

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2009 - 2016 | 2009

Leveraging Network Automation with Python, Terraform, and

Ansible to Enhance Security and Operational Efficiency in Large-

Scale Networks

Submitted:01/10/2024 Revised: 20/11/2024 Accepted: 30/11/2024

Abstract: Network automation has evolved into an integral method for handling growing network complexities that result

from a large-scale network environment. This research will discuss how Python, Terraform, and Ansible combine to provide

high efficiency, enhanced security, and reduced costs within a network infrastructure. Python offers great flexibility for custom

scripts and code for the purposes of real-time monitoring, anomaly detection, and log analysis. Terraform as Infrastructure-as-

Code provides efficient, scalable, and consistent deployment of network infrastructure. Ansible's automation capabilities

streamline device configurations and security patch deployments, reducing human error and configuration drift.

Keywords: Network Automation, Python, Terraform, Ansible, Operational Efficiency, Networks

1. Introduction

Network automation has evolved into an integral

method for handling growing network complexities

that result from a large-scale network environment.

This research will discuss how Python, Terraform,

and Ansible combine to provide high efficiency,

enhanced security, and reduced costs within a

network infrastructure. Python offers great

flexibility for custom scripts and code for the

purposes of real-time monitoring, anomaly

detection, and log analysis. Terraform as

Infrastructure-as-Code provides efficient, scalable,

and consistent deployment of network

infrastructure. Ansible's automation capabilities

streamline device configurations and security patch

deployments, reducing human error and

configuration drift.

1.1. The Role of Python in Customizing Network

Automation

With versatility, simplicity, and an enormous library

ecosystem, Python has become the foundation of

network automation. Being a programming

language, it empowers network engineers and

administrators to write scripts and applications

specifically tailored to certain automation needs (M.

Faris, 2023). In large networks, such customizations

are of great value, as one-size-fits-all solutions do

not usually suffice. The ability of Python to

automate routine tasks like device configuration,

monitoring, and troubleshooting saves time and

reduces the potential for human error.

One of Python's greatest strengths in network

automation is its compatibility with numerous APIs

provided by network devices and management

platforms. Libraries such as Netmiko, Paramiko, and

NAPALM empower users to interact directly with

network devices, retrieving real-time data, pushing

configurations, and managing multi-vendor

environments seamlessly. For instance, Netmiko

simplifies the SSH management of devices, while

NAPALM provides an abstraction layer for

configuration changes across different vendors.

Python also allows for the integration of network

automation workflows with other tools and

platforms. Combining Python scripts with

automation frameworks such as Ansible or

infrastructure-as-code tools like Terraform allows

organizations to create end-to-end solutions that

range from initial provisioning to ongoing

maintenance (M. Handley, 2023). Python's

flexibility extends to data processing and

Vivek Bairy

Independent Researcher
San Francisco, USA

ORCID: 0009-0007-8787-0357

Sunilreddyj1988@gmail.com

1

Sunil Jorepalli,
1 2

Independent Researcher
2

San Francisco, USA
vbairy21@gmail.com

ORCID: 0009-0006-1911-7323

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2009 - 2016 | 2010

visualization, where libraries such as Pandas and

Matplotlib are used to analyze and display network

metrics, aiding in decision-making and performance

optimization.

The large open-source community of Python is an

enabler of collaboration and standardization.

Engineers can browse and contribute pre-built

scripts, modules, and frameworks to make

automation development even faster (Choi, 2021).

Thus, Python for network automation helps not only

by reducing manual efforts but also accelerates

innovation to deliver advanced features such as the

application of machine learning for predictive

analytics and the dynamic adjustment of networks.

In summary, Python is a crucial tool for network

automation customization, offering the adaptability

and power needed to meet the demands of modern

large-scale networks.

