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Abstract: Software containers are becoming increasingly popular for managing and executing distributed applications on cloud 

computing resources. By leveraging the horizontal and vertical elasticity of containers "on the fly," workload fluctuations can be 

accommodated. The majority of current control systems do not consider horizontal and vertical scaling to be interconnected. In this 

article, we provide Reinforcement Learning (RL) strategies for controlling the vertical and horizontal elasticity of container-based 

systems to enhance their adaptability to various workloads. Although RL is an interesting technique, it may have a long learning period if 

nothing is known about the system beforehand. To accelerate learning and discover more effective adaptation strategies, our proposed 

reinforcement learning approaches—Q-learning, Dyna-Q, and Model-based methods—leverage varying degrees of knowledge about 

system dynamics. The recommended policies are incorporated into Elastic Docker Swarm, an add-on for the container orchestration 

platform Docker Swarm. Through prototype-based experiments and simulations, we demonstrate the effectiveness and adaptability of 

model-based RL techniques. 
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1. Introduction 

The cloud is a new kind of computing that allows users to 

rent out resources according to their own needs, on an as-

needed basis. In order to keep up with the ever-changing 

workload, there are a number of cloud platforms and 

virtual data centers that provide elastic services. [1, 2] The 

capacity of a system to dynamically adjust its resources in 

response to changes in load is known as its elasticity. [3] 

One of the ever-changing features of cloud computing is 

this. First, service elasticity improves Quality of Service 

(QoS) by maximizing certain metrics like response time, 

CPU load, requests processed per second, etc. Service 

Level Agreements (SLAs) guarantee quality of service 

between customers and cloud resource providers. [4, 5] 

Preventing the system from over-provisioning resources is 

the second benefit, which lowers total power usage. The 

term "over provisioning" describes the practice of 

allocating more resources than are really needed to manage 

peak demands. [6, 7] 

The fundamental aspects of elasticity are efficiency and 

scalability. How well computer resources are used when 

scaling is what efficiency is all about. [8, 9] The efficiency 

improves as the number of resources required decreases. A 

machine is scalable if and only if it can take on additional 

work when its resources are added to [10, 11].  

When it comes to hosting their services, cloud companies 

rely on virtualization. Hardware platforms, storage devices, 

and network resources may all be "virtualized" in the 

process of producing a virtual version of them. 

Hypervisors and containers allow for the implementation 

of virtualization [12, 13]. Containers are a lightweight 

software alternative to hypervisors that outperform virtual 

machines in terms of start/stop time and overhead. A 

software developer may use containers to bundle a 

programme with all of its dependencies, including 

libraries, and then distribute it out as a single package. You 

may do auto scaling in two ways: reactively or proactively 

[14, 15]. 

Response time, CPU load, memory use, etc., are all 

examples of thresholds that may be improved in a reactive 

strategy. Resources may be raised or lowered depending on 

the period after which we notice that they have exceeded 

this threshold. While reactive scaling relies on historical 

data, proactive scaling uses machine learning or deep 

learning techniques to forecast future workloads. [16, 17]. 

Next, we determine how many resources will be required 

to handle the anticipated workload. Be careful not to scale 
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up too quickly while adopting proactive tactics. We have 

to scale up our resources again soon after we scale down 

since a rush of requests comes just after we scale down. 

This is called premature scaling. Premature scaling, then, 

will result in unnecessary overhead and be ineffective from 

the perspective of the cloud provider [18, 19]. 

The adoption of both reactive and proactive strategies in 

auto-scaling may increase its efficiency [20, 21]. Auto-

Regressive Moving Average (ARMA), Auto-Regressive 

Integrated Moving Average (ARIMA), Moving Average 

(MA), and other proactive methods may be used to time-

series data for the purpose of doing workload prediction. A 

load balancer may distribute future workloads across many 

computers. [22, 23] The load balancer dynamically and 

evenly distributes the burden over all the available nodes 

by using various load balancing methods. In the long run, 

this helps the system run better. The term "cloud load 

balancing" refers to a technique used in cloud computing 

for dividing up tasks and resources [24]. 

2. Review of Literature 

• When putting their autoscaling rules into practice, 

Hasan et al. (2022) [26] considered the four threshold 

values. When autoscaling uses two threshold values, 

it makes more accurate decisions. In addition to the 

rule-based autoscaling mechanism, several 

researchers have proposed an autoscaling mechanism 

that integrates concepts from control theory. Thanks 

to a controller, they are now functional. Given a 

control input, the controller's task is to maintain a 

specific level of system performance. Systems based 

on maximum control employ reactive processes. 

