unpredictability and rarity of anomalous events, the 

problem becomes inherently challenging leading to 

significant imbalance between normal and anomalous 

events. Traditional methods to VAD typically rely on 

fully supervised approaches that require huge effort in 

terms of manual annotation (frame-level labels) or 

unsupervised methods such as one-class classifiers 

(OCCs) that learn to detect anomalies only from normal 

data and suffer from high false alarms [10, 30]. Both 

methods suffer from poor generalization. 

In contrast, weakly-supervised video anomaly detection 

(WSVAD) has gained attention in recent years where only 

video-level labels are provided. The predominant 

approach within WSVAD to detect anomalies leverages 

Multiple Instance Learning (MIL) frameworks. [31] was 

the first to model the WSVAD problem using a Multiple-

Instance Learning (MIL) framework, aiming to train a 

regression model where each video is treated as a bag of 

instances (frames/segments/clips). A bag is labelled 

positive if it contains at least one abnormal snippet. For 

each video segment/instance anomaly score is predicted 

by a deep neural network-based ranking model. The 

ranking loss encourages high scores for segments that 

contain anomalies in the video. The ranking is enforced 

only on segments that have the highest score in the 

positive and negative bag instead of ranking every 

instance in the bag. The model is trained to maximize the 

distance between the scores of anomalous and normal 

segments, ensuring they are as distinct as possible. The 

features are extracted using a pre-trained model - 

Convolutional 3D (C3D) [33] and a 2-layer Fully 

connected network (FCNN). 

For any classification problem, the popular choice for the 

loss function is a categorical/binary cross entropy or hinge 

loss etc. [31] introduced MIL ranking loss which is made 

up of hinge loss and incorporates sparsity and smoothness 

constraints. Sparsity constraint states that the anomaly 

occurs only for a short period, therefore scores of the 

video that contains anomaly will be sparse. Temporal 

smoothness states that the anomaly scores vary smoothly 

from one segment to another, which means we would not 

see a drastic difference in the scores of adjacent segments. 

Therefore in the case of [31], the loss function is defined 

as : 

 

where Ba and Bn represent the positive (anomalous) and 

negative (normal) bags, respectively, 𝑓(𝑉𝑖
𝑎) is the 

anomaly score for the i-th instance in the positive bag, W 

are the model weights and λ1, λ2 and λ3 are the 

regularization parameters for smoothness and sparsity 

constraints, respectively. 

MIL-based anomaly detection methods easily get affected 

by label noise and have a high false alarm rate. For 

example, a normal segment may get a top anomaly score 

mistakenly in an anomalous bag. Since 2018, after [31] 

WSVAD has become the prevalent area of research [9, 20, 

21, 32, 45, 48] and each of these researches focused on 

improving the MIL ranking framework in terms of feature 

extraction [11, 25, 27, 35, 39, 49], loss function [32, 38, 

45], label denoising [43, 48] or model refinement [9, 18, 

42]. 

Following [31], many researchers [38, 45] proposed score 

distance approaches and exhibited better performance. 

However, these methods face several challenges such as : 

a) fail to leverage abnormal video labels and hence 

perform poorly when the video-level labels are noisy b) 

face difficulty in capturing complex temporal 

dependencies in video data. MIL approaches face 

limitations in learning when using a few or single 

significant snippets and relying solely on regression 

output, rather than making decisions which are feature 

based. To mitigate these challenges, recent works 

incorporate more sophisticated frameworks that utilize 

temporal modeling and context-aware learning. 

In order to reduce the label noise, [48] restructured the 

problem of MIL-based WSVAD as a binary classification 

task and applied a GCN to improve noisy prediction 

derived from labels at the video level. Although [48] 

achieved better results than [31], training GCN and MIL 

can produce unconstrained latent space where normal and 

abnormal features might exist across the feature space, 

leading to unstable performance and increased 

computational costs.  

To remedy the issue of weak labels [34], employed a 
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oneshot Siamese network for anomaly detection. [37] 

improved the detection capabilities by using a lightweight 

CNN with a residual attention LSTM framework, which 

efficiently captured spatial and temporal features in the 

video. [40], released a multi-modal violence dataset (XD-

Violence) and proposed HL-Net (Holistic and localized 

method) to capture long-range dependencies and short-

range interactions using GCN. [39] models abnormal 

concepts using dual-branch network with an aim to 

localize the spatio-temporal tube that encompasses the 

abnormal event. [36] extended their previous work by 

incorporating both appearance and motion features as a 

two stream mechanism, processed through a bidirectional 

LSTM network, eventually enhancing the model’s 

accuracy in detecting and recognizing anomalies. [9] 

proposed MIST, where they fine-tuned a feature encoder 

based on generated pseudo-labels. 

