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Abstract: Accurate and reliable information on human heart health is key to its prognosis. Most recently, advanced machine learning and 

deep learning methods are aiding the doctors in decision making. However, it still evades them to understand how a ML or DL model is 

able to do so. This calls for use of ML/DL model performance interpretation frameworks to correlate a particular model’s performance 

with its internal architecture and functioning. In this study, an attempt is made to interpret the performance two different classification 

models that participated in the Physionet Challenge 2022. SHAP XAI framework-based interpretations of the performances of one heart 

murmur detection model and one clinical outcome prediction model are done. The heart murmur detection model selected for interpretation 

is a transformer-based deep neural network (T-DNN) whereas the clinical outcome prediction model selected for interpretation is a  Random 

Forest boosted with AdaBoost boosting strategy. The dataset considered for model performance interpretations is the CirCor DigiScope 

dataset. The dataset contains phonocardiogram recordings, socio-demographic information and other auxiliary information. The T-DNN 

is trained on DWT features computed from segmented phonocardiogram signals for three-class (Present, Absent, and Unknown) 

classification task.  The AdaBoost-RF is trained on collection of features including statistical measures, wavelet transform features, time-

based and frequency-based features. ANOVA method is used to reduce the dimensionality of the total number of features to 110.  The 

AdaBoost-RF performs a binary (Normal and Abnormal) classification task. The T-DNN model performed classification with overall 

accuracy of 90.23% whereas the AdaBoost-RF model performed classification with overall accuracy of 89.1%. Shapley importance plot, 

summary plot and Swarm charts are used to interpret the classification performance of the T-DNN and the AdaBoost-RF here. The study 

provides insights into the workings of advanced machine learning and deep learning models during detection and identification of heart 

health from phonocardiogram recordings. 

Keywords: Multi-source phonocardiograms, SHAP XAI, Digi Scope dataset, ensemble learning 

1. Introduction 

 Heart disease encapsulates a range of conditions that 

affect the heart. These conditions can include heart attack, 

heart failure, coronary artery disease (narrowing of the 

arteries), arrhythmias (irregular heartbeat), and others, 

These conditions can adversly affect the heart's structure 

and function. Heart defects or abnormalities that are 

present at birth are termed as Congenital heart disease 

(CHD). These defects can affect the heart's walls, valves, 

or blood vessels, disrupting normal blood flow through 

the heart. Rheumatic heart disease (RHD) is a condition 

that develops as a complication of untreated or 

inadequately treated streptococcal throat infection, 

specifically caused by group A streptococcus bacterium. 

This infection can lead to rheumatic fever, which in turn 

can cause inflammation and damage to the heart valves 

and other heart structures. Both CHD and RHD diagnosis 

typically involves a combination of medical history, 

physical examination, blood tests, electrocardiogram 

(ECG), echocardiogram, stress tests, and cardiac 

catheterization but the cardiac health pre-screening  is 

almost alwats done by observing cardiac auscultation via 

a stethoscopes. Observation and interpretation of 

heartbeat sounds is an ‘Art’ as it is ‘Science’. Therefore, 

there has been critical discussions on what is the best 

prcatice to skill the task. Most importanly, it needs acute 

hearing state which is a human realted parameter and 

cannot be controlled with precision. With the significant 

advances in instrumentation technology, digital 

phonocardiography is now a powerful assistive tool in 

heart health monitoring. Phonocardiography is used to 

study the various sounds produced by the heart during its 

cycle of contraction and relaxation. A phonocardiogram 

(PCG) can be acquired via a combination of (a).High-

fidelity stethoscope front-ends and (b). High-resolution 

digital sampling circuitry. The stethoscope front-ends act 

as a diaphragm or a membrane that vibrates when it comes 

into contact with heartbeat sound waves. These vibrations 

represent the acoustic pressure waves which are registered 

as a discrete-time signal by the sampling circuitry. These 

discrete-time signals can further be interpreted by the use 

of detection algorithms. A phonocardiogram typically 

consists of several key components: 

• S1 and S2 sounds: S1 represents the sound of the closure 

of the mitral valve (MV) and the tricuspid valve (TV) 
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during systole, and S2 represents the sound of theclosure 

of the aortic valve (AV) and the pulmonary valve (PV) 

during diastole. The positions of these valves in 2D is 

shown in Figure 1.  

• Murmurs: The turbulent blood flow through the heart or 

blood vessels, cause abnormal sounds. These abnormal 

sounds are termed as ‘Murmurs’ that include valve 

abnormalities or other structural issues. 

• Other Sounds: Phonocardiograms may also capture 

other sounds such as clicks (e.g., in mitral valve prolapse), 

snaps (e.g., in aortic stenosis), and rubs (e.g., pericardial 

friction rub).  

Compared to auscultation (listening to heart sounds with 

a stethoscope), phonocardiography provides a more 

detailed and objective assessment of heart sounds. It 

allows for precise measurement and analysis of sound 

characteristics, which can aid in diagnosing subtle 

abnormalities that may not be easily detected by 

auscultation alone. 