• Kan, C (2023) [27] When it comes to elastic services, 

DoCloud offers an auto-scaling platform. Based on 

the changing workload, it determines the optimal 

number of containers. Specifically, it scales out using 

a reactive strategy and scales in the number of 

containers using a proactive approach when it comes 

to auto-scaling. By comparing each container's CPU 

utilization to a threshold value, the threshold-based 

method is applied in the reactive approach.  

• Al-Dhuraibi et al. (2017) [25] offered a rule-based 

reactive strategy. Using ELASTICDOCKER, this 

method is applied to the vertical elasticity of 

containers. In order to adapt the RAM and virtual 

CPU cores available in containers to different 

workloads, the ELASTICDOCKER auto-scaler is 

used. Various experimental values are used to change 

the upper and lower threshold values of a container. 

The one with the shortest reaction time is then 

selected. The writers have fixedly assigned or 

removed the CPU and RAM from a container. For 

instance, the auto-scaler adds 256 MB of RAM to the 

container if the memory utilization figure exceeds the 

top limit of hits. 

3. Objectives  

• To create reinforcement learning (RL) systems that can 

simultaneously regulate the vertical and horizontal 

elasticity of container-based apps in order to boost 

adaptability when managing different workloads. 

• To investigate the effectiveness of RL solutions that 

integrate varying degrees of system dynamics information, 

such as Q-learning, Dyna-Q, and model-based, in order to 

identify appropriate adaptation policies for container 

elasticity and to expedite the learning process. 

4. Statement of the problem 

Effective resource management and scaling are crucial as 

cloud-native apps developed using containerized 

microservices gain popularity. Both vertical scaling 

(resizing computational resources) and horizontal scaling 

(adding/removing instances) present unique difficulties. In 

order to maximize performance and minimize resource 

waste, you must choose when and how to scale in response 

to changing workload demands. Monitoring various 

metrics, anticipating future requirements, and promptly 

allocating resources across the dispersed containerized 

services are all necessary for putting the proper auto-

scaling rules into place. Furthermore, if scaling events are 

not properly managed, they may impact the operation and 

availability of applications. The challenge is developing 

self-adaptive, intelligent scaling systems that react to 

changing real-world circumstances without compromising 

cost and SLAs. 

5. Significance of the study 

The main elements that contribute to optimizing the 

availability, affordability, and performance of 

contemporary cloud-based applications are effective 

resource allocation and scaling. A strong and intelligent 

auto-scaling capacity is becoming increasingly crucial as 

more and more companies go to containerized 

microservice architectures operating in the cloud. 

Applications must be scalable in order to handle changing 

demands without under-provisioning, which degrades 

performance, or over-provisioning, which leaves resources 

underutilized. Being extremely responsive and elastic is a 

fundamental requirement for cloud-native applications.  

 6. Research methodology 

• Issue Identification and System Model 

We examine a model for applications that is very generic, 

in which the application is a black-box entity that does 

certain operations (such as calculation and data access). It 

is possible to launch many application instances in parallel 

in order to adequately handle ever-increasing incoming 
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workloads. Separate instances handle different portions of 

the incoming requests. The programme reveals its response 

time requirements, which are stated as a maximum reaction 

time that should not be exceeded. Application deployment 

and runtime management may be made easier using 

software containers, such as Docker. 

• Flattening In Both Directions With RL 

By interacting with the system in a more natural way, RL 

methods hope to discover the best way to adapt. The goal 

of RL strategies is to minimize a numerical cost signal by 

learning what to do (i.e., by mapping circumstances to 

actions). The trade-off between exploring and exploiting is 

one of the problems that comes up in RL. An RL agent's 

goal is to minimize the gained cost by giving preference to 

previously attempted actions that were successful 

(exploitation). The agent uses an approximation of the so-

called Q-function to minimize the anticipated long-term 

cost. The projected long-term cost that follows the 

execution of action an in state s is represented by the 

Q(s,a) terms. To scale, the agent uses the Q-function to 

choose which action to take: given a system state s, it takes 

action a that minimizes Q(s,a). The scaling strategy is 

improved by updating Q(s,a) over time based on the actual 

incurred expenses. In order to predict the long-term cost, 

the various RL methods use different methodologies.  