1.2. Terraform for Scalable Infrastructure

Provisioning

Terraform, designed by HashiCorp, is one of the

leading infrastructures as code (IaC) tools. These

tools help organizations provision and manage

infrastructure in a declarative way and at a large

scale. Its capability of defining infrastructure in code

enables organisations to standardise and automate

deploying network resources that are consistent. It

minimises the risks involved during manual

configuration as well (De Carvalho, 2020). Hence,

Terraform is well-positioned for its scalability to

handle high-scale networks as provisioning complex

environments quickly and effectively is very much

critical.

At the very heart of Terraform's functionality is its

usage of configuration files written in HashiCorp

Configuration Language (HCL). Those files outline

the desired state of the infrastructure, from a virtual

machine and containers to network policies and

security groups. After applying this configuration,

Terraform connects to providers, either cloud or on-

premises systems/ APIs, for creating the required

resources (Mary Johnston Turner, 2019). This

means that Terraform maintains a clear state file that

tracks the current infrastructure state, thus ensuring

accurate and predictable changes during updates or

modifications.

Provider ecosystems are the crowning jewel for

Terraform. It boasts extensive inbuilt support for

AWS, Azure, Google Cloud, networking tools such

as Cisco, Juniper, and VMware NSX, to name a few,

making integration possible across hybrid and multi-

cloud environments (Michel, 2021). It means that it

provides the capabilities that enable the

management of infrastructures in multiple

environments and with several distributed platforms

so that it will reduce the overhead of operation while

scaling fast.

Another significant advantage of Terraform is that it

supports modular infrastructure design. Users can

develop reusable modules that encapsulate best

practices and help to streamline deployments across

multiple projects or environments (Mortensen,

2022). For instance, a Terraform module could

define a standardized network topology that could

be reused to quickly and reliably set up new

environments. This modularity increases efficiency

while encouraging consistency across the

organization.

Its scalability also stretches to team collaboration.

With features like remote state storage, locking

mechanisms, and version control integration, teams

can collaborate efficiently and track, review, and

apply changes in a systematic way (Nedyalkov,

2023). The plan-and-apply workflow of Terraform

shows its transparency to the user, showing the

preview of the change before applying it, therefore

reducing the chances of unplanned downtime in a

production environment.

1.3. Ansible's Contribution to Secure and

Consistent Deployments

It is the major self-developed, open-source solution

software developed by Red Hat, widely used for

automation, excellent in configuration management,

application deployments, and orchestration. Its

nature of an agentless architecture along with

straightforward YAML-based playbooks makes it

highly appealing for consistent deployments on a

large-scale network. It helps automate repetitive

tasks and enforces standardized configurations to

maintain operational reliability and compliance.

The design is agentless; therefore, Ansible doesn't

require installation or management of additional

software on target devices (Meier, 2021). Instead, it

uses secure communication protocols like SSH or

WinRM to communicate with systems. That reduces

the attack surface considerably and makes the

process of deployment simpler in highly security-

sensitive environments. This is only possible by

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2009 - 2016 | 2011

having network devices and systems accessible via

a secure and authenticated connection. This is

according to the best cybersecurity practices.

One more critical advantage Ansible provides is

consistency in deployments. Desired configuration

state for systems and devices is defined in human-

readable YAML playbooks. Every deployment

would then follow a predefined template, and a

repetitive and error-free process of configuration

drift or human error is prevented (Yadav, 2022). For

example, one can automate the process of deploying

firewall rules, VLANs, or device configurations to

be replicated with precision on hundreds of network

nodes.

Ansible's modular structure and vast library of pre-

built modules further enhance its capability to

deliver secure and consistent deployments. Modules

for managing network devices from vendors like

Cisco, Juniper, Arista, and F5 allow administrators

to interact with multi-vendor environments

seamlessly. This interoperability simplifies the

management of diverse network infrastructures,

ensuring that security policies and configurations

are uniformly applied regardless of the underlying

hardware.