Feature extraction and selection are common processes 

witin machine learning approaches used for murmur 

detection. Mel-frequency cepstral coefficients (MFCC) 

are most commonly used in speech and audio processing 

and can be adapted for heart sound analysis [1][2]. 

MFCCs are robust against noise and other distortions 

which making them suitable for real-world applications. 

They capture the frequency characteristics of heart 

sounds, which are crucial for distinguishing murmurs 

from normal heart sounds. By reducing the dimensionality 

of the feature space, MFCCs simplify the task of 

classification without losing significant information [3]. 

Their integration with machine learning algorithms 

contributes to advancing automated and accurate murmur 

detection systems in clinical settings [4][5]. Wavelet 

Transform is another feature extraction and selection 

technique that is useful for decomposing heart sound 

signals into different frequency components, which can 

then be analyzed to identify specific patterns associated 

with murmurs [6]. This decomposes a signal into different 

frequency components with varying resolutions in time. 

Unlike the Fourier transform, which provides a fixed 

resolution in both time and frequency, wavelet transform 

adapts to local characteristics of the signal [7]. In the 

context of murmur detection from heart sound recordings, 

the recordings can be decomposed using wavelet 

transform into wavelet coefficients at different scales. 

This decomposition allows capturing both low-frequency 

components (e.g., heartbeats) and high-frequency 

components (e.g., murmurs) separately [8]. Machine 

learning algorithms can then be applied to these wavelet 

coefficients to classify heart sounds as normal or 

abnormal (murmurs)[8]. The patterns in the wavelet 

coefficients associated with murmurs (such as specific 

frequency distributions or transient spikes) can be learned 

by the models [9]. It has been also repored that rather than 

the use of MFCC or wavelet transform, statistical features 

such as mean, standard deviation, skewness, kurtosis, and 

spectral entropy can provide valuable information about 

the characteristics of heart sounds, aiding in the detection 

of abnormalities [10]. However, in this study, wavelet 

transfoorm features, statistical measures, time-nased and 

frequency-based features are computed and used as 

features. 

Artificial intelligence or AI has been increasingly utilized 

to detect cardiac murmurs due to its ability to analyse 

large amounts of data quickly and accurately. Advanced 

machine learning models are increasingly being 

developed and utilized for the detection of cardiac 

murmurs. These models leverage various techniques and 

datasets to accurately identify abnormalities in heart 

sounds. Deep learning models based on findational 

architectures such as the recurrent neural networks 

(RNNs) and the convolutional neural networks (CNNs), 

can be trained on large datasets of labeled heart sound 

recordings[11][12] to perform heart disease detection or 

identification. CNNs are particularly effective for 

extracting useful information directly from waveforms of 

heart sounds or from features such as wavelet transform 

features or they can directly process spectrograms of heart 

sound recordings [13]. Given the limited availability of 

labeled heart sound datasets, data augmentation 

techniques can help increase the diversity of training 

samples and improve the model’s robustness [14]. The 

RNNs can capture temporal dependencies in the sound 

sequences [15]. However, if the sequence is too long, it 

makes learning in the RNNs a computationally expensive 

and cumbersome. Therefore state-of-art techniques that 

use combination of the CNNs and the RNNs have been 

proven to learn spatial, spectral, and time-dependent 

characteristics of heart murmur from PCG waveform 

simultaneously [16]. Also, transfer learning has been 

explored for heart murmur detection. In transfer learning, 

CNN models, pre-trained on large audio datasets, has been 

fine-tuned for murmur detection [17]. This strategy 

approach leverages learned features from general audio 

patterns, potentially enhancing performance with minimal 

data. However, learning the patterns of a heartbeat 

(normal or abnormal) can be challenging among the range 

of patterns present in the audio signals. Most recently, 

transformer-based DNNs have been efficient and effective 

in numeruos time-series signal processing applications 

such as the PCG signals at hand here. Transformers have 

been effective DNN architectures in natural language 

processing (NLP) applications[18]. These are an 

advanced version of the conventional CNNs and RNNs 

because of its ability to capture global dependencies in the 

input through self-attention and cross-attention 
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mechanisms [18]. These mechanisms force the DNN to 

learn from regions of most significant impact on the class 

prediction. Transformer-based DNNs are gaining 

popularity in medical applications[18].  

 

Fig 1 Positions of the heart valves in 2D. 

Alternatively to deep learning techniques, advanced 

machine learning algorithms such as the XGBoost, 

LightGBM, RUSBoost  are also powerful for ensemble 

learning, combining the predictions of multiple weak 

learners such as the decision trees to improve accuracy in 

classification tasks like murmur detection  [2][19][20]. 

Furthermore, several versions of boosting were tested on 

the PCG data. Models are typically evaluated using 

metrics such as accuracy, sensitivity, specificity, and area 

under the ROC curve (AUC), reflecting their ability to 

correctly classify heart sound recordings. However, 

model performance evaluations of DL models with these 

idicators is not enough since these models are a blackbox 

and it is difficult to pinpoint how much a particular 

component is contributing towarsd its performance. 

