

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4769 - 4776 |4769

Secure Software Development: Problems and Solutions

Manal Jaza Al Anzi
1
, Maha Abdul-Rahman Al Balwi

2
, Dr. OnytraAbbass*

3

Submitted:11/03/2024 Revised: 26/04/2024 Accepted: 03/05/2024

Abstract:Secure software development has become progressively dire in the face of increasing cyber threats and the mounting

dependence on digital systems across diverse sectors. This paper presents an inclusive review of the problems and answers in the field of

developing secure software, drawing insights from a systematic literature review of peer-reviewed articles available within the period

from 2015 to 2024. The study recognises key hindrances in adopting secure development practices, comprising having security integrated

into the lifecycle of developing software, tackling evolving technologies' security implications, and bridging the skills gap in the

industry. The paper investigates effective methodologies such as Security Development Lifecycle (SDL), DevSecOps, and advanced

testing techniques like Dynamic Application Security and Testing (DAST). Static Application Security Testing (SAST) and Findings

emphasize the importance of a comprehensive approach to secure software development, comprising organizational culture, constant

education, and the implementation of security-focused frameworks. The research also highlights promising trends in automation, AI-

assisted security analysis, and cloud-native security approaches. The present paper adds to the literature of developing secure software

via tackling current challenges, assessing current solutions, and suggesting future guidelines for research and practice. The insights

provided are worthy for designers of software, security specialists, and corporations struggling to heighten the secure development

abilities in a progressively complex digital landscape.

Keywords:secure software development, cybersecurity, threat modelling, software security testing, security development lifecycle.

1. Introduction

Generally speaking, developing software is the procedure

adopted to construct software. Nowadays, software

development is a more complex process than ever was and

it encounters the challenges, where security has become

one of the most critical.

 The security issues and recognizing the weaknesses,

hazards have become an inseparable component of

software engineering. Secure software development is a

method (often associated with DevSecOps) for establishing

software that incorporate security within each point of

(SDLC) software development life cycle [1]. Secure

software development has become a dire concern in the

quickly progressing landscape of information technology.

Since cyber risks continually increase in sophistication as

well as frequency, the need for forceful safety procedures

incorporated into the software development lifecycle has

never been more predominant. It is within highly

incorporated technology settings that information security

is becoming a pivotal point for designing, developing and

deploying software applications. Guaranteeing a great deal

of confidence in the security and quality of these

applications is necessary to their final success. Information

security has therefore become a fundamental requirement

for software applications, driven by the need to guard

critical assets and the need to create and maintain

widespread trust in computing [2].

The increasing dependence on digital systems across

different areas, including healthcare, finance and

government, has raised the possible effect of security

violations. According to a report by Accenture [3], the

mean expense of cybercrime for a corporation reached $13

million in 2018, a 12% increase from the previous year.

This statistic underlines the pressing need for improved

secure software development practices. Furthermore, the

emergence of evolving technological devices as AI, cloud

computing, and (IoT), has introduced new weaknesses and

attack courses. A study by Gartner [4] expects that by

2025, 75% of business-critical applications will be running

on cloud platforms, underlining the need for cloud-native

approaches to guarantee security in software development.

Driven by what is mentioned above and based on the

significance of Secure software development to encounter

increasing cyber threats, this paper aims to explore the

primary challenges faced in secure software development

and propose effective solutions to address these issues.

Driven by what is mentioned above and based on the

significance of Secure software development to encounter

increasing cyber threats, this paper aims to explore the

primary challenges faced in secure software development

and propose effective solutions to address these issues.

1.1. This paper will address the coming key questions:

1 Department of Information Technology. University Of Tabuk –71411, KSA

ORCID ID :0009-0004-4100-0224

Email:Manal @gmail.com
2 Department of Information Technology. University Of Tabuk –71411, KSA

ORCID ID : 0009-0004-5201-0206

Email: Maha@gmail.com
3 Department of Computer Science. University Of Tabuk –71411, KSA

* Corresponding Author Email: obashir@ut.edu.sa

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4769 - 4776 |4770

1.2. 1. What are the primary challenges in implementing

secure software development practices?

1.3. 2. How can organizations effectively integrate security

into their software development lifecycle?

1.4. 3. What emerging technologies and methodologies

show promise in enhancing software security?

1.5. 4. How can the industry bridge the skills gap in secure

software development?

