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Abstract:Biotic stresses significantly impact paddy cultivation, necessitating accurate and timely disease diagnosis. Manual supervision 

might not capture the early symptoms of the biotic stress associated with certain diseases. Hence, it requires the best disease management 

strategies that help to perform good practices under paddy crop cultivation. The proposed work presents a novel approach integrating 

ensemble convolutional neural networks (ES-DeepNet) predictions and disease severity features for enhanced paddy disease 

classification and severity prediction for the paddy doctor dataset. ES-DeepNet, comprised of VGG16, Xception, MobileNet, and 

baseline models, effectively extracts robust features thus improving classification accuracy. Disease severity is assessed quantitatively, 

and extracted features are integrated into the model with ES-DeepNet model predictions using a random forest regressor. The method 

demonstrated its effectiveness in both disease classification and severity estimation. This study combines deep learning and machine 

learning techniques, that contribute to precision agriculture by providing a comprehensive solution for paddy disease management. 

Keywords:ES-DeepNet, Ensembling, Disease Diagnosis, Severity Assessment, Thresholding, Random Forest Regressor. 

1. Introduction 

Paddy cultivation faces significant challenges from biotic 

stresses that affect crop health and yield. Accurate 

identification and classification of these stresses are crucial 

for effective disease management. Accurate and timely 

plant disease detection is crucial for agricultural 

productivity. Traditional methods have limitations in 

disease identification and classification, resulting in 

substantial crop losses. Deep learning techniques have 

emerged as promising solutions, outperforming traditional 

approaches in terms of accuracy and efficiency. By 

addressing challenges like image quality and segmentation, 

these models offer the potential to significantly improve 

disease management strategies and ensure food security 

[2]. Image segmentation isolates leaves and disease regions 

using Grab Cut and thresholding for feature extraction 

which were classified using SVM, achieving 93% accuracy 

in differentiating healthy leaves from rot, esca, and leaf 

blight.[1] Image processing techniques for paddy disease 

detection are color features, texture analysis, and shape-

based descriptors,  these methods have shown some 

success, but their accuracy is often limited by complex 

disease symptoms and varying environmental conditions. 

Recent advancements have leveraged deep learning 

architectures, particularly Convolutional Neural Networks 

(CNNs), to extract intricate image features automatically. 

These models have demonstrated superior performance in 

classifying paddy diseases and estimating disease severity 

[3]. Deep learning employs multi-layered neural networks 

to extract intricate patterns from complex data. By 

iteratively refining internal parameters through 

backpropagation, it excels in tasks like image, speech, and 

text processing. Convolutional networks excel at image 

analysis, while recurrent networks handle sequential data. 

These advancements have driven groundbreaking results in 

various fields [9]. Hyperparameter optimization was 

conducted to enhance model performance. The proposed 

model achieved a high accuracy of 93.3% in classifying 

rice leaf diseases, demonstrating its potential for precision 

agriculture [4]. Clarifying the intricate relationships 

between layers and their parameters empowers 

practitioners to design and manipulate CNNs effectively. 

Through visual explanations, the guide demystifies 

complex concepts, enabling users to confidently construct 

and optimize neural networks for various applications [5]. 

A public dataset consisting of multispectral and RGB 

images for rice plant disease detection using multi-modal 

data which includes multispectral images with Red, Green, 

and Near-Infrared channels. The results demonstrated that 

incorporating both multispectral and RGB channels as 

input improves accuracy when compared to using RGB 

images alone.[6] The AgriDiet framework for detecting 

plant diseases and classifying disease severity levels. This 

framework integrates the conventional INC-VGGN for 

detection and classification, Kohonen-based deep learning 

networks by employing a multi-variate grab cut algorithm 

to resolve occlusion issues and ensure effective 

segmentation. The pre-trained weights and features are 

transferred to the new network for specific plant disease 

detection tasks [20-22]. After computing percentage 

metrics, the enhanced network classifies severity classes in 

the training sets [7]. The research article [8] focuses on 
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Fig 1 .  Biotic stress paddy disease detection state-of-the-art methods overview 

various CNN architectures used for evaluating plant stress, 

assessing plant development, and determining postharvest 

quality. It also discusses advancements in imaging 

classification, object detection, and image segmentation, 

highlighting state-of-the-art solutions for specific 

phenotyping tasks. Pre-trained models (VGG16, 

SqueezeNet, InceptionV3) were employed as feature 

extractors, followed by machine learning/deep learning 

classifiers [4]. 