Therefore explainable AI or XAI frameworks are gaining 

attention in DL models’ performance interpretations. 

Therefore, to understand the impact of model 

architectures on heart murmur detection and classification 

performance, this study explores the potential of a 

transformer-based DNN and a boosted RF classifier 

within an XAI framework. The transformer-based DNN 

selected for analysis is proposed in [21] and the boosted 

RF selected for analysis is proposed in [22]. The Shapley 

XAI framework analyses the model performance of both 

the classifiers. 

In this study, an attempt is made to interpret the 

performance two different classification models that 

participated in the Physionet Challenge 2022 [23, 24]. 

SHAP XAI framework-based interpretations of the 

performances of one heart murmur detection model and 

one clinical outcome prediction model are done. The heart 

murmur detection model selected for interpretation is a 

transformer-based deep neural network (T-DNN) 

proposed in [21] whereas the clinical outcome prediction 

model selected for interpretation is a  Random Forest 

boosted with AdaBoost boosting strategy proposed in 

[22]. The dataset considered for model performance 

interpretations is the CirCor DigiScope dataset [25]. The 

dataset contains phonocardiogram recordings, socio-

demographic information and other auxiliary information. 

The T-DNN is trained on DWT features computed from 

segmented phonocardiogram signals for three-class 

(Present, Absent, and Unknown) classification task.  The 

AdaBoost-RF is trained on collection of features 

including statistical measures, wavelet transform features, 

time-based and frequency-based features. ANOVA 

method is used to reduce the dimensionality of the total 

number of features. The AdaBoost-RF performs a binary 

(Normal and Abnormal) classification task. Shapley 

importance plot, summary plot and Swarm charts are used 

to interpret the classification performance of the T-DNN 

and the AdaBoost-RF here. The rest of the paper is 

divided into sections. Section 2 and its sub-sections 

incorporates the materials and methods utilized in the 

study. Section 3 provides results obtained and its 

discussion. Section 4 concludes the study. 

2. Materials and Methods 

2.1 Dataset: Description and Preparation: CirCor 

DigiScope dataset 

The dataset for this paper is the CirCor DigiScope dataset 

which consolidated via a series of campaigns held in 

various locations [25]. The dataset was collected as part 

of two mass screening campaigns conducted in Northeast 

Brazil in July-August 2014 and June-July 2015. The data 

collection was approved by the 5192-Complexo 

Hospitalar HUOC/PROCAPE institutional review board, 

under the request of the Real Hospital Portugues de 

Beneficencia em Pernambuco. The campaign was termed 

“Caravana do Coração” (Portuguese for “Caravan of the 

Heart”). In this campaign, a total of 2061 participants 

participated. From the original 2061 participants, 493 

participants were excluded for not meeting the eligibility 

criteria. The remaining 1568 participants underwent a 

clinical examination (anamnesis and physical 

examination). A nursing assessment (physiological 

measurements), and cardiac investigations (chest 
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radiography, electrocardiogram, and echocardiogram) 

were made during the examination. The participants also 

completed a socio-demographic questionnaire that was 

later used to annotate the recordings. During these 

campaigns a total number of 5272 heart sound recordings 

were collected. High-fidelity stethoscope front-ends are 

placed at four auscultation locations (PV, AV, TV, and 

MV) of 1568 subjects. The subjects were aged between 0 

and 21 years. The mean age in the dataset was  6.1 years 

and the standard deviation was 4.3 years. The duration of 

observation ranged between 4.8 to 80.4 seconds. The 

mean observation time was 22.9 seconds and the standard 

deviation was 7.4 seconds. The overall recording time was 

approximately 33.5 hours. A human annotator labelled 

each cardiac murmur in the dataset. The annotations 

include time lapsed during the murmur event, shape of the 

PCG during the event, location, pitch, grading, and quality 

of the recording. The dataset majorly came from six 

sources listed as a, b, c, d, e, and f here (refer Table 1. 

Imbalanced data 

Another major issue with multi-source database is the 

imbalance in sample proportions which can adversely 

affect the performance of any machine learning oriented 

algorithm [26]. Here, a basic technique of repeating the 

minority class samples to have a balanced class proportion 

i.e.SMOTE is used. Table _ lists the number of samples 

collected for each class. 

Table 1 Number of samples collected from different data source to balance the class sample proportion. 

Source Number of Normal records Number of Pathological records 

a 1840 1564 

b 1782 1848 

c 1755 1752 

d 1848 1584 

e 1930 1920 

f 1871 1830 

Total 11,026 10,498 

 

2.2 Heart Murmur Detection: Transformer-Based DNN 

Input data: The model used four-channel PCG data from 

942 patients for training. The order of channels is AV, 

MV, PV, and TV. The first 40 seconds of the recordings 

is used and ‘same’ padding is used wherever necessary. 