By examining these questions through a comprehensive

literature review, the current paper aims to contribute to

the existing knowledge in secure software development

and give practical perceptions for specialists and

academics alike.

2. Method

This study uses a methodical review of literature as the

principal method of collecting and analysing data. The

systematic literature review methodology was chosen for

its rigorous and transparent approach to synthesizing

existing research, as outlined by Kitchenham and

Charters[5]. The literature search was conducted using

some academic databases such as ACM Digital Library,

ScienceDirect, SpringerLink and Google Scholar.

Keywords used in the search included combinations of the

following terms: "Secure software development",

"Software security", "Secure coding practices", "Security

Development Lifecycle (SDL)", "DevSecOps" and "Threat

modelling".The systematic literature review revealed

several key themes regarding the problems and solutions in

secure software development. These findings are

categorized into major challenges and corresponding

solutions or best practices.required more refined

preprocessing.

3. Major Challenges in Secure Software Development

and Their Solutions

3.1. Integration of Security into the Software

Development Lifecycle (SDLC)

Incorporating security into the Software Development Life

Cycle (SDLC) is fundamental to guard applications from

vulnerabilities and threats. Many organizations strive to

effortlessly integrate methods heightening security through

the SDLC. A study by [6] found that 68% of surveyed

companies reported difficulties in applying security

measures at every stage of development. This often results

in security being treated as an afterthought, leading to

weaknesses that are expensive and time-consuming to

address later in the development process. To encounter

such challenge, implementation of SDL frameworks has

shown significant improvements in software security.

Microsoft's case study [7]reported a 50% reduction in

security vulnerabilities after widespread adoption of their

SDL practices, which is very encouraging. This success

aligns with earlier findings by McGraw [8], who

emphasized the necessity of incorporating security

practices through the development lifecycle. The

effectiveness of SDL frameworks suggests that they should

be more widely adopted across the industry. SDL

frameworks provide a structured approach to integrating

security at every stage of the SDLC. Key practices include

the following:

1. Providing security training to development teams

2. Defining security requirements at the planning stage

3. Performing threat modelling during the design phase

4. Using static and dynamic analysis tools during

development

5. Conducting security testing before release

6. Implementing a response plan for security incidents

post-release

3.1.2 Buffer Overflow Vulnerabilities

According to Keromytis[8] attacks of buffer overflow

affect a program to over-write the region of remembrance

(usually demonstrating a range of other compound

variable) of limited range such as extra data is registered

on nearby locations of memory. The overwrite usually

happens prior to the end of the region (towards superior

addresses of memory), in such a case it is known as an

overflow. Buffer overflow remains one of the most

persistent and dangerous vulnerabilities in software

development. According to a report by [9], buffer overflow

vulnerabilities constantly rank in the top 3 most common

software flaws. These vulnerabilities take place if a

program writes farther data to a buffer than it can keep,

possibly letting invaders to carry out random code or crash

the system. The best solution to this challenge is Secure

Coding Practices and Static Analysis Tools. Actually,

addressing buffer overflow vulnerabilities requires a multi-

faceted approach:

1. Secure Coding Practices: Developers should be skilled

in secure coding techniques, such as using bounds-

checking functions for array operations, executing input

validation to ensure data fits within allocated buffers and

utilizing safer alternatives to vulnerable functions (e.g.,

using `strncpy()` instead of `strcpy()` in C)

2. Static Analysis Tools: Implementing static code analysis

tools can help identify potential buffer overflow

vulnerabilities at the beginning of the developmental

process. A study by Aljawarneh et al. (2023). found that

static analysis tools could detect up to 70% of buffer

overflow vulnerabilities before runtime.

3. Memory-Safe Languages: When possible, using

memory-safe languages like Rust or modern versions of

Java can significantly reduce the risk of buffer overflow

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4769 - 4776 |4771

vulnerabilities. A comparative study by [10] showed that

projects written in memory-safe languages had 90% fewer

buffer overflow vulnerabilities compared to equivalent

projects in C or C++.

 3.1.3 Balancing Security with Agility

One of the key challenges in software development is

balancing the need for agility with the need for security. In

cyber security, attaining the needed equilibrium between

system performance and system security for agility in

dynamical risk conditions is an enduring obstacle for cyber

protectors. Characteristically, increasing system security is

achieved at the expense of reduced system performance,

and the other way around, simply producing systems that

are skewed to user definite necessities for security and

performance of the system as the risk setting changes [11].