Besides consistency, Ansible would facilitate

organizations toward developing auditable, version

controlled, and streamlined workflows. To illustrate,

Ansible connects with most of the major source

control systems out there, especially like Git and that

would allow development teams to manage any

changes introduced during updates along with

reviewing or roll back, whenever needed. Ensures

security compliances in controlled regulatory

environments such as in those of GDPR, HIPAA, or

PCI DSS end.

Dynamic inventory management is also supported

by Ansible, which is especially useful in dynamic

and large-scale networks. Administrators can

automatically update inventories based on the

current state of infrastructure, ensuring that

configurations are applied to the right devices

without manual intervention. This dynamic

capability, coupled with Ansible's idempotent

nature—ensuring that repeated execution of a

playbook yields the same result—helps maintain

both operational efficiency and security.

2. Literature Review

Ab Rahman and Kassim (2021) conducted a study

highlighting that 95% of network tasks were

traditionally monitored manually, resulting in

significant time and financial expenditures due to

the need for extensive labor in network deployment.

The analysis aimed to identify the most efficient

method for scripting network device configurations

and to compare the performance differences

between manual and automated methods (Mazin,

2021). A network topology consisting of 36 Cisco

devices with varying IOS versions was meticulously

designed to implement automation in a realistic

manner, effectively reducing configuration time

while eliminating errors. Data analysis from an

emulator simulating a real-world network

environment revealed that automation proved to be

vastly superior, reducing configuration time by 99%

compared to the manual method.

Lekkala (2022) investigated the use of Terraform as

an IaC tool for automating the management of cloud

infrastructure to optimize cost efficiency and

operational stability. The study noted how

Terraform enabled the optimization of deployment

cycles with minimal manual overhead associated

with provisioning and maintaining infrastructure.

Such capabilities were seen as necessary to achieve

scalable and resilient cloud environments. The case

studies showed remarkable improvements in

business efficiency, as Terraform automation

significantly reduced deployment time, human

errors, operational costs, and other inefficiencies

(Lekkala, 2022). Findings underlined the

transformative potential of Terraform in cloud

infrastructure management, and strategic

implementation of the tool was found to be essential

for organizations seeking to optimize cloud

operations while minimizing financial overhead.

Supraja (2024) examined the agility of cloud

computing in altering dynamic applications based

on self-service provision of anywhere access to

shared resources, pointing out that despite becoming

numerous, cloud service providers still had the

problem of vendor lock-in. It indicated service

disruptions as a major threat of relying only on one

vendor and discussed limitations of the present

cloud orchestration tools, that are designed for easy

deployment over multiple cloud infrastructures but

have yet to break provider-specific models. These

tools bind users to their knowledge of one provider's

options, limiting agility in case of failure. To address

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2009 - 2016 | 2012

this, Supraja proposed developing a custom wrapper

using Terraform. Terraform is an Infrastructure-as-

Code tool (Ghosh, 2024). The wrapper employed a

customized configuration file to facilitate auditing,

configuration, and securing deployments across the

different cloud providers. The proposed solution

was experimentally validated to verify that

infrastructure deployment, including Linux VM,

works on both the AWS and Azure platforms.

Choi and Medina (2023) provided a general

overview of the current state of affairs within the

networking industry and presented trends in the

development of Ansible as a means of IT

configuration and orchestration in enterprise

settings. The authors introduced Ansible by

explaining its capabilities and highlighting

relevance to IT engineers, operations managers, and

business stakeholders (Choi B. &., 2023). In the

introduction, the authors summarized a detailed

research plan to direct readers through appropriate

technologies to enrich their skills. Beyond that, they

discussed the fundamental hardware and software

prerequisites for taking a first step into an Ansible

automation environment, specifying minimal

requirements for creating a functional

Ansible/Linux/network automation lab on a single

laptop. The authors also suggested a set of software

tools for creating virtual devices such as Linux

servers, routers, switches, and firewalls. Readers

should be left at the end of the chapter with a clearer

understanding of how important Ansible is to the

information and communication technology

industry, the minimum knowledge requirements to

master Ansible, and what they will need to start their

own lab with Ansible.