Feature extraction: The heart function characteristics are 

embedded within the recorded PCG signals along with 

other contaminated signals. a discrete  wavelet transform 

(DWT) was employed on the original PCG signals. Each 

PCG channel signal comprised of 160,000 samples which 

is equivalent to 40 seconds length, was fragmented into 

5,000 segments. Each segment is therefore consisting 32 

samples per channel. Further, the 32-sample segment of 

each PCG channel is represented by a  total of 30 features. 

The features from each channel are concatenated to form 

a wavelet power transformation. In the end, a transformed 

signal of 20,000 samples (4 channels × 5000 32-sample 

segments) is achieved. This transformed signal is used to 

train the DNN. 

Transformer-based DNN: Their transformer-based 

DNN proposed in [21]  is based on four major 

components. The first component is a feature encoder 

which is based on a set of two one-dimensional 

convolutions acting on transformed input data. These one-

dimensional convolutions act as an encoder that produces 

features of lower dimensional space. This encoder utilizes 

Gaussian error linear unit (GELU) as an activation 

function. Batch normalization and pooling is also used. 

The encoder outputs a feature space of size 30×1250. 

Next, the second component is a positional encoder that 

encodes the feature space from the feature encoder via a 

series of sin and cosine representations. The third 

components is a transformer that uses multi-head attention 

mechanism. This transformer performs a scaled dot 

product on the sin-cosine representations from the 

positional encoder. The DNN uses a single transformer 

unit and provides a single attention vector. Finally, the 

forth component is a decoder consisting of a series of fully 

connected and pooling layers that decodes the attention 

vector from the transformer layer and produces a single 
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value per input. Figure 2 presents the layout of the four-

component DNN. More details of this DNN architecture 

are discussed in [21]. 

 

 

Fig 2 Figure showing the hybrid architecture of the four-component DNN (T-DNN) proposed in [21]. 

2.3 Clinical Outcome: Ensemble learning: Boosted 

Random Forest 

The classier selected here for evaluation for the clinical 

outcome classification task is the Random Forest (RF) 

classifier boosted with AdaBoost (Adaptive Boosting) 

technique as proposed in [22]. 

Features: Each recording was processed the same way, 

after preprocessing and segmentation S1, systole, S2, and 

diastole sections were separated and the same features 

were calculated for each heart cycle segment along with 

certain features for the entire signal. From each of these 

channel signals, 900 wavelet-based features and 780 

statistical-based, time-based, and frequency-based 

features are computed.  

Feature selection: Analysis of variance ANOVA based 

feature selection was used to select the 110 best scoring 

features from the 900 (wavelet) + 780 (statistical, time, 

and frequency) features. Figure 3 shows sample features 

obtained from a sample PCG. A few prominent features 

computed are listed in table 2. 

 

 

(a)      (b) 

Fig 3 Transformed features (1, 2, 3) for first 150 samples and class, (a) Murmur-Absent, Outcome-Abnormal (b) Murmur-

Present, Outcome-Abnormal. 
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Table 2 List of top few features selected via the ANOVA method. 

Prominent features Prominent features  

Mean Median of the Histogram Counts of the Beat 

Average Magnitude of the Fourier Transform Wavelet Entropy 

Minimum of the Fall-time High value of the Beat State-level 

Average Peak value of the beat Median of the Pulse-Width 

Minimum of the Pulse-Period Median of the Fall-time 

Third Order Moment Median of the Pulse-Period 

Minimum of the Pulse-Width Average Angle of the Fourier Transform 

Median of the beat overshoot Kurtosis 

Low value of the Beat State-level Standard Deviation 

 

Classifier: Random Forest with AdaBoost 

The classier selected here for evaluation for the clinical 

outcome classification task is the Random Forest (RF) 

classifier boosted with AdaBoost (Adaptive Boosting) 

technique as proposed in [22]. RF is an ensemble learning 

technique composed of an ensemble of smaller decision 

trees. Each tree performs classification on a bootstrapped 

random subset of the data, using a random subset of the 

features. AdaBoost focuses on correcting the mistake of 

decision trees (weak classifiers) by iteratively reweighting 

the training samples. The technique works as follows. 

• Assign weights to each sample based on 𝑤𝑖 =
1

𝑁
, 

where 𝑁 is the number of samples. 

• At a particular iteration t: 

1. Train a decision tree ℎ𝑡(𝑥) on the weighted dataset. 

2. Compute the error for samples that are incorrectly 

classified as follows. 

𝜀𝑡 =
∑ 𝑤𝑖 . 1[ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖]
𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 (1) 

3. Compute the weight for the decision tree:    𝛼𝑡 =
1

2
𝑙𝑛 (

1−𝜀𝑡

𝜀𝑡
) 

4. Update the sample weight: 𝑤𝑖 ←

𝑤𝑖 . 𝑒𝑥𝑝(−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖)) 

5. Normalize 𝑤𝑖so that ∑𝑤𝑖 = 1 

• Final prediction: 𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥)
𝑇
𝑡=1 ) 

 

Boosting Integration: Sequentially, errors from previous 

trees are minimized, like in boosting. Mathematically, the 

predications in Boosted RF are updated as:   

𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + 𝜂∑𝛼𝑏 . 𝑓𝑏(𝑥)

𝐵

𝑏=1

 (2) 

       

Where 

▪ 𝑓𝑏(𝑥)is the 𝑏𝑡ℎ tree from the random forest. 