While [9, 31, 33] did pay some attention to temporal 

dependencies to consider multi-scale temporal 

information, [49] improved the MIL-framework by using 

a temporal enhanced network to obtain motion-sensitive 

features and integrated temporal context into MIL ranking 

model via attention blocks. However, for complex scenes, 

excluding appearance information and focusing only on 

temporal or motion information leads to an incomplete 

understanding. [44] focused on multi-scale temporal 

dependencies. [32] proposed robust model (RTFM) with 

an objective to enlarge feature magnitude value between 

normal and abnormal class and select topk segments to 

determine abnormal video segment. Current research uses 

the MTN network for feature aggregation introduced by 

[32]. [18] learned the temporal relations between 

sequences of multiple video instances and proposed an 

innovative multi-sequence learning method leveraging the 

transformer model. [6] introduced MGFN that uses 

Magnitude Contrastive loss to better differentiate between 

normal and abnormal features. 

While several methods acknowledge the temporal 

correlation between video segments, they fail to consider 

temporal differences between normal and abnormal 

videos. These approaches overlook the importance of 

contextual relationships and motion, which is crucial in 

real-world scenarios. It is challenging to amplify the gap 

of features when dealing with weak-labels through a 

single-branched backbone. 

2.1. Feature Extractors 

For a model to effectively detect anomalies, the choice of 

feature extraction techniques play a critical role. 

Traditional approaches relied on handcrafted features. 

However, as deep learning has made substantial progress, 

it is now common to use deep neural network based 

feature extraction. Majorly there are two kinds of models 

that have been employed for this task : a) 3D-CNN based, 

b) Transformer based. WSVAD literature has 

predominantly utilized I3D to extract video features 

effectively from raw video frames. I3D models inflate 2D 

convolutional kernels to 3D and enable the model to 

process spatiotemporal data and learn from both motion 

and appearance cues in the video [3, 31]. On the other 

hand, Vision Transformers (ViT) have been adapted for 

computer vision tasks, inspired by their success in natural 

language processing. ViTs model long-range 

dependencies through self attention mechanisms and 

capture global contextual information, potentially 

offering superior performance in detecting subtle 

anomalies [2, 7, 8, 13, 41].  

While I3D models excel in capturing detailed 

spatiotemporal  features, they may struggle with 

processing long sequences due to  

computational constraints[3]. In contrast, ViTs offer a 

more flexible and scalable approach, capable of handling 

long-range dependencies and complex contextual 

information, though they may require larger datasets and 

more computational power to achieve optimal results [8, 

41].  

Although several models are available, there exists a huge 

gap in terms of accuracy. There is a need to effectively 

and efficiently recognize anomalies. The comparative 

analysis of I3D and ViT presented in this paper adds to 

this growing body of knowledge and provides deeper 

insights into the applicability of these methods for 

different types of video anomalies. In this paper, we 

further explore these techniques by integrating them with 

LSTM networks to enhance the temporal modeling 

capabilities of the anomaly detection system. 

3. Proposed Methodology 

The architecture of our framework is shown in Fig. 1. The 

proposed pipeline extracts features from untrimmed 

video. The processed feature vectors along with the video 

level labels are passed as input to the deep learning model 

to perform a binary classification (anomaly -1, normal -

0). The various architectural modules are explained in the 

further subsections. 

 

Fig. 1.   High level Architecture Diagram. Two feature 

extractors have been explored - I3D and ViT. The feature 

vectors are then processed and results of the binary 

classification are compared for I3D-CNN-LSTM-Model, 

I3D-LSTM Model and ViT-LSTM Model. 
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3.1. Dataset 

The experiments are performed on UCF-Crime dataset, 

which consists of 1900 (untrimmed) videos collected from 

various CCTV cameras, youtube videos etc. There are 950 

normal and 950 anomaly videos in the dataset. The dataset 

includes 13 real-world anomalies that span a broad 

spectrum including Abuse, Arrest, Arson, Assault, 

Burglary, Explosion, Fighting, Road Accident, Robbery, 

Shooting, Stealing, Shoplifting, and Vandalism. The 

training set comprises 800 normal and 810 anomalous 

videos and the testing test contains 150 normal and 140 

anomalous videos. 

3.2. Feature Extraction and Processing 

Each video Vi is represented by frames extracted at 30 fps: 

𝑉𝑖  =  {𝐹𝑖,1, 𝐹𝑖,2, . . . , 𝐹𝑖,𝑁𝑖
}, 𝑤ℎ𝑒𝑟𝑒 𝐹𝑖,𝑗  ∈  𝑅𝐻×𝑊×3                 

(4) 

Here: - Vi denotes the i-th video. - Fi,j represents the j-th 

frame of video Vi . - Ni is the total number of frames in 

video Vi . - H and W are the height and width of each 

frame. We have explored I3D and ViT based feature 

extraction.  