M. Islami, P. Musa, and M. L.-J. I. (2020)

examined how the automation of networks is applied

with Ansible for routing protocol configuration on

Cisco and Mikrotik routers using the Raspberry Pi

as the controller. The authors have shown how

powerful tool Ansible can be applied to manage

network device configurations in fewer steps with

less time when compared to manual setups. The

study incorporated low-cost hardware-based

Raspberry Pi; hence, demonstrated a hands-on

approach towards implementing network

automation at small and medium-sized networks (M.

Islami, 2023). The research underpinned Ansible's

effectiveness with regard to changing network

configurations on the efficiency with which

flexibility with regard to these configurations,

gaining valuable insight towards the use of

automation to streamline network performance

without human intervention or error. This work is

crucial for understanding the way automation tools,

such as Ansible, can simplify and optimize network

configuration tasks, thus allowing a wide variety of

applications.

3. Materials And Methods

This research has relied on using Python, Terraform,

and Ansible to automate network management to

improve large-scale network operational efficiency,

security, and cost-effectiveness. Each tool was used

for unique network management operations:

● Python: They used Python scripts to

automate network monitoring, security

enforcement, and log analysis. This helped

them to monitor the health of the network

in real time, identify security

vulnerabilities, and raise alerts

automatically. For system monitoring, they

utilized libraries like psutil, while for

packet analysis, they used libraries like

scapy.

● Terraform: Used for infrastructure

management as code. Terraform was used

for automating provisioning and scaling

network resources, including virtual

machines, routers, and load balancers, on

cloud platforms such as AWS. Network

topologies, security settings, and

infrastructure resources were defined by

Terraform configurations to ensure that

deployments were consistent and

repeatable.

● Ansible: Automated configuration of

network devices and security patches.

Ansible playbooks were written to

configure routers, switches, firewalls, and

other network devices with standard

configurations to reduce human error and

ensure uniformity across the network.

Security patches were scheduled and

deployed using Ansible to ensure timely

updates on network devices.

A virtualized infrastructure that made use of

VMware or AWS created the network environment

for this study. Such an environment mimics a real

enterprise network because it is highly structured,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2009 - 2016 | 2013

complete with routers, switches, firewalls, and load

balancers-all in an ideal large-scale configuration.

● Network Setup: The virtualized network

comprised 10 routers, 15 switches, and 5

firewalls, each managed through Terraform

for provisioning and Ansible for

configuration.

3.1. Automation Implementation:

● The Python scripts are to integrate with

a monitoring dashboard to ensure the

visibility of network traffic, device

performance, and security events. The

Python scripts must ensure that it

identifies issues such as unusual traffic

patterns and security breaches and then

start raising alerts.

● The terraform configurations

automatically created virtual machines

and the networking components; hence,

this ensured that the network's

infrastructure remained consistent and

scalable. The resources were

dynamically provisioned and

decommissioned based on demand, and

Terraform ensured the infrastructure

followed the best practices regarding

security and performance.

● Ansible playbooks automatically

scheduled routine tasks, including

device firmware updates, patch

deployments, and network configuration

changes. This guaranteed that the

network devices remained consistent

and up-to-date in configuration, which

prevented the problem of configuration

drift.

The effectiveness of these automation tools was

determined through a set of tests with three main

objectives: operational efficiency, security, and cost

efficiency. The influence of automation was

measured by the comparison of values before and

after automation for all three metrics. Data was

gathered from network performance logs,

configuration audit reports, security patch

deployment logs, and cost-related records associated

with both manual and automated processes.

4. Result And Discussion

4.1. Operational Efficiency

The automation tools reduced the time taken for

manual configuration and network downtime.

Ansible and Terraform sped up the configuration of

devices and resource provisioning, which improved

operational efficiency by automating repetitive

tasks.