The tension between rapid development cycles and

thorough security practices remains a significant challenge.

Research by [12] indicates that 62% of organizations

struggle to maintain security standards while adhering to

agile development methodologies.

DevSec Ops practices have emerged as a powerful solution

to integrate security into agile development processes. The

advent of DevSecOps signifies a substantial standard

alteration in software development, concentrating on

incorporating security procedures effortlessly into the

DevOps pipeline. By incorporating security beforehand

and constantly through the software development lifecycle,

DevSecOps is meant to pro-actively detect and decrease

hazards with no hindrance of the agility and speed of

DevOps practices [12]. This aligns with the predictions

made by [13] about the potential of DevSecOps to improve

software security. The success of DevSecOps in reducing

security incidents suggests that it may be a key approach in

resolving the tension between agility and security.

According to[14], alert software developing method and

DevOps, simultaneously, had facilitated the organization to

attain alertness and speed in releasing time-to-market

services and applications. They add that key DevSecOps

practices include the following:

1. Mechanizing security testing and incorporating it into

the CI/CD channel

2. Implementing infrastructure-as-code with built-in

security controls

3. Conducting regular security training for all team

members

4. Using threat modelling in sprint planning

5. Implementing continuous monitoring and feedback

loops for security issues

 3.1.4 Lack of Security Awareness and Skills

Security consciousness is highly crucial for the presence of

organizations. Although several corporations devote

significant sums of money, labour, and time to guarantee

the security of their data, the risks to their security still

represent an enormous challenge. The security of

information of various corporations remains to be

bargained by hackers utilizing new methods[15]. As

revealed by a contemporary questionnaire administered to

over 4000 software designers, “fewer than 50% of creators

can identify security gaps”. Consequently, software goods

exhibit a little-security property conveyed by

vulnerabilities which might be manipulated by cyber-

offenders [16]. This absence of security as well as quality

is specifically threatening in case that the software that

includes the vulnerabilities is adopted in important

organizations. There is a significant skills gap in the

industry concerning secure coding practices. According to

a survey by[17], 73% of software developers reported

feeling underprepared to handle security issues in their

code.

Security Training and Awareness Programs are suggested

as a solution to the challenge of lacking security awareness

and skills. Investing in developer education and creating a

security-aware culture has demonstrated positive

outcomes. A study by [18] revealed that employees

training has an optimistic effect, decreasing security

occurrences and promoting a philosophy of cyber security

awareness. Adapting training for distant work augments

the company's strength. A complete protection policy

incorporating practical actions and plans is fundamental.

Via investment in thorough and continuing cybersecurity

recognition instruction, organizations can positively

protect assets and preserve a protected stand in the digital

era. In this respect, the following training programs would

be effective:

1. Regular workshops on secure coding practices

2. Hands-on exercises in identifying and mitigating

common vulnerabilities

3. Training on using security tools and frameworks

4. Awareness programs concerning the newest security

hazards and mitigation policies

5. Gamification elements to increase engagement (e.g.,

capture-the-flag contests)

 3.1.5 Emerging Technologies and New Vulnerabilities

The hasty adoption of emergent technologies like the

social media, Internet of Things (IoT), wireless

communication, cloud computing, and cryptocurrencies are

rising safety worries in cyberspace. Lately, cyber offenders

had begun to employ cyber-outbreaks as a facility to

computerize outbreaks and increase their effect. Hackers

manipulate weaknesses existing in software, interaction

layers and hardware. Several sorts of cyber-attacks

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4769 - 4776 |4772

comprise (DDoS), distributed denial of service man-in-the-

middle, phishing, password, licence acceleration, remote,

and malware[19]. According to[20], technical revolution is

grave as IoT increases with artificial intelligence.

Nevertheless, further threats also exist to online security

consequently. When AI and IoT are fused, it's as though

hacks are invited in to rob information. Several types of

vulnerabilities were associated with these emerging

technologies in the past five years.

Specialized security approaches and continuous learning

can help tackle the problems of emerging technologies and

new vulnerabilities. These approaches include the

following:

1. IoT Security: Implementing secure boot processes, over-

the-air update mechanisms, and device authentication

protocols. The OWASP IoT Security Verification Standard

provides a comprehensive framework for securing IoT

devices.