   Deep convolutional neural networks are used in transfer 

learning to diagnose plant leaf diseases by applying pre-

trained models from extensive datasets to our goal. The 

Inception module of VGGNet [10], Inception are pre-

trained models on the ImageNet dataset on paddy crop 

biotic stresses brown spot, hispa, and leaf blast, 

ResNetV2, MobileNetV2, EfficientNetB0 [11], 

Xception, DenseNet169 [12,13], InceptionV3 and 

ResNet-50 [14] help reduce the number of parameters 

and computational cost. Experimental results show that 

the ResNet-50 model achieved the highest average 

classification accuracy of 92.61% for paddy crop stress. 

Using digital images, the hybrid CNN ResLeNet model 

was used to perform image preprocessing, segmentation, 

augmentation, feature extraction, and classification to 

identify fruit and leaf diseases in pumpkins [15]. 

Existing research has explored various feature extraction 

and classification techniques for plant disease severity 

assessment. Traditional methods, such as Hu moments, 

Haralick features, and color histograms, have been 

combined with classifiers like SVM, Random Forest, and 

Decision Trees [16, 17]. More recently, deep learning 

approaches, including CNN-based feature extraction 

followed by SVM classification, have been employed to 

predict severity levels based on the leaf area affected 

[18]. Hyperspectral imaging has also been investigated 

for assessing rice leaf blast severity, utilizing spectral 

reflectance metrics and classifiers like SVM and PNN 

[19]. These studies demonstrate the potential of image 

analysis and machine learning in developing accurate and 

efficient tools for disease severity estimation. 

GoogLeNet, ResNet, ShuffleNet, ResNeXt, and Wide 

ResNet [24] are used for paddy leaf diseases. three 

lightweight CNNs—SE-MobileNet, Mobile-DANet, and 

MobileNet V2—into a new network called Es-MbNet to 

recognize plant disease types. Convolutional ensemble 

network to enhance the model's ability to identify minute 

plant lesion features [25]. Severity classification is 

achieved by integrating Convolutional Neural Network 

(CNN) for feature extraction and these features are then 

inputted into the LSTM layer which potentially increases 

the classification accuracy [26]. An Ensemble ResNet-

EfficientNet Model that effectively classifies crop 

diseases by balancing network depth, width, and 

resolution. Ensembling was performed utilizing ResNet, 

EfficientNet B4, and EfficientNet B7 models [27].  A 

unique adaptive minimal ensembling technique, which 

utilizes only two EfficientNet-b0 models, performs 

ensembling on feature vectors through a trainable layer 

rather than the traditional aggregation of outputs [29]. 

However, there is a paucity of studies comprehensively 

addressing both disease identification and severity 

quantification within a unified framework. To address the 

issues in the context of biotic stress in paddy and its 

severity assessment using an ensemble model where the 

state-of-art methods stated importance towards its 

implementation for precision agricultural practices. 

 In this study, we propose an enhanced approach for 

multi-class classification of biotic stress in paddy leaves 

using ES-DeepNet an ensemble model comprising 

VGG16, Xception, MobileNet, and baseline and 

improved baseline CNN architectures. ES-DeepNet 

integrates these diverse CNN models to extract robust 

features from leaf images, enhancing the model's ability 

to distinguish between different types of biotic stress. 
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Fig 2Architecture of Proposed ES-DeepNet Model. 

Additionally, disease severity assessment features, 

quantitatively measured from the leaf images, are 

incorporated to improve classification accuracy and 

provide insights into disease severity levels. The 

integration of these features is evaluated using a Random 

Forest Regressor, assessing performance metrics such as 

Mean Squared Error, Root Mean Squared Error, and R-

squared. Performance evaluation of ES-DeepNet focuses 

on accuracy and F1-score metrics to demonstrate the 

model's effectiveness in classifying biotic stress types. 