Table 1: Operational Efficiency

Metric Manual Process Automated Process Improvement (%)

Configuration Time (hrs) 8 2 75%

Network Uptime (%) 85% 98% 15%

Figure 1: Improvement (%) in operational Efficiency

75%

15%

Configuration Time (hrs) Network Uptime (%)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2009 - 2016 | 2014

Table 1 shows that automation brings efficiency into

the configuration tasks. The time taken for

configuration was decreased by 75% as in the

manual process the task was taking 8 hours, but in

automation, it would take 2 hours by using

automation tools such as Ansible and Terraform.

Network uptime was increased by 15%, to be up to

98% from 85%, thus it can be said that automation

ensures reliability in the network operations by

saving the downtime. These improvements reflect

the successes of automation in streamlining

processes and ensuring better network performance.

The reduced configuration time and increased

uptime are examples of how automation tools make

network management easier, thereby increasing

operational efficiency.

4.2. Security Enhancements

Moreover, automation played a key role in

enhancing network security. A key role by Ansible

was done in automating the deployment of security

patches and configurations. Real-time monitoring

and alerting for security incidents were facilitated

through Python. Terraform ensures that

infrastructure deployments are consistent and

secure.

Table 2: Security Enhancements

Security Metric Pre-Automation Post-Automation Improvement (%)

Patch Deployment Time (hrs) 6 1 83%

Incident Response Time (min) 45 30 33%

Configuration Drift (%) 10% 3% 70%

Figure 2: Improvement (%) for Security Enhancement

Table 2 shows the following improvements in

network security post-automation: the time to

deploy patches decreased by 83%, from 6 hours pre-

automation to just 1 hour post-automation, thereby

speeding up the application of security updates by

leaps and bounds. The incident response time was

also improved by 33%, from 45 minutes to 30

minutes, showing a quicker reaction to potential

security threats. In addition, configuration drift,

which means that the network configurations are not

consistent, was reduced by 70%, from 10% to 3%,

thereby ensuring stable and secure network settings.

The results highlight the enhanced security posture

through the automation of key security processes.

The results show significant improvements in terms

of patch deployment time, quickened incident

responses, and higher consistency in configurations

toward stronger security in general.

4.3. Cost Efficiency

The study found that there were considerable cost

savings in reducing manual labor, improving

network uptime, and automating resource

provisioning. The time spent on troubleshooting and

83%

33%

70%

Patch Deployment Time (hrs) Incident Response Time (min)

Configuration Drift (%)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2009 - 2016 | 2015

manual interventions was drastically reduced, and

automated scaling minimized the need for excess

resources.

Table 3: Cost Efficiency

Cost Metric Pre-Automation Post-Automation Savings (%)

Manual

Configuration

Costs

$5000 $1500 70%

Downtime Cost

(per hour)

$1000 $200 80%

Figure 3: Pre and Post automation for Cost Efficiency

Table 3 has shown a strong cost saving which was

realized due to the process automation of the

network management system. The human

configuration cost declined by 70% from 5000$

before automation and to 1500$ after automation,

while the cost in terms of network downtime per

hour declined 80% as it reduced from 1000$ to

200$.

It saved significant costs, which proves the

economic viability of the approach in large-scale

network environments.

5. Conclusion

The integration of Python, Terraform, and Ansible

with network automation proved to be an all-

transforming approach for dealing with large

networks. Python facilitates the development of

customized scripts, including monitoring scripts and

anomaly-detection scripts, while Terraform

provides scalable, consistent resource provisioning

using its paradigm, Infrastructure as Code. In this

study Ansible increases operational reliability

through the configuration and security updating of

devices by automating all device configurations and

security updates. Together, these solutions offer

critical enhancements in terms of efficiency in

operations, security, and cost-effectiveness.

Reduced configuration time, enhanced network

uptime, and substantial cost savings all serve to

support this notion. The findings of this study

underpin the significance of automation as a

response to modern network management

challenges that allow for scalable, secure, and

economically viable solutions in dynamic digital

ecosystems.