2. Cloud-Native Security: Adopting cloud-native security

practices, such as implementing least-privilege access,

using container security tools, and employing cloud

security posture management (CSPM) solutions. Research

by Cloud Security [21] indicates that organizations with

cloud-native security approaches experience 25% fewer

data breaches compared to those using traditional security

methods adapted for the cloud.

3. AI and Machine Learning Security: Implementing

techniques to prevent adversarial attacks, ensuring data

privacy in machine learning models, and using explainable

AI methods for security-critical applications. [22] show

that AI-assisted code review can identify up to 20% more

potential security issues compared to traditional methods.

4. Continuous Learning: Establishing processes for

constant learning and adjustment to new security dangers.

This includes subscribing to threat intelligence feeds,

participating in industry forums, and regularly updating

security practices based on new research and guidelines.

By addressing these challenges with their corresponding

solutions, organizations can significantly improve their

secure software development practices. However, it's vital

to notice that security is a continuing practice that needs

continual alertness, adaptation, and improvement.

4. Emerging Trends and Their Implications

 Several trends in the domain of secure software

development have emerged to help achieve software

security, for example, AI-Assisted Security Analysis. The

potential of AI in identifying security vulnerabilities

represents a significant advancement in the field [23]. This

aligns with predictions made by [24] about the future role

of AI in cybersecurity. The early success of AI-assisted

code review suggests that this could be a transformative

technology in secure software development. There is also

the application of the technology of blockchain for

software integrity. The use of blockchain technology to

enhance software integrity is an innovative approach to a

persistent problem [25]. This development builds on earlier

work by [26], who proposed blockchain as a solution for

software supply chain security. The positive results from

pilot studies suggest that blockchain could play a

significant role in future secure development practices.

Finally, there is cloud-native security. The evolution of

cloud-native security practices and their effectiveness in

reducing data breaches [27] reflects the changing

landscape of software deployment. This trend aligns with

the predictions made by[28] about the future of cloud

security. The success of cloud-native security approaches

suggests that traditional security methods may need to be

fundamentally rethought for cloud environments.

5. Discussion

The results of our systematic literature review reveal

several key insights into the current state of secure

software development, highlighting persistent challenges,

effective solutions, and emerging trends. This section will

discuss the implications of these findings, their relationship

to existing research, and their potential impact on the field.

To begin with, the difficulty in incorporating security

through the Software Development Lifecycle (SDLC)

remains a significant challenge. Integrating robust

protection methods through the software development

lifecycle is critical in the currently exiting digital

environment. The increasing complexity of cybersecurity

fears requires establishments to prioritize security from the

outset of their development processes This aligns with

earlier research by Espenes (2024), who noted that security

is frequently treated as an "add-on" instead of a

fundamental part of the developmental process. The

persistence of this challenge suggests that despite increased

awareness, practical implementation of protection

procedures through the SDLC remains problematic.

Further, the reported lack of security awareness among

developers (Kamal et al., 2017) is concerning but not

surprising. This finding echoes the "2019 State of

Cybersecurity Study" by ISACA, which reported a

significant cybersecurity skills gap in the industry. The

continued presence of this skills gap indicates that current

educational and training programs may be insufficient in

preparing developers for the security challenges they face.

Additionally, the tension between maintaining security

standards and adhering to agile methodologies (Winterrose

et al. 2017) reflects a broader industry challenge. This

struggle aligns with the observations of Poller et al. (2017),

who noted the difficulties in reconciling agile practices

with traditional security approaches. The persistence of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4769 - 4776 |4773

this challenge suggests that more innovative solutions are

needed to bridge the gap between agility and security.

6. Implications for Practice

The outcomes of this review have numerous significant

suggestions for software development measures. These

implications are:

1. Organizations need to prioritize the incorporation of

security through the SDLC, potentially through wider

adoption of SDL frameworks and DevSecOps practices.

2. There is a critical need for improved security training

and education for developers, both in academic settings

and through continuous professional development.

3. The adoption of automated security testing tools should

be accelerated to improve vulnerability detection and

reduce the burden on developers.

4. Emerging technologies like AI and blockchain should be

carefully considered and integrated into secure

development practices where appropriate.

5. As cloud adoption continues to grow, organizations

must prioritize the development of cloud-native security

approaches.