Meanwhile, the evaluation of the fusion of features with 

a Random Forest Regressor assesses its capability to 

predict disease severity levels. Results indicate 

significant improvements over traditional methods, 

highlighting the potential of machine learning in 

advancing precision agriculture practices. This research 

contributes to the field of agricultural technology by 

offering a robust framework for automated biotic stress 

detection and severity assessment in paddy cultivation, 

supporting sustainable and efficient disease management 

strategies. Fig. 1 depicts an overview of state-of-the-art 

methods to address the detection of biotic stress. 

2. Materials and Methods: 

We have a pool of CNN architectures available for image 

classification and have decided to use pre-trained models 

such as VGG16, XceptionNet, MobileNet custom models 

Baseline, and improved Baseline models. Choosing these 

models for the proposed work on ES-DeepNet was due to 

several factors that motivated us to use them for the 

ensemble model. Fig. 2. Corresponds to the deep learning 

pipeline, emphasizing data preprocessing, model training, 

ensemble methods, and evaluation. 

The proposed ES-DeepNet model incorporates the 

following CNN architectures: 

• VGG16: Known for its simplicity and depth, 

VGG16 is effective in feature extraction. 

• Xception: An extension of the Inception 

architecture, Xception utilizes depth-wise 

separable convolutions, making it both efficient 

and powerful. 

• MobileNet: Designed for mobile and embedded 

vision applications, MobileNet is lightweight and 

efficient, suitable for resource-constrained 

environments. 

• Baseline Model: A custom-built CNN tailored 

for the specific characteristics of the Paddy 

Doctor dataset. 

• Advanced Baseline Model: An improved version 

of the baseline model, incorporating additional 

layers and regularization techniques for enhanced 

performance. 

2.1 Data Acquisition  

The Paddy Doctor a benchmark dataset from IEEE data 

port comprises images of paddy leaves collected from 

various rice fields, capturing different varieties of leaf 

diseases. The publicly available dataset includes multiple 

classes of common paddy leaf diseases, such as Bacterial 

leaf blight, leaf streak, sheath blight, blast, brown spot, 

downy mildew, dead heart, hispa, tungro, and healthy. A 

total of 10,407 images, wherein each image is labeled with 

the corresponding disease type to facilitate supervised 

learning.  

 

Fig. 3. shows the data distribution of disease 

classes.Images were collected from rice fields using high-

resolution cameras. These surveys were conducted during 

different growth stages of the rice plants to capture a 

variety of disease symptoms. Agricultural experts labeled 

the images with the correct disease categories, ensuring 

high-quality and accurate annotations. 

2.2 Data Preprocessing 

Image Augmentation: Techniques such as rotation where 

this parameter randomly rotates images by up to 20 

images, vertical flipping which flips images vertically, and 

shearing transformations with maximum intensity of 0.2 

are applied to increase the diversity of the training set. 

Normalization: Pixel values+ are normalized to a range of 

0 to 1 to facilitate faster convergence during training. 
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Fig 3. Data distribution of disease classes. 
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2.3 Transfer Learning 

Transfer learning is a technique that is used for attaining 

knowledge which is solved for one problem to another 

problem which is of related problems. We use the pre-

trained models for image classification on ImageNet data 

[30], as it has pre-trained weights of more than 14 million 

images that belong to 1000 generic classes including 

different species of plants. 

2.4 Handling Overfitting 

Models with too many parameters can easily be overfit as a 

result, the model performs exceptionally well on the 

training data but poorly on new, unseen data. To prevent 

overfitting, we employed augmentation techniques like 

rotating, flipping, and transformations to increase the 

dataset size and to stop training when a certain difference 

between training and validation losses is reached to the 

defined patience. We employed the training of the model 

for about 100 epochs and an optimizer Adam was used to 

train all the models in this proposed work. 

2.5 Training the models 

Instead of learning everything from scratch, the model 

benefits from the knowledge gained from training on a 

large dataset. This significantly reduces training time and 

often improves performance, especially when dealing with 

limited data. In the diagram, the pre-trained models 

(VGG16, Xception, MobileNet) represent the transfer 

learning component. We create a function to generate a 

sequential model using pre-trained base models to adapt 

the transfer learning to our biotic stress classification of 

paddy disease. Fully connected layers are typically added 

at the end of the deep learning models to map the extracted 

features to the output classes. To achieve this a Sequential 

model was implemented by freezing the pre-trained base 

models flattening the respective model’s outputs and then 

customizing the models by adding dense layers using 

ReLU and SoftMax activation functions. The purpose of 

using SoftMax specifically at the output layer as it is 

specifically designed for multi-class problems, unlike 

sigmoid which is used for binary classification. it also 

supports loss function compatibility where it works well 

with categorical cross-entropy loss, a common loss 

function for classification tasks. The model is trained with 

a training set of 80% of the data where it learns patterns 

and relationships associated with different diseases. For 

validation, 10% of the dataset is used, wherein it evaluates 

the model performance to fine-tune hyperparameters as 

shown in the table and prevent overfitting. For testing 10% 

of data is reserved for final evaluation of the trained 

models.