▪ 𝛼𝑏 is the weight assigned to each tree. 

▪ 𝜂 is the learning rate. 

The loss function used for learning in boosted RF is a log-

loss which is governed by; 

𝐿(𝑦, 𝐹(𝑥)) = −∑[𝑦𝑖 𝑙𝑜𝑔 𝐹 (𝑥𝑖)

𝑁

𝑖=1

+ (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝐹(𝑥𝑖))] 

(3) 

 

The boosted RF had a learning rate of 0.1 and 60 learners 

in its ensemble, with maximum branching set to 20. In 

clinical outcome classification, misclassified ”Abnormal” 

cases had a cost of 2. 

3 Experiment Setup, Results, and Discussion 

3.1 Murmur detection: Transformer-based DNN 

The transformer-based DNN proposed in [21] used the 

hyperparameter settings according to Table 3. The model 

uses Adam as optimizer and an initial learning rate of 

0.001. The model is trained for 60 epochs and the learning 

rate decays 10% after the 40th epoch. The model uses a 10-

fold cross-validation strategy for more optimal and 

generalized model performance. Details of 

hyperparameter settings for T-DNN model is listed in 

Table 3. Sample distribution percentages for training, 

validation, and testing sets is listed in Table 4. During 
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model training, the model employs synthetic minority 

oversampling technique (SMOTE) to balance out the 

imbalances in class proportions in the training set. Class 

proportions before and after SMOTE is applied is listed in 

Table 5. The trained T-DNN model when tested on testing 

set provided an overall accuracy of 90.23% while the 

specificity and sensitivity achieved are 70.22% and 

70.41% respectively as listed in Table 6. 

Table 3 Hyperparameter settings for the transformer-based DNN (T-DNN). 

Hyperparameter Setting 

Model name T-DNN 

Optimizer Adam 

Epochs 60 

Learning rate 0.001 

Learning rate decay 10% at the 40th epoch 

Cross-validation 10-fold 

Minority class over sampling technique SMOTE 

 

Table 4 Distribution of dataset samples across training, validation, and testing sets. 

Sample distribution percentage during T-DNN model training 

Training Validation Testing 

0.8 0.1 0.1 

 

Table 5 Class proportion distribution correction with SMOTE. 

Class proportions in the training dataset (before SMOTE) 

Present Absent Unknown 

0.74 0.19 0.07 

Class proportions in the training dataset (after SMOTE) 

Present Absent Unknown 

0.44 0.29 0.27 

 

Table 6 T-DNN model performance metrics 

Model Performance scores (testing set) in % 

 Accuracy Specificity Sensitivity 

T-DNN 90.23 70.22 72.41 

 

To interpret model performance, SHAP XAI framework 

is employed. Figure 4 presents a plot between predictors 

and its corresponding Shapley value. It is evident from 

Figure 4 that predictors id 80-100 are contributing 

significantly for all three classes. More specifically, 

predictor id 85 is significantly contributing towards 

identification of the Unknown class, predictor id 105 is 

significantly contributing towards identification of the 

Present class and, predictor id 91 is significantly 

contributing towards identification of the Absent class. 

Figure 5 shows mean absolute Shapley values for top 10 

predictors in descending order.  For example, the topmost 

predictor has the highest value (for Present class). 

However, this predictor contributes less towards the 

Absent class than predictor at position 2. For the Unknown 

class, predictor at position 3 is contributing the most but 

its contribution value is less than what predictor at 

position 1 is contributing towards the Present class. This 
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is why it is positioned at 3. The position of the predictors 

in the order of contribution towards the Present class is- 

1, 2, 7, 8, 4, 3, 5, 6, 10, and 9. Whereas the position of the 

predictors in the order of contribution towards the Absent 

class is-   2, 3, 4, 7, 8, 10, 1, 6, 5, and 9 and the position of 

the predictors in the order of contribution towards the 

Unknown class is- 1, 5, 6, 2, 9, 3, 4, 7, 8, and 10. Please 

note these are the ranking for top 10 predictors among the 

110 predictors.   

 

Fig 4 Shapley values for each predictor; red- Present class, blue- Absent class, and green- Unknown class. 

 

Fig 5 Mean absolute Shapley values for top 10 predictors; blue- Present class, red- Absent class, and orange- Unknown 

class. 

Figure 6 shows the Swarm chart for the Present class. In 

this figure, higher values of predictors are indicated in red 

color and lower values of predictors are indicated by blue 

colour. Predictor at position 1 and 2 show high absolute  

Shapley values whereas predictor 8, 9, and 10 show low 

absolute Shapley values. Figure 6 also shows sample 

distributions contributing towards the Present class. For 

example, the predictor at position 1 (topmost) has absolute 

Shapley values for most samples is in the range 0.7- 0.9 

or the predictor at position 2 (second from top) has 

absolute Shapley values for most samples is in the range 

0.3- 0.5.   
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Fig 6 Swarm chart of top 10 predictors for the Present class. 