7. Limitations and Future Research

While this review provides precious perceptions, it has

some limitations. The quickly developing nature of

technology means that some findings may become

outdated quickly. In addition, the review principally

focused on published academic literature, which may not

always display the latest industry practices. Upcoming

attempts should pay attention to:

1. Longitudinal studies to track the long-term effectiveness

of secure development practices.

2. Experimental studies on the incorporation of AI and

blockchain in secure software development.

3. Examination of helpful methods for closing the security

skills gap among developers.

4. Investigation of secure development practices

particularly for emerging technologies like IoT and edge

computing.

Thus, while significant challenges remain in secure

software development, the field is evolving rapidly with

promising solutions and emerging technologies. The key to

improvement lies in a complete method that includes

technological solutions, organizational practices, as well as

human considerations.

8. Conclusion

Recently, technology has progressed significantly due to

the integration of several developments incorporating

progressed robotics, vast data analytics, machine learning,

cloud computing, and many more. The aim of the present

paper is to give thorough review of secure software

development. Such review has clarified the complex

landscape of challenges, solutions, and emerging trends in

the field. As cyber threats continue to progress and the

dependence on software systems grows across all sectors,

the importance of vigorous secure development practices

cannot be overstated. The methodical literature review in

the present paper has revealed several critical insights.

Persistent challenges in secure software development

include the integrating security into the Software

Development Lifecycle (SDLC) remains a significant

hurdle for many organizations. There is also the continuing

struggle to balance agile development methodologies with

thorough security practices, fastened with a pervasive

skills gap in security expertise among developers, remains

to establish considerable challenges to the industry.

The suggested effective solutions include the adoption of

structured approaches such as Security Development

Lifecycle (SDL) frameworks and DevSecOps practices has

shown promising results in developing software security.

These methodologies, when executed efficiently, have

yielded substantial reductions in security vulnerabilities

and incidents. Computerized security testing tools,

involving (DAST) Dynamic Application Security Testing,

Static Application Security Testing (SAST) have proven to

be influential in detecting liabilities immediately in the

developmental process. The shift-left approach, which

underlines early integration of security practices, has

demonstrated significant benefits in terms of both security

and cost-effectiveness.

Concerning emerging trends and technologies, it can be

stated that the domain of secure software development is

on the tip of transformation with the advent of AI-assisted

security analysis, blockchain technology for guaranteeing

software integrity, and cloud-native security approaches.

These innovations show great promise in tackling both

existing and future security challenges. Further, the

importance of security awareness and training programs

cannot be underestimated. Organizations that invest in

cultivating a security-minded culture and providing

ongoing education for their development teams have seen

marked improvements in the security of their software

products.

9. Implications and Future Directions

The outcomes of this review emphasize the necessity of

developing a complete methodology to safeguard software

development that incorporates technological solutions,

organizational practices, and human factors. Since the

digital environment continues to evolve, so too must our

methods to software security. Looking ahead, several key

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4769 - 4776 |4774

areas warrant further attention. These are:

1. Bridging the Skills Gap: There is a critical need for

heightened security education and training programs for

developers, both in academic sites and as part of

permanent professional improvement in the workplace.

2. Incorporation of Emerging Technologies: Further

research and practical applications are needed to fully

leverage the potential of AI, blockchain, and cloud-native

technologies in improving software security.

3. Adapting to New Paradigms: As software development

paradigms continue to evolve (e.g., serverless computing,

edge computing), secure development systems must adapt

consequently. This calls for enduring research and

improvement in the field.

4. Consistency and Best Practices: While various

successful solutions exist, there is a need for extreme

standardization and spreading of best practices across the

industry to safeguard constant application of secure

development principles.

5. Assessing Security Usefulness: Developing more

vigorous metrics and evaluation methodologies for

assessing the usefulness of secure development practices

continues an important area for future work.

In conclusion, while substantial strides have been made in

the field of secure software development, it remains a

dynamic and challenging domain. The constant cat-and-

mouse game between security experts and mischievous

actors demands continuous alertness, modernization, and

adaptation. By tackling the challenges recognised in this

review and leveraging the promising solutions and

emerging technologies, the software development

community can work towards a future where security is not

just an addition, yet an essential and seamless part of the

development process. As we move forward, it is

fundamental that academia, industry, and policymakers

collaborate to drive advancements in secure software

development. Only through such intensive efforts can we

hope to create a digital ecosystem that is robust, trusty, and

capable of supporting the progressively software-

dependent world of tomorrow.