Table 1. Hyper Parameters used for Training 

Hyper Parameters VGG-16 XCEPTION 
MOBILE 

NET 
BASELINE 

Number of Layers 8 8 8 14 

Pooling - - - Avg 

Activation Function ReLU, SoftMax ReLU, SoftMax ReLU, SoftMax ReLU,SoftMax 

Batch Size 32 32 32 32 

Number of Epochs 100 100 100 100 

Learning Rate 0.001 0.001 0.001 0.001 

Dropout - - - 0.3 

Optimizer Adam Adam Adam Adam 

2.6 Ensembling and Predictions 

Ensembling is a technique that combines multiple models 

to improve predictive performance. Vgg16, XceptionNet, 

MobileNet, Baseline, and Improved baseline models are 

trained, tested, and validated individually on the same 

dataset [25]. These models are variants of CNNs that are 

used for ensembling. Each model predicts the given 

dataset. The predictions from all modules are combined 

using a specific technique to produce the final predictions. 

Common Ensembling Techniques for Combining 

Predictions obtained by individual models are discussed 

below: 

• Voting: For classification, the most common class 

predicted by the base models is chosen. 

• Averaging: For regression, the average of the 

predictions from all models is used. 

• Weighted Averaging: Similar to averaging, weights are 

assigned to different models based on their 

performance. 
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• Stacking: A meta-model is trained to learn the best way 

to combine predictions. 

 

The predictions from multiple models are combined to 

improve overall accuracy and robustness. The final 

predictions are generated by averaging the outputs of the 

ensemble of models. For the proposed work we have 

chosen averaging as these predictions are used for 

regression tasks as they are combined with severity 

assessment features of disease classes. The average 

ensemble technique of the predictions often leads to better 

predictive performance, prevents overfitting, less sensitive 

to noise in the data when compared to that of individual 

models. The ES-DeepNet predictions generated by the ES-

DeepNet contain the image_id, class_name, class_label. 

These features are used in combing with disease severity 

features to perform predictions on unseen data. 

Feature Extraction using ES-DeepNet: 

1. Ensemble of CNNs: The pre-processed images are fed 

into an ensemble of CNN models, including VGG16, 

Xception, MobileNet, Baseline, and Improved 

Baseline [23, 24]. 

2. Feature Extraction: Each CNN model extracts features 

from the input images. 

3. Averaging: The extracted features from each CNN are 

averaged to create a combined feature vector. 

3. Biotic stress severity assessment: 

The disease severity assessment method is implemented 

based on a comparison of two methods and their features, 

out of which the best method is selected for the one the 

results are quite exemplary. Image processing is the 

promising domain for many image-related real-time 

applications when it comes to machine learning models or 

deep learning models. Feature extraction and segmentation 

techniques play a pivotal role in getting insights from the 

image. Although there are many techniques available for 

the proposed work, we implemented using thresholding 

and image segmentation techniques. It is a fundamental 

image segmentation technique which is a straightforward 

and effective approach that partitions an image into two 

distinct regions based on a predefined intensity level. 

Essentially, it converts a grayscale image into a binary 

image, where pixels with intensity values above the 

threshold are assigned one value (typically white or 1), and 

those below are assigned another (typically black or 0). 

The success of thresholding heavily relies on the choice of 

the threshold value. An optimal threshold effectively 

separates the objects of interest from the background.  

Several methods can be employed to determine the 

threshold: 

• Manual Thresholding: This involves manually 

selecting a threshold value based on visual 

inspection of the image histogram which gives the 

pixel level intensities. 

• Global Thresholding: A single threshold value is 

applied to the entire image. Otsu's method 

automatically calculates the optimal threshold 

value by maximizing the inter-class variance 

between the foreground and background pixels. 