Figure 7 shows the Swarm chart for the Absent class. In 

this figure, higher values of predictors are indicated in red 

color and lower values of predictors are indicated by blue 

colour. Predictor at position 1 and 2 show high absolute  

Shapley values whereas predictor 8, 9, and 10 show low 

absolute Shapley values. Figure 7 also shows sample 

distributions contributing towards the Present class. For 

example, the predictor at position 1 (topmost) has absolute 

Shapley values for most samples is in the range 0.2- 0.6 

or the predictor at position 2 (second from top) has 

absolute Shapley values for most samples are around 0.2.   

Figure 8 shows the Swarm chart for the Unknown class. 

In this figure, higher values of predictors are indicated in 

red color and lower values of predictors are indicated by 

blue colour. Predictor at position 1 and 2 show high 

absolute  Shapley values whereas predictor 8, 9, and 10 

show low absolute Shapley values. Figure 8 also shows 

sample distributions contributing towards the Present 

class. For example, the predictor at position 1 (topmost) 

has absolute Shapley values for most samples is in the 

range 0.3 - 0.5 or the predictor at position 2 (second from 

top) has absolute Shapley values for most samples are 

around 0.3 – 0.1.   

Interpreting Figure 6, 7, and 8 simultaneously indicates 

that  for the Present class, positive Shapley values are 

obtained with higher predictor values for predictor at 

position 2, 3, and 7. Whereas negative Shapley values are 

obtained with higher predictor values for predictor at 

position 1, 4, and 10. For the Absent class, positive 

Shapley values are obtained with higher predictor values 

for predictor at position 5, 6, and 8. Whereas negative 

Shapley values are obtained with higher predictor values 

for predictor at position 1 and 7. 

 

Fig 7 Swarm chart of top 10 predictors for the Present class. 
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Fig 8 Swarm chart of top 10 predictors for the Present class.Clinical outcome: AdaBoost-RF  

The AdaBoost-RF proposed in [22] used the 

hyperparameter settings according to Table 7. The model 

uses 60 weak learners, a learning rate of 0.1, and a 

maximum branching set of 20. A voting mechanism is 

used to aggregate the classifications from different weak 

learners (decision trees). Table 8 lists the sample 

proportion distribution for the training, validation, and 

testing set.  Table 9 lists the class proportions for the 

Normal and the Abnormal clinical outcome class. It is 

evident that the class proportions for the Normal and the 

Abnormal class are equivalent therefore SMOTE is not 

required. The trained AdaBoost-RF model when tested on 

the testing set provided an overall accuracy of 89.1% 

while the specificity and sensitivity achieved are 86.6% 

and 91.6% respectively as listed in Table 10. 

Table 7 Hyperparameter settings for AdaBoost-RF. 

Hyperparameter Setting  

Learning rate 0.1 

Number pf weak learners 60 

Maximum branching set 20 

 

Table 8 Distribution of dataset samples across training, validation, and testing sets. 

Sample distribution percentage during RF-AdaBoost training 

Training Validation Testing 

0.8 0.1 0.1 

 

Table 9 Class proportion distribution. 

Class proportions in the training set  

Normal Abnormal 

0.48 0.52 

Table 10 AdaBoost-RF model performance on testing set. 

Model Performance scores (testing set) in % 

 Accuracy Specificity Sensitivity 

AdaBoost-RF 89.1 86.6 91.6 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 921–934  |  931 

To interpret model performance, SHAP XAI framework 

is employed. Figure 9 presents a plot between predictors 

and its corresponding Shapley value. It is evident from 

Figure 9 that predictors id 50-80 are contributing most 

significantly for both the classes. More specifically, 

predictor id- 62 is most significant the towards 

identification of the Noraml and the Abnormal class and 

predictors id- 50, 62, and 80 are significantly contributing 

towards identification of the Abnormal class. Figure 10 

shows mean absolute Shapley values for top 10 predictors 

in descending order.  For example, the topmost predictor 

has the highest value for the Normal and the Abnormal 

class. The position of the predictors in the order of 

contribution towards the Normal class is- 1, 2, 3, 4, 5, 6, 

7, 8, 9, and 10. Whereas the position of the predictors in 

the order of contribution towards the Abnormal class is-   

1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. Please note these are the 

ranking for top 10 predictors among the 110 predictors. 

Figure 11 shows the Swarm chart for the Normal class. In 

this figure, higher values of predictors are indicated in red 

color and lower values of predictors are indicated by blue 

colour. Predictor at position 1 and 6 show high absolute  

Shapley values whereas predictor 7, 8, and 9 show low 

absolute Shapley values.  Figure 12 also shows Swarm 

chart for the Abnormal class. For example, the predictor 

at position 4 (from top) provides negative Shapley values 

for higher values of the predictor and provides positive 

Shapley values for lower values of the predictor. 