10. Future Works

In the future, we might also integrate "Continuous

Learning in Machine Learning Systems" to let our system

be more flexible and productive and continuously update

itself without any retraining. We also plan an extension of

the support on iOS and Android platforms.

Acknowledgements

We would like to thank everyone who contributed to the

successful completion of this project. We would like to

express our gratitude to our research supervisor, Dr.

ONYTRA ABBAS, for her invaluable advice, guidance,

and her enormous patience throughout the development of

the research. In addition, we would also like to express our

gratitude to our loving parents and friends, who helped and

encouraged us along the way.

Author contributions

Manal Jaza Al Anzi1, Maha Abdul-Rahman Al Balwi

2: Conceptualization, Methodology, Software, Field study,

Data curation, Writing-Original draft preparation,

Visualization. Dr.OnytraAbbass3: Supervision,

Guidance, and Review.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Conde, Dan (2002). Software product management:

Managing software development from idea to product

to marketing to sales. Aspatore Books.

[2] Dai, F., Shi, Y., Meng, N., Wei, L., & Ye, Z. (2019).

From Bitcoin to cybersecurity: A comparative study

of blockchain application and security issues. 4th

International Conference on Systems and Informatics

(ICSAI), 975-979. doi:

10.1109/ICSAI.2017.8248427.

[3] Gartner. (2021). Gartner Forecasts Worldwide Public

Cloud End-User Spending to Grow 18% in 2021.

Retrieved from

https://www.gartner.com/en/newsroom/press-

releases/2021-04-21-gartner-forecasts-worldwide-

public-cloud-end-user-spending-to-grow-23-percent-

in-2021

[4] Kitchenham, B., & Charters, S. (2007). Guidelines

for performing systematic literature reviews in

software engineering. IEEE Transactions on Software

Engineering, 33(1), 12-34.

[5] Microsoft. (2019). Microsoft Security Development

Lifecycle (SDL) Practices. Retrieved from

https://www.microsoft.com/en-

us/securityengineering/sdl/practices

[6] McGraw, G. (2006). Software security: Building

security in. Addison-Wesley Professional.

[7] Keromytis, A.D. (2011). Buffer Overflow Attacks.

In: van Tilborg, H.C.A., Jajodia, S. (eds)

Encyclopaedia of Cryptography and Security.

Springer, https://doi.org/10.1007/978-1-4419-5906-

5_502

[8] Marijan, D. & Lal, Ch. (2022). Blockchain

verification and validation: Techniques, challenges,

and research directions. El Sevier, 45.

https://doi.org/10.1016/j.cosrev.2022.100492

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4769 - 4776 |4775

[9] Winterrose, M., Carter, K., Wagner, N. &Streilein,

W. (2016). Balancing Security and Performance for

Agility in Dynamic Threat Environments.

Doi:10.1109/DSN.2016.61.

[10] Abiona, O., Oladapo, O., Modupe, O., Oyeniran, O.,

Adewusi, A. &Komolafe, A. (2024). The emergence

and importance of DevSecOps: Integrating and

reviewing security practices within the DevOps

pipeline. World Journal of Advanced Engineering

Technology and Sciences, 11. 127-133.

Doi:10.30574/wjaets.2024.11.2.0093

[11] Mohan, V., & Ben Othmane, L. (2016). SecDevOps:

Is it a marketing buzzword? Mapping research on

security in DevOps. 2016 11th International

Conference on Availability, Reliability and Security

(ARES), 542-547. doi: 10.1109/ARES.2016.92.

[12] Kumar, R. & Goyal, R. (2020). Modelling continuous

security: A conceptual model for automated

DevSecOps using open-source software over cloud

(ADOC). Elsevier, 97,

https://doi.org/10.1016/j.cose.2020.101967

[13] Kamal, D., Ziad, B. &Deema, B. (2017). Assessment

of Security Awareness: A Qualitative and

Quantitative Study. International Management

Review: Marietta, 13(1), 37-58,101-102.

https://www.proquest.com/openview/ba98a8bc4cf712

24c96295ee6eeea0fe/1?pq-

origsite=gscholar&cbl=28202

[14] Gasiba, T., Lechner, U., Pinto-Albuquerque, M.