• Local Thresholding: Different threshold values 

are applied to different regions of the image. The 

threshold value is calculated for each pixel based 

on its neighbourhood which is called adaptive 

thresholding. 

The severity of biotic stress is implemented using two 

methods where the first method performs color-based 

thresholding, and the second method performs disease-

specific thresholding as shown in Table 2. 

Table 2Biotic Stress Severity Assessment Methods. 

 

3.1 Severity Assessment 

Disease area is calculated by using both thresholding 

methods, the severity is assessed by following the 

predefined ranges, and the rating is assigned accordingly as 

shown in Table 3. Disease severity is rated on an ordinal 

scale of 0-5 by experts Standard Evaluation System for 

Rice by IRRI as this ordinal scale is suited for our dataset 

that has multiple diseases. The scale of ranges are used to 

assign the feature rating based on the percentage of 

severity calculated using the CBT, and DST methods. In 

both the Color-Based Thresholding (CBT) and Disease-

Specific Thresholding (DST) methods, severity is 

calculated as the percentage of the diseased area relative to 

the total leaf area. The percentage is then mapped to a 

severity scale, typically ranging from 0 to 5, where: 
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Table 3. Severity scale and descriptions 

Scale              Severity Description 

0       No disease or negligible presence 

1       Early-stage disease, minimal symptoms 

2       Moderate disease progression, visible symptoms 

3       Severe disease has a significant impact on plant 

health 

4      Very severe disease, extensive damage to plant. 

5       Critical stage, the plant may not recover 

 

Scale 0: No disease detected. 

 

Scale 1: Very low severity (1-10% of the leaf area 

affected). 

Scale 2: Low severity (10-25% of the leaf area affected). 

Scale 3: Moderate severity (25-50% of the leaf area 

affected). 

Scale 4: High severity (50-75% of the leaf area affected). 

Scale 5: Very high severity (75% and above of the leaf 

area affected). 

The effectiveness of the severity assessment algorithms 

was evaluated based on their accuracy in calculating the 

diseased area and the consistency of the severity ratings 

across multiple samples. The results showed that the 

Disease-Specific Thresholding (DST) algorithm, which 

incorporates unique color thresholds for different diseases, 

provided more accurate severity assessments  

compared to the generic Color-Based Thresholding (CBT) 

algorithm. 

The below Fig 4. displays the severity assessment report 

generated for the brown spot class where there is an 

accurate assessment is performed for the DST method 

when compared to CBT where both the methods reported a 

scale ‘0’. 

 The Fig. 5, infers that the features generated for the test 

data when the CBT method is used are severity_brown, 

severity_ash, combined_severity, and scale. When the 

DBT method is used on the same test data it generates the 

feature's severity and scale. Thus, the features which are 

generated by these two methods are further used for an 

ensemble model where predictions are generated using a 

random forest regressor. 

3.2 Random Forest Regressor 

The aim is to predict disease severity in paddy crops using 

a Hybrid Disease Prediction and Severity Estimation using 

a Random Forest Regressor. A Random Forest Regressor 

[17] is an ensemble learning method that combines 

multiple decision trees to make predictions. It can 

effectively combine numerical features (from ES-DeepNet 

predictions) with ordinal features (from disease-specific 

thresholding). By creating numerous trees and averaging 

their predictions, Random Forest helps to prevent 

overfitting, a common issue in machine learning. It 

provides insights into which features contribute most to the 

prediction. The proposed work is discussed below. The 

features from both ES-DeepNet predictions and disease-

specific thresholding are merged into a single feature 

vector for each image. The Random Forest model is 

trained on this combined feature set with corresponding 

disease severity values as the target variable. The model 

builds multiple decision trees, each using a random subset 

of the data and features. For a new image, each decision 

tree in the forest predicts disease severity. The final 

prediction is the average of these individual predictions by 

doing so the quality of the combined features significantly 

impacts the model's performance. 

4. Experimental Setup 

The proposed work of ES-DeepNet and biotic stress 

severity assessment method and predictions using 

combined features is being executed in the verified 

environment with all dependencies and pre-installed 

packages Google ColabPro with GPU Memory utilization 

of 18 GB and disk Space of 38.5 GB. 