References

[1] M. Faris, M. Fuzi, K. Abdullah, I. Hazwam, A.

Halim, and R. Ruslan, “Network automation

using ansible for EIGRP network,”

5000

1500

1000

200

0

1000

2000

3000

4000

5000

6000

Pre-Automation Post-Automation

Manual Configuration Costs Downtime Cost (per hour)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2009 - 2016 | 2016

ir.uitm.edu.my, vol. 6, no. 4, 2021. [Online].

Available: https://ir.uitm.edu.my. Accessed:

Jan. 25, 2023.

[2] M. Handley, E. Kohler, A. Ghosh, O. H.-S. on,

and undefined, “Designing extensible IP router

software,” usenix.org, 2005. [Online].

Available: https://usenix.org. Accessed: Jan.

25, 2023.

[3] B. Choi, “Python Network Automation Labs:

SSH paramiko and netmiko,” in Introduction to

Python Network Automation: The First

Journey, Springer, 2021, pp. 583–628.

[4] L. R. A. D. A. P. F. De Carvalho, “Performance

comparison of terraform and cloudify as

multicloud orchestrators,” in 2020 20th

IEEE/ACM International Symposium on

Cluster, Cloud and Internet Computing

(CCGRID), IEEE, 2020, pp. 380–389.

[5] M. J. Turner and H. S., “Red Hat Ansible

Automation Improves IT Agility and Time to

Market,” s.l.: s.n., 2019.

[6] O. Michel, B. R. A. R. G., and S. S., “The

programmable data plane: Abstractions,

architectures, algorithms, and applications,”

ACM Computing Surveys (CSUR), vol. 1, no.

36, 2021.

[7] M. Mortensen, “Capitalizing on the Economic

Benefits of Network Automation,” s.l.: AGS

Researcher, 2022.

[8] Nedyalkov, “Application of GNS3 to Study the

Security of Data Exchange between Power

Electronic Devices and Control Center,”

Computers, vol. 12, p. 101, 2023.

[9] P. Meier, Python Network Automation: A

Practical Guide to Network Automation using

Python, Nornir and Ansible, Packt Publishing

Ltd, 2021.

[10] Yadav, Network Automation with Python and

Nornir: A Practical Guide to Network

Automation with Python and Nornir, Packt

Publishing Ltd, 2022.

[11] M. Mazin, R. Ab Rahman, and M. Kassim,

“Performance analysis on network automation

interaction with network devices using python,”

in 2021 IEEE 11th IEEE Symposium on

Computer Applications & Industrial

Electronics (ISCAIE), IEEE, 2021, pp. 360–

366.

[12] Lekkala, “Automating Infrastructure

Management with Terraform: Strategies and

Impact on Business Efficiency,” European

Journal of Advances in Engineering and

Technology, vol. 9, no. 11, pp. 82–88, 2022.

[13] Ghosh, S. Srivastava, and P. Supraja,

“Streamlining Multi-Cloud Infrastructure

Orchestration: Leveraging Terraform as a

Battle-Tested Solution,” in 2024 International

Conference on Cognitive Robotics and

Intelligent Systems (ICC-ROBINS), IEEE,

2024, pp. 911–915.

[14] Choi and E. Medina, “Is Ansible Good for

Network Automation?” in Introduction to

Ansible Network Automation: A Practical

Primer, Apress, 2023, pp. 3–30.

[15] M. Islami, P. Musa, M. L.-J. I. KOMPUTASI,

and undefined, “Implementation of Network

Automation using Ansible to Configure

Routing Protocol in Cisco and Mikrotik Router

with Raspberry PI,” ejournal.jak-stik.ac.id,

2020. [Online]. Available: https://ejournal.jak-

stik.ac.id. Accessed: Jan. 25, 2023.

https://ir.uitm.edu.my/
https://usenix.org/
https://ejournal.jak-stik.ac.id/
https://ejournal.jak-stik.ac.id/