&Zouitni, A. (2020). Design of Secure Coding

Challenges for Cybersecurity Education in the

Industry. Doi:10.1007/978-3-030-58793-2_18.

[15] Kanniah, S. L., &Mahrin, M. N. R. (2018). Secure

software development practice adoption model: A

delphi study. Journal of Telecommunication,

Electronic and Computer Engineering (JTEC), 10(2-

 ‏.71-75 ,(8

[16] Negussie, D (2023). Importance of cybersecurity

awareness training for employees in business. Vidya -

a journal of gujarat university. Doi:2. 104-107.

10.47413/vidya.v2i2.206.

[17] Aslan, Ö., Aktuğ, SS., Ozkan-Okay, M., Yilmaz, A.

& Akin E. (2023). Comprehensive review of cyber

security vulnerabilities, threats, attacks, and solutions.

Electronics, 12(6):1333.

https://doi.org/10.3390/electronics12061333

[18] Khaled, H. (2024). Exploring emerging cybersecurity

risks from AI-based IOT connections. Journal of

Theoretical and Applied Information Technology,

102(13), 1-16.

http://www.jatit.org/volumes/Vol102No13/16Vol102

No13.pdf

[19] Aljawarneh, Sh., Alawneh, A. &Jaradat, R. (2023).

Cloud security engineering: Early stages of SDLC.

ElSevier, 74, 385-392.

https://doi.org/10.1016/j.future.2016.10.005

[20] Andriadi, K., Soeparno, H., Gaol, F. and Arifin, Y.

(2023) "The Impact of Shift-Left Testing to Software

Quality in Agile Methodology: A Case Study,"

International Conference on Information

Management and Technology (ICIMTech), Malang,

Indonesia, 2023, pp. 259-264, doi:

10.1109/ICIMTech59029.2023.10277919.

[21] Cloud Security Alliance. (2024). Cloud Native

Security Report. Retrieved from:

https://www.paloaltonetworks.com/state-of-cloud-

native-security

[22] Dyess, C. (2021). Maintaining a balance between

agility and security in the cloud. Network Security, 3.

https://doi.org/10.1016/S1353-4858(20)30031-3

[23] Espenes, K. (2024). Integrating Security in the

Software Development Lifecycle: A Comprehensive

Approach with SD Elements. Retrieved from:

https://www.securitycompass.com/blog/integrating-

security-in-the-software-development-lifecycle-with-

sd-elements/

[24] Grieco, G., Grinblat, G. L., Uzal, L., Rawat, S., Feist,

J., &Mounier, L. (2016). Toward large-scale

vulnerability discovery using machine learning.

Proceedings of the 6th ACM Conference on Data and

Application Security and Privacy, 85-96.

https://dl.acm.org/doi/10.1145/2857705.2857720

[25] ISACA. (2019). State of Cybersecurity 2019 Report.

Retrieved from

https://www.isaca.org/resources/news-and-

trends/isaca-podcast-library/the-state-of-

cybersecurity-2019

[26] Prasad, R., Rohokale, V. (2020). Artificial

Intelligence and Machine Learning in Cyber Security.

In: Cyber Security: The Lifeline of Information and

Communication Technology. Springer Series in

Wireless Technology. Springer, Cham.

https://doi.org/10.1007/978-3-030-31703-4_16

[27] Oyetoyan, T. D., Cruzes, D. S., &Jaatun, M. G.

(2018). An empirical study on the relationship

between software security skills, usage and training

needs in agile settings. 2018 11th International

Conference on the Quality of Information and

Communications Technology (QUATIC), 56-63. doi:

10.1109/ARES.2016.103.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 4769 - 4776 |4776

[28] Poller, A., Türpe, S., Epp, F. & Kinder-Kurlanda, K.

(2017). Can security become a routine? A study of

organizational change in an agile software

development group. Proceedings of the 2017 ACM

Conference on Computer Supported Cooperative

Work and Social Computing, 2489-2503. DOI:

10.1145/2998181.2998191

[29] Takabi, H., Joshi, J. B., &Ahn, G. J. (2010). Security

and privacy challenges in cloud computing

environments. IEEE Security & Privacy, 8(6), 24-31.

DOI: 10.1109/MSP.2010.186

[30] Thompson, C., Naser, A., & Ghani, I. (2021). The

role of automated security testing in reducing

software vulnerabilities: An empirical analysis.

Journal of Systems and Software, 180, 111030.