The condition of the programme at time i is defined as si = 

(ki,ui,ci), where ki is the quantity of containers (application 

instances), ui is the utilization of the CPU, and ci is the 

proportion of CPU allocated to each container. By "S," we 

mean the set of allui) states that the application makes use 

of. Although u¯ and c¯u are appropriate quanta, we 

discretize them despite the fact that CPU utilization (and 

CPU share, ci) are actual numbers. The number of 

containers where Kmax is the maximum application 

replication degree is denoted by ci and the set {0,u,...,L¯ 

u¯} is also assumed.  

Here, A is the set of all actions, and for any state s ϵ S, we 

have a set of possible adaptation actions A(s) ⊆ A. The 5-

action model and the 9-action model are the two 

alternatives that we provide. Both horizontal and vertical 

scaling are possible in the 5-action model, but in the 9-

action model, we may scale in both directions at once. In 

the formal sense, the 5-action model is represented by A = 

{-r, - 1, 0, 1, r}, where ±r denotes a vertical scaling (i.e., +r 

to increase CPU share and r to remove CPU share), ±1 

denotes a horizontal scaling (i.e., +1 to scale-out and 1 to 

scale-in), and a = 0 denotes the do nothing choice. A = {1, 

0, +1} x {r, 0, r} is another way of looking at the 9-action 

model. In a 5-action model, for example, the accessible 

actions in state s with k = Kmax and c = Mc¯ are A(s) = {-

r, - 1, 0} (i.e., we cannot execute additional scale up and 

out operations), although obviously not all actions are 

available in every application state. 

  

  

 

 

 

 

 

 

 

where 1{•} is the indicator function and sum of all is 1.  

The application's reaction time in the state s = (k, u, c), and 

are non-negative weights for the various expenses. In 

addition, we break down action an into its component 

parts, container count (a1) and CPU share (a2), in that 

order.  

We take a look at three distinct RL methods, each with its 

own set of assumptions and learning process. We start with 

the easy-to-understand Q-learning method; it doesn't rely 

on models and doesn't need understanding the dynamics of 

the system. Next, we introduce Dyna-Q, a system model 

builder that uses real-world data. In addition, we provide a 

model-based method that updates the Q-function 

depending on the known (or estimated) system dynamics. 

By providing RL agents with a system model, the model-

based approach accelerates the learning phase via 

exploratory activities.  

A. Q-learning 

By averaging its samples, Q-learning is able to 

approximate the ideal Q-function, Q*. With a probability 

of ϵ, Q-learning chooses a random action at decision step i 

to improve its application knowledge; with a probability of 

1 - ϵ, it chooses the greedy action by exploiting its 

application knowledge (i.e., an I = arg min). In this paper, 

we examine the simple ϵ -greedy action selection method  

  . The greedy policy typically chooses the 

best known action for a given state, but it prefers to 
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explore less optimum choices with low probability. Here is 

how Q(si, ai) is changed at the conclusion of each time 

period i: 

where   2  [0, 1] is the parameter for the learning rate, 

and is the range of values for the discount factor. Keep in 

mind that (2) only incorporates the newly observed 

variables into the previous estimate of Q, such as the cost 

ci and the discounted cost anticipated when the system is 

in si+1, min .   

B. Dyna-Q 

Dyna-Q is an alternative to Q-learning that attempts to 

mimic the system's interaction with its surroundings in 

order to expedite the learning process. The Dyna-Q 

learning is summarized in Algorithm 1. Dyna-Q, like Q-

learning, watches the application state at runtime and 

chooses an adaptation action based on the estimations of 

Q(s, a). Dyna-Q uses a sampling system model, Model(s, 

a), to mimic the application-environment interaction after 

time step i concludes (lines 8–13). Dyna-Q keeps the 

investigated state-action pair (s, a) up-to-date at runtime by 

storing the next state s0 and cost c; for details, see line 7. 

Under the assumption of a deterministic environment, 

Dyna-Q utilizes the state-action pairs previously recorded 

and updates the Q-function using (2).  

• Model-Based Reinforcement Learning 

Thirdly, we look at an RL technique that relies on a 

complete backup model. The complete backup method 

calculates the Q-function using the Bellman equation in 

conjunction with a potentially approximated model of the 

system: 

We substitute the unknown cost function and the unknown 

transition probabilities p(s0 | s, a). 

 

based on the estimations they made using their knowledge. 