Using I3D, we generate feature vectors of size RS×T×F , 

where S denotes the number of frame segments analyzed, 

T indicates the temporal dimension of the video, and F 

represents the number of features extracted from each 

section at each time period.  

The I3D model extracts spatiotemporal features from each 

video segment using 3D convolution: 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐼3𝐷(𝑉𝑖)  =  {𝑓𝑖,1, 𝑓𝑖,2, . . . . . . . 𝑓𝑖,𝑆 }       (5) 

where each feature vector fi,k for segment k is defined as: 

𝑓𝑖,𝑘 = 𝜙𝐼3𝐷(𝐹𝑖,𝑗:𝑗+𝑇−1), 𝑗 =  (𝑘 − 1) . 𝑇 + 1     (6) 

Here: - ϕI3D is the feature extraction function of the I3D 

model. - fi,k ∈ RF is the feature vector for the k-th segment. 

In our approach, we use ten-crop feature extraction. Each 

frame/clip is divided into 10 sections: top-right, top-left, 

bottom-right, bottom-left, and their horizontal flips. Each 

frame is represented by 10 sections, and 2048 features are 

extracted from each section. Further, we evenly segment 

each video into 32 temporal vectors, resulting in a final 

dimension of (32, 10, 2048). 

On the other hand, using ViT for feature extraction 

enables its self-attention mechanism to capture global 

dependencies across different parts of an image, which is 

particularly beneficial for video analysis where 

understanding the broader context such as, the 

relationships among objects and the overall scene layout 

is essential. For ViT-based feature extraction, the model 

reshapes each video into a standardized format:  

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑖𝑇(𝑉𝑖)  =  𝜓𝑉𝑖𝑇(𝑉𝑖)  ∈  𝑅64×1000            (7)  

where: - ψViT represents the ViT feature extraction 

function. The output dimension 64 × 1000 standardizes 

feature representations across all videos. 

3.3. Deep Learning Model 

We leverage Long Short-Term Memory (LSTM) 

networks to model temporal dependencies and enhance 

the detection of anomalous events. For the I3D-CNN-

LSTM-based model, the Conv3D layer output is reshaped 

and fed into two LSTM layers to learn long-term temporal 

dependencies. Finally, dense layers with ReLU activation 

and a sigmoid output layer are used for binary 

classification. The I3D-LSTM-based model consists of 

four LSTM layers with 100, 50, 20, and 10 units, 

respectively, designed to capture temporal dependencies 

in the input data with each layer except the last returning 

sequences. The final output layer is a Dense layer with a 

sigmoid activation function for binary classification. ViT-

LSTM model begins with an LSTM layer of 100 units that 

returns sequences, which is tailored for the input shape of 

(64, 1000). This is followed by three more LSTM layers 

with 50, 20, and 10 units, respectively, all using ReLU 

activation functions. The final layer is a Dense layer with 

a single unit and a sigmoid activation function, ideal for 

binary classification tasks. The videos with output value 

> 0.5 are labelled anomalous. All the three models are 

compiled with the Adam optimizer, a learning rate of 

0.0001, binary cross-entropy loss(Eq. 8). 

𝐿𝑜𝑠𝑠(𝑦, 𝑦̂)  = −[𝑦𝑙𝑜𝑔(𝑦̂)  + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦̂ )]           

(8)  

where:  

●  y is the true label (0 or 1).  

●   𝑦̂ is the predicted probability of the positive 

class. 

4. Results and Discussions 

As VAD is a classification problem, a confusion matrix is 

calculated (Refer Fig. 2 based on UCF-Crime Test Dataset 

results (290 videos - 150 normal and 140 anomalous) to 

quantify the goodness of the model. However, the models 

usually predict the anomaly score between [0,1]. 

Therefore, there is always a need for a threshold to be 

defined in order to predict the correct class for the test 

video(s). If the anomaly score is above the threshold(0.5 

in our case), it is considered an abnormal video, else a 

normal video. Because there exists data imbalance, the 

preferred choice of metrics is AUC-ROC curve which is a 

plot of (FPR, TPR). The range of ROC, AUC is [0,1]. 

Higher the value, better the classifier model.  

Through our extensive experiments we found that the I3D 

LSTM-based model has performed comparatively better 
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as compared to its ViT counterpart.  