Interpreting Figure 11 and 12 simultaneously indicates 

that  for the Normal class, positive Shapley values are 

obtained with higher predictor values for predictor at 

position 4, 6, and 10. Whereas negative Shapley values 

are obtained with higher predictor values for predictor at 

position 1, 6, and 9. 

 

Fig 9 Figure showing Shapley values corresponding to each predictor. 

 

Fig 10 Mean absolute Shapley values for top 10 predictors; blue- Abnormal class and, red- Normal class. 
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Fig 11 Swarm chart of top 10 predictors for the clinical outcome   ̶Normal class. 

 

Fig 12 Swarm chart of top 10 predictors for the clinical outcome  ̶ Abnormal class. 

4 Conclusion 

In this study, SHAP XAI framework-based interpretations 

of the performances of one heart murmur detection model 

and one clinical outcome prediction model are done. The 

heart murmur detection model selected for interpretation 

is a transformer-based deep neural network (T-DNN) 

whereas the clinical outcome prediction model selected 

for interpretation is a  random forest boosted with 

AdaBoost. The dataset considered for model performance 

interpretations is the CirCor DigiScope dataset. The 

dataset contains phonocardiogram recordings, socio-

demographic information and other auxiliary information. 

The T-DNN is trained on DWT features computed from 

segmented phonocardiogram signals for three-class 

classification task. The three classes are murmur  ̶Present, 

murmur  ̶Absent, and murmur  ̶Unknown. The imbalance 

in class-wise training sample proportions is balanced via 

SMOTE method. The T-DNN model performed 

classification with overall accuracy of 90.23%. The 

Shapley values obtained from the SJAP XAI framework-

based interpretation of the T-DNN reflects which features 

are critical or are contributing significantly towards a 

particular class. Shapley importance plot, summary plot 

and Swarm charts are used to interpret the classification 

performance of the T-DNN here. The AdaBoost-RF is 

trained on collection of features including statistical 

measures, wavelet transform features, time-based and 

frequency-based features. ANOVA method is used to 

reduce the dimensionality of the total number of features 

to 110.  The AdaBoost-RF performs a binary 

classification task. The two classes are clinical outcome 

Nornal, murmur ̶ Absent, and clinical outcome Abnormal. 

SMOTE is not required in this scenario since both classes 

has equivalent sample size. The AdaBoost-RF model 

performed classification with overall accuracy of 89.1% 

whereas the specificity and sensitivity of this model are 

86.6% and 91.6% respectively. The Shapley values 

obtained from the SJAP XAI framework-based 

interpretation of the AdaBoost-RF reflects which features 

are critical or are contributing significantly towards a 

particular class. Shapley importance plot, summary plot 
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and Swarm charts are used to interpret the classification 

performance of the AdaBoost-RF here. This study 

provides insights into the workings of advanced machine 

learning and deep learning models during detection and 

identification of heart health from phonocardiogram 

recordings. Similar studies in future could help establish 

the significance of say DNN architecture or nature of 

ensemble strategy in heart disease detection tasks. 

References 

[1] Venkataramani VV, Garg A, Priyakumar UD (2022) 

Modified Variable Kernel Length ResNets for Heart 

Murmur Detection and Clinical Outcome Prediction 

Using Phonocardiogram Recordings. Computing in 

Cardiology 2022-Septe:1–4. 

https://doi.org/10.22489/CinC.2022.315 

[2] Imran Z,Grooby E,Malgi VV,et al(2022) A Fusion 

of Handcrafted Feature –Based and Deep Learning 

Classifiers for Heart Murmur Detection .Computing 

in Cardiology 2022-septe:1-

4.https://doi.org/10.22489/cinC.2022.310 

[3] Abdul ZK,AI-Talabani AK(2022) Mel Frequency 

Cepstral Coeddiciemt and its 

Applications:AReview.IEEE Access 10:122136-

122158.https://doi.org/10.1109/ACCESS.2022.322

3444 

[4] Chang Y, Liu L, Antonescu C (2022) Multi-Task 

Prediction of Murmur and Outcome from Heart 

Sound Recordings. Computing in Cardiology 2022-

Septe:7-10. https://doi.org/10.22489/CinC.2022.309 

[5] Bai Z, Yan B, Chen X, et al (2022) Murmur 

Detection and Clinical Outcome Classification 

Using a VGG-like Network and Combined Time-

Frequency Representations of PCG Signals. 

Computing in Cardiology 2022-Septe: 1-4. 

https://doi.org/10.22489/CinC.2022.318 

[6] Maller K, Goda MA (2022) Heart Murmur Detection 

in Phonocardiographic Signals Using Breathing 

Noise Suppression. Computing in Cardiology 2022-

Septe:2-5. https://doi.org/10.22489/CinC.2022.280 

[7] Nivitha Varghees V, Ramachandran KI (2015) Heart 

murmur detection and classification using wavelet 

transform and Hilbert phase envelope. 2015 21st 

National Conference on Communications, NCC 

2015 1-6. 

https://doi.org/10.1109/NCC.2015.7084904 

[8] Petrolis R, Paukstaitiene R, Rudokaite G, et al 

(2022) Convolutional Neural Network Approach for 

Heart Murmur Sound Detection in Auscultation 

Signals Using Wavelet Transform Based Features. 