In order to determine  , Simply estimating the 

probability of CPU utilization transitions will do the trick 

.   Actually, it is worth noting that: 

in which the scaling action, denoted as a = (a1, a2), is 

specified in terms of the updated amount of CPU share 

(a2) and the updated number of containers (a1). The fact 

that u is a discrete set value means that we may say 

  "for short" 

in this context. In the given timeframe, ni,jj0 represents the 

number of occurrences when the CPU utilization switches 

from state ju¯ to j0 u¯.      At moment i, 

the estimated probabilities of the transition are  

 along with estimating pˆ(s0 |s, a). The 

total of two terms, the known cost and the unknown cost, 

may be expressed as the estimations of the immediate cost 

c(s, a, s0): 

  

In this situation, the known cost ck(s, a) takes into 

consideration the costs of adaptation and resources, but it 

is action and state dependent. What happens in the 

following state s0 determines the unknown cost cu(s0). 

The performance penalty is taken into consideration by 

cu(s0). We need to make an online estimate of cu(s0) as 

we are assuming that the application model is unknown. 

Hence, the RL agent assesses cu,i (s0) at time i after seeing 

the immediate cost ci: 

   

In order to revise our estimate of the unknown cost 

cˇu,i(s0), we follow these steps:  

  

The projected cost for the undetermined  is then used 

to calculate the expense of implementing an in s in 

accordance with (5). In the following state s0 = (k0, u0, 

c0), it may be heuristically assumed that the predicted cost 

due to Rmax violation does not decrease if the number of 

containers, CPU utilization, and/or CPU share are lowered, 

given a state e s = (k, u, c). The converse is also true. 

Consequently, when   

Here are several qualities that can be enforced: 

  

 

• Docker-Based Technology 

Containerized applications may be easily created, 

deployed, and managed using Docker, an open-source 

platform. A Docker container is an instance of a container 

snapshot (or image), which includes the programme 

combined with all the data required for its execution (e.g., 

dependencies, configuration file). You may construct and 

execute containers with Docker using REST APIs or a 

command-line interface. The Docker Engine is part of 

Docker. With Docker, you may set a container's resource 
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quota, which controls how much of the hosting machine's 

CPU and RAM the container an consume. Vertical 

elasticity is achieved by being able to change the resource 

quota during runtime. Starting with version 1.12, Docker 

integrated the swarm mode with the Docker Engine, 

making it easy to assign numerous containers on 

distributed computing resources.  

Elastic Docker Swarm Architecture 

Here are the primary parts that make up the system: 

 Client: This is the client application or user interface that 

starts the requests or actions in the system.  

 Message Broker: It is the main communication hub that 

enables the messaging between different components of 

the system to be done asynchronously. It is a go-between 

that enables components to send and receive messages 

without direct point-to-point connections.  

 Docker Monitors: These parts are in charge of 

overseeing and controlling the Docker containers or 

containerized applications. They interact with the Message 

Broker to get instructions or notifications and 

communicate with Nodes to do the actions related to 

containers.  

 Nodes: These are the resources or servers where Docker 

containers are deployed and executed. Nodes talk to the 

Docker Monitors and the Message Broker to get 

instructions and to give feedback on container operations.  

 Container Manager: This component is in charge of the 

containers which are spread across the Nodes. It talks to 

the Message Broker to get requests or instructions and 

communicates with the Nodes to do container-related 

actions like deployment, scaling, or load balancing.  

 The flow of communication and interactions in the system 

can be described as follows: 

1. The Client starts a request or an action, which is 

forwarded to the Message Broker.  

2. The Message Broker directs the request or action to the 

right components like Docker Monitors, Nodes, or the 

Container Manager, according to the message content or 

topic.  

3. The Docker Monitors get messages from the Message 

Broker and communicate with Nodes to execute container-

related operations, like starting, stopping, or monitoring 

containers.  

4. The Nodes carry out the operations requested by the 

containers and inform the Docker Monitors and the 

Message Broker with the status updates or feedback.  

5. The Container Manager gets the messages from the 

Message Broker and coordinates container management 

tasks across several Nodes, for instance, deploying new 

containers, scaling the existing ones or performing load 

balancing.  

6. The Container Manager talks to Nodes to carry out 

container management tasks and gets feedback or status 

updates from them.  

7. The system architecture supports the separation of 

communication between components, scalability, and the 

ability to manage and orchestrate containerized 

applications across multiple compute resources.  

• Elastic Docker Swarm 

Elastic Docker Swarm, or EDS for short, is what we 

propose as a way to provide Docker robotic capabilities. It 

adds the MAPE control loop by extending the Docker 

Swarm architecture. The self-adaptation functions are 

handled by the latter, which consists of four primary 

components: monitor, analyze, plan, and execute. 