 

 

 

Fig. 2.  : Confusion Matrix of (a) I3D-CNN-LSTM, (b) 

I3D-LSTM Model, and (c) ViT-LSTM Model 

This could be also due to the reason that the nature of 

anomalies in the dataset is varied and each anomaly has a 

very low proportion of videos in the dataset as compared 

to normal videos. Following previous work on WSVAD, 

we use receiver operating characteristic (ROC) curve and 

corresponding area under the curve (AUC) to evaluate the 

performance of our models. Using I3D-LSTMbased 

model produced an overall AUC of 90% as compared to 

overall AUC of 85.98% while using the ViT-LSTM-based 

model. Table 1 summarizes the results. Fig. 3 throws light 

on the AUC-ROC curve for each of the models. 

Table 1. Test Results on UCF-Crime 

 

 

 

Fig. 3.  : AUC-ROC Curve (a) I3D-CNN-LSTM, (b) I3D-

LSTM Model, and (c) ViT-LSTM Model 

To evaluate the practicality of the framework, a detailed 

analysis of the computational requirements was 

performed. ViT-LSTM has a higher computational 

requirement as it effectively captures global dependencies 

- the average inference time per video was 150 ms with 

75% of GPU utilization on RTX 4090. For resource-

constrained environments,  I3D based models are more 

feasible as the average inference time per video was 120 

ms with 60% GPU utilization on RTX 4090. 

We further investigated and collected the 

misclassification statistics for the three prediction 

Fig. 2a. i3D-CNN-LSTM-

CM 

Fig. 2b. i3d-LSTM-CM 

Fig. 2c. ViTLSTM-CM 

Fig 3a : i3D-

CNN-LSTM-

AUC-ROC 

Fig 3a : i3D-

LSTM-AUC-

ROC 

Fig 3c : ViT-LSTM-

AUC-ROC 
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pipelines using the same test dataset. Refer to Table 2 for 

the details. We identify the commonly mispredicted 

videos among all three models as the most challenging. 

These videos include: Arrest039_x264, 

Explosion011_x264, Explosion016_x264, 

Normal_Videos_010_x264, Normal_Videos_478_x264, 

Normal_Videos_606_x264, Normal_Videos_887_x264, 

Normal_Videos_901_x264, Normal_Videos_925_x264, 

RoadAccidents004_x264, RoadAccidents125_x264, 

RoadAccidents133_x26, Robbery102_x264, 

Shooting048_x264, and Shoplifting033_x264.  

The normal videos mostly got misclassified due to factors 

such as night vision and individuals wearing hoodies, 

sudden changes in light intensity etc. Additionally, there 

aren’t enough videos in the dataset that depict explosions 

inside the buildings when viewed from outside, while 

most of the explosion videos had a clear smoke visibility. 

The misclassification of Road Accident videos primarily 

occurred due to high-speed vehicles and scenes being 

captured from considerable distance. To address these 

challenges, a) a label denoising mechanism(e.g., Graph 

convolutional network) can be incorporated to refine 

noisy labels. b) use techniques like oversampling for 

underrepresented anomaly types to balance the dataset. 

Table 2. Misclassification Statistics between the 3 

Prediction Pipelines for the Same Test Set 

 

Fig. 4 provides a performance comparison of popular 

state-of-the-art(SOTA) models on the UCF-Crime 

Dataset, measured by area under the ROC curve (AUC 

%). The compared models are [5, 14, 16, 18, 22, 24, 27, 

32, 43, 45, 48] 

 

Fig. 4.  :  Model Performance compared among popular 

SOTA Models 

5. Conclusion and Future Work 

In this paper, we have addressed the complex challenge of 

video anomaly detection (VAD) using a weakly-

supervised framework that leverages Long Short-Term 

Memory (LSTM) networks to capture temporal 

dependencies in video sequences. Our comparative 

analysis of two advanced feature extraction techniques, 

Inflated 3D ConvNet (I3D) and Vision Transformer 

(ViT), has revealed valuable insights into their efficacy. 

The results indicate that the I3D-based model outperforms 

the ViT-based model, achieving an Area Under the Curve 

(AUC) score of 90% compared to 86% with ViT. The 

proposed method provides a robust solution to handle 

imbalanced datasets and anomalies with minimal 

deviations from normal activities.  

Future work could explore further refinements at each 

stage of the pipeline to reflect the complexity of real-

world surveillance systems for example, in the feature 

extraction process, the integration of additional contextual 

information, and handling multi-modal data. For example, 

sound patterns during anomalous events (e.g., gunshots or 

explosions) could complement visual cues. Combining 

these modalities through attention mechanisms will likely 

enhance the robustness of anomaly detection. With the 

advent of Industry 4.0, there is a need for deploying these 

models at the edge, which is extremely challenging given 

the very nature of the problem. To reduce computational 

demands while preserving performance, optimizations 

methods such as model compression, model pruning, 

quantization and knowledge distillation can be applied. 
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