5. Evaluation Metrics 

Metrics used for ES-DeepNet are macro F1- score, loss 

function, and accuracy were calculated for all the training, 

validation, and test sets. As we got the Combined Features 

including features extracted from ES-DeepNet predictions 

and disease-specific thresholds. We used a Random Forest 

Regressor [31] to predict disease severity based on the 

combined features. Metrics used to evaluate the regressor 

model performance are MSE, RMSE, and R-squared. This 

section gives a detailed description of metrics. 

5.1 Macro F1-Score 

It is the arithmetic mean of the F1-score for each class. we 

employed the F1-score for all classes that equally 

contribute to the final score, regardless of several samples 

in each class. If the dataset is imbalanced, the macro 

average F1-score shown in Eq. (1), can provide a more 

informative evaluation than micro average or weighted 

average. 

Macro F1-score = (F1_BLB + F1_BLS +F1_BPB+……... 

+ F1_TG) / N                                                          (1) 

Where F1_BLB + F1_BLS +F1_BPB+……... + F1_TG 

are the F1-scores for each class, N is the total number of 

classes; in our case, it is N=10. 

5.2 Loss Function 
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The loss function is used to measure the model’s 

performance during training. The loss function we used is 

categorical cross entropy as shown in Eq. (2), suitable for 

multi-class classification problems like paddy disease 

detection. 

𝑳𝒐𝒔𝒔 =  − ∑ [𝒚𝒕𝒓𝒖𝒆 ∗ 𝐥𝐨 𝐠(𝒚𝒑𝒓𝒆𝒅)]𝟗
𝒊=𝟎   (2) 

where y_true is the true label (one-hot encoded), y_pred is 

the predicted probability distribution, Σ is the summation 

over all classes where i value ranges from 0-9. In the 

proposed work all, the models were individually trained 

where the loss function is calculated to the total number of 

training samples, where N is the total number of training 

samples and loss_i is the loss calculated for the i-th 

sample. Validation loss and testing loss was also calculated 

in the same manner as done for training as shown in Eq. 

(3). 

Loss =(
1

𝑁
) ∗  𝛴(𝑙𝑜𝑠𝑠𝑖)   (3) 

5.3 Accuracy 

We calculated accuracy on the training set, validation, and 

test set giving the proportion of correctly classified 

samples.  

Accuracy = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
   (4) 

5.4 Mean Squared Error 

Measures the average squared difference between the 

predicted and actual values shown in Eq. (5). 

MSE = (1/n) ∗  ∑ (𝑦𝑝𝑟𝑒𝑑– 𝑦𝑡𝑟𝑢𝑒)
2𝟗

𝒊=𝟎    (5) 

Where n is the total number of data points, y_pred is the 

predicted disease severity,  y_true is the actual disease 

severity. 

5.5  Root Mean Squared Error 

The square root of the MSE provides a measure in the 

same units as the target variable as shown in Eq. (6). 

   (6) 

6. Experimental Results 

6.1 Model-wise Performance Analysis 

The experimental results insights that VGG-16 Achieves 

decent accuracy and F1-score, indicating reasonable 

performance. While XceptionNet Shows improvement in 

the F1-score compared to VGG-16. The MobileNet has 

given High training accuracy and F1-score, but 

performance drops significantly on validation and test sets,  

where in improved baseline model shows improvement 

over the baseline model in terms of accuracy and loss, but 

lags behind more complex models like VGG-16 and 

XceptionNet in terms of F1-score. The Proposed ES-

DeepNet Consistently outperforms all other models in 

terms of accuracy, loss, and F1-score. Demonstrates strong 

generalization ability. The Proposed ES-DeepNet model 

excels in all evaluated metrics. It exhibits high accuracy, 

low loss, and exceptional F1-score across training, 

validation, and testing phases. This indicates that the 

model has effectively learned the underlying patterns in the 

data and can generalize well to unseen data as shown in 

Table 4 & Fig. 6. 

6.2 Combine feature severity predictions 

ES-DeepNet Predictions with method 2 use 4 features and 

show significantly better performance with extremely low 

MSE and RMSE, suggesting a strong correlation between 

these features and the target variable. Results are shown in 

Table 4. Shows the second feature combination 

outperforms the first one by a significant margin. Reducing 

the number of features in this case has led to a substantial 

improvement in model performance. The extremely low 

MSE and RMSE for the second model indicate a very good 

fit to the data. 