Computing in Cardiology 2022-Septe:2-

5.https://doi.org/10.22489/CinC.2022.043 

[9] Comely AK, Mirsky GM (2022) Heart Murmur 

Detection Using Wavelet Time Scattering and 

Support Vector Machines. Computing in Cardiology 

2022-Septe:1-4. 

https://doi.org/10.22489/CinC.2022.251 

[10] Touahria R, Hacine-Gharbi A, Ravier P (2023) 

Feature selection algorithms highlight the 

importance of the systolic segment for 

normal/murmur PCG beat classification. Biomedical 

Signal Processing and Control 86:105288. 

https://doi.org/10.1016/j.bspc.2023.105288 

[11] Xu Y, Bao X, Lam HK, Kamavuako EN (2022) 

Hierarchical Multi-Scale Convolutional Network for 

Murmurs Detection on PCG Signals.Computing in 

Cardiology 2022-Septe: 1-4. 

https://doi.org/10.22489/CinC.2022.439 

[12] Warrick PA, Afilalo J (2022) Phonocardiographic 

Murmur Detection by Scattering-Recurrent 

Networks. Computing in Cardiology 2022-Septe:10-

13. https://doi.org/10.22489/CinC.2022.408 

[13] LiX, Ng GA, Schlindwein FS (2022) Transfer 

Leaming in Heart Sound Classification using Mel 

Spectrogram. Computing in Cardiology 2022-Septe: 

1-4. https://doi.org/10.22489/CinC.2022.046 

[14] Lu H, Yip JB, Steigleder T, et al (2022) A 

Lightweight Robust Approach for Automatic Heart 

Murmurs and Clinical Outcomes Classification from 

Phonocardiogram Recordings. Computing in 

Cardiology 2022-Septe:4-7. 

https://do1.org/10.22489/CinC.2022.165 

[15] Shin JM, Park SY, Kim HS, et al (2022) Leaming 

Time-Frequency Representations of 

Phonocardiogram for Murmur Detection. 

Computing in Cardiology 2022-Septe: 1-4. 

https://doi.org/10.22489/CinC.2022.126 

[16] Alam S, Banerjee R, Bandyopadhyay S (2018) 

Murmur Detection Using Parallel Recurrent & 

Convolutional Neural Networks  

[17] Costa JL, Couto P, Rodrigues R (2022) Multitask 

and Transfer Learning for Cardiac Abnormality 

Detections in Heart Sounds. Computing in 

Cardiology 2022-Septe: 1-4. 

https://doi.org/10.22489/CinC.2022.193 

[18] Jain SM (2022) Introduction to transformers for 

NLP. Springer  

[19] Walker B, Krones F, Kiskin I, et al (2022) Dual 

Bayesian ResNet: A Deep Leaming Approach to 

Heart Murmur Detection. Computing in Cardiology 

2022-Septe: 1-4. 

https://doi.org/10.22489/CinC.2022.335 

[20] Summerton S,Wood D,Murphy D,et al(2022) Two 

Stage Classification for Detecting Murmurs from 

Phonocardiograms Using Deep and Expert Features 

.Computing in Cardiology 2022-septe 3-6 

https://doi.org/10.22489/CinC.2022.322 

[21] Alkhodari M, Azman SK, Hadjileontiadis LJ, 

Khandoker AH (2022) Ensemble Transformer-

Based Neural Networks Detect Heart Murmur in 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 921–934  |  934 

Phonocardiogram Recordings. In: Computing in 

Cardiology. IEEE Computer Society 

[22] Baydoun M, Safatly L, Ghaziri H, El Hajj A (2020) 

Analysis of heart sound anomalies using ensemble 

leaming. Biomed Signal Process Control 62:. 

https://doi.org/10.1016/j.bspc.2020.102019 

[23] Goldberger AL, Amaral LAN, Glass L, et al (2000) 

PhysioBank, PhysioToolkit, and PhysioNet: 

components of a new research resource for complex 

physiologic signals. Circulation 101:e215-e220 

[24] Reyna MA, Kiarashi Y, Elola A, et al (2023) Heart 

murmur detection from phonocardiogram 

recordings: The george b. moody physionet 

challenge 2022. PLOS Digital Health 2:e0000324 

[25] Oliveira J, Renna F, Costa PD, et al (2021) The 

CirCor DigiScope dataset: from murmur detection to 

murmur classification. IBEE J Biomed Health 

Inform 26:2524-2535 

[26] Deng F, Tu S, Xu L (2021) Multi-source 

unsupervised domain adaptation for ECG 

classification. In: 2021 IEEE International 

Conference on Bioinformatics and 

Biomedicine(BIBM).pp854-859 

 

 