The effectiveness of the proposed fusion of features 

obtained by ES-DeepNet predictions and the DST 

algorithm is evaluated using a random forest regressor and 

compared with that of another algorithm CST algorithm 

The performance of both DST and CST algorithms is 

evaluated on the Paddy doctor dataset. Table 4 represents 

the performance evaluation of metrics on ensemble-based 

random forest regressor on CST and DST methods. 

Table 5. Performance Evaluation of Metrics on Hybrid 

Ensembling with RFR. 

 

The Ensemble with RFR - DST method has lower MSE 

(0.014) and RMSE (0.12) values compared to the 

Ensemble with RFR - CST method which has MSE (0.021) 

and RMSE (0.14). This indicates that the DST method has 

a better predictive performance, with smaller errors in the 

test data. 

In Fig. 7 the report consists of the predicted label: tungro, 

with a severity of 8.67 on, a scale of 1. Most of the 

predictions were accurate with the DST method compared 

with that of the CST method.  

ES-DeepNet, an ensemble deep learning model, 

demonstrates superior performance in classification and 
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severity prediction compared to existing methods. 

Ensemble learning combines predictions from various 

models to enhance performance.  

 

 

 

 

 
 

Fig 4. Features generated from biotic stress severity assessment methods 

 

Fig 5.  Sample images that are obtained for predicted images of proposed thresholding methods. 
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Table 4 . Results obtained for the proposed work. 

 

 

Figure 4.  Visualization of results obtained for the proposed ensembling technique.

 

 

Figure 5. Severity Assessment Report Using combined ESDeepNet with RFR For Biotic Stress- Tungro

7. Conclusion 

This research introduces a novel approach to enhance the 

biotic stress of paddy for disease diagnosis and severity 

assessment by synergistically combining ensemble 

learning and image processing techniques. The proposed 

ES-DeepNet model, an ensemble of VGG16, Xception, 

MobileNet, and baseline models, demonstrates superior 

performance in accurately classifying paddy diseases 

compared to individual models. The integration of disease 

severity assessment features, extracted through image 

processing techniques and analyzed using a Random Forest 
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Regressor, significantly improves the model's ability to 

predict disease severity levels. Evaluation metrics, 

including accuracy, F1-score, mean squared error (MSE), 

root mean squared error (RMSE) were employed to assess 

the model's performance. The experimental results 

consistently demonstrate the superiority of the proposed 

framework in terms of classification accuracy and severity 

prediction. The ES-DeepNet model effectively captures 

intricate patterns within paddy leaf images, leading to 

precise disease identification. Furthermore, the integration 

of disease severity assessmentseverity. This multi-model 

approach helps in extracting complex features from paddy 

images, enhancing the model’s accuracy and 

generalization. The ES-DeepNet model was evaluated 

using the Paddy Doctor dataset, comparing its performance 

with other ensemble models like AME, CLSTM, and 

WDM. ES-DeepNet achieved a notable accuracy of 98%. 

The model also demonstrated lower loss and higher macro 

F1 scores compared to baseline models. The Ensemble 

with Random Forest Regressor (RFR) using Disease-

Specific Thresholding (DST) showed better performance 

compared to the Color Specific Thresholding (CST) 

method, with lower MSE and RMSE. In summary, the 

chapter presents a robust method for predicting and 

assessing stress severity in paddy crops by integrating 

ensemble learning with advanced severity assessment 

techniques, resulting in improved accuracy and predictive 

performance. features enhances the model's ability to 

quantify the extent of disease impact. This research 

contributes to the advancement of precision agriculture by 

providing a robust and efficient tool for biotic stress 

management in paddy. The proposed framework holds the 

potential to aid farmers in early disease detection, enabling 

timely interventions and reducing crop losses. However, 

there are several avenues for further exploration to enhance 

the system's capabilities like incorporating a more 

extensive and diverse dataset, including images captured 

under varying environmental conditions and with different 

rice varieties, to improve model robustness. The potential 

of vision transformers can be used for feature extraction 

and classification. Also, we can develop real-time 

applications for on-field disease detection and severity 

assessment using mobile devices or drones by utilizing 

data related to hyperspectral imaging or weather data, to 

improve prediction accuracy. 
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