Application and execution environment data is collected by 

the Monitor. To find out whether an adjustment is helpful, 

the Analyze component looks at the data that was obtained. 

If the adaptation is necessary, the application's adaptation 

strategy is determined in the strategy component and then 

executed in the Execute component. We were able to 

seamlessly include our MAPE components into Docker 

due to its modular design and extensive API support.  

7. Results and Discussion 

In this work, we use simulation and EDS-based 

experiments to assess the suggested RL methods in depth. 

Simulation  

We begin by contrasting the model-free method with the 

model-based RL techniques. Secondly, we look at the 

advantages of a 5-action model and a 9-action model. 

Thirdly, we demonstrate the adaptability of RL methods in 

learning multiple adaptation strategies to prevent Rmax 

violations, resource waste, or frequent adaptations, 

depending on the weights of the cost functions. Since it is 

reasonable to assume that the application gets M 

independent and random requests, D deterministic service 

time, and ki containers utilized at time step i equals the 

number of servers, we model the reference application as 

an M/D/ki queue. The maximum goal response time 

(Rmax) is 50 milliseconds, and the service rate (µ) is 200 

times the number of requests per second (ci), where ci is 

the amount of CPU share (ϵ = 0 to 1].  

Here are the parameters that are used by the RL 

algorithms: For Q-learning and Dyna-Q, the discount 

factor Y is 0.99, the learning rate ↵ is 0.1, and ϵ is equal to 

1/I, where i is the time taken for the simulation. The 

application state is discretized using u¯ = 0.1 and c¯ = 

10%. An Intel Core i7-4700MQ (8 cores @ 2.40 GHz) and 

8 GB of RAM are the specifications of the system that 

operates the simulation. Table details the outcomes of the 
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9-action model's simulation, whereas Table details the 

outcomes for the 5-action model.  

For the given set of weights (wperf = 0.09, wres = 0.90, 

and wadp = 0.0101), it is crucial to prevent R max 

violations. We can see that the 9-action model often slows 

down learning by comparing Tables. 

A conclusion might elaborate on the importance of the 

work or suggest applications and extensions.  

 

Fig. 1: Application workload used in simulation. 

Table 1: Performance of the application with several configurations of RL policies and weights of the cost function, as 

analysed via simulation using the 5-action adaption model. 

Weights wperf = 0.09, wres = 0.90, and 

wadp =0.01 

wperf = 0.09, wres = 0.90, and 

wadp = 0.01  

wperf = wres = wadp = 0.33 

Policy Q-

learning 

Dyna-

Q 

Model-

based 

Q-

learning 

Dyna-

Q 

Model-

based 

Q-

learning 

Dyna-

Q 

Model-

based 

Rmax violations (%) 17.87 7.12 2.37 46.16 56.64 99.8 19.32 19.52 17.17 

Average CPU 

utilization (%) 

55.83 48.66 60.54 72.63 79.83 99.85 55.89 53.68 69.01 

Average CPU 

share (%) 

62.84 80.21 87.62 54.34 53.79 11.01 68.5 73.23 86.12 

Average number of 

containers 

4.49 3.88 2.53 3.49 2.95 1.09 4.28 3.95 2.48 

Median R (ms) 13.57 8.97 10.39 35.66 1 1 11.6 9.41 12.04 

 

Table 2: Simulation-based analysis: Application performance under different configurations of cost function weights 

and RL policies, when the 9-action adaptation model is used. 

Weights wperf = 0.09, wres = 0.90, and 

wadp = 0.01 

wperf = 0.09, wres = 0.90, and 

wadp = 0.01 

wperf = wres = wadp = 0.33 

Policy Q-

learning 

Dyna-

Q 

Model-

based 

Q-

learning 

Dyna-

Q 

Model-

based 

Q-

learning 

Dyna-

Q 

Model-

based 

Rmax violations 

(%) 

27.17 25.77 2.85 61.18 62.58 99.8 39.69 35.64 19.5 

Average CPU 

utilization (%) 

62.82 63.39 60.73 80.95 81.89 99.85 69.22 65.08 70.75 

Average CPU 

share (%) 

61.32 62.6 87.43 46.62 46.32 11.04 53.62 54.61 78.35 

Average number 

of containers 

3.87 3.56 2.57 3.08 3.7 1.09 3.89 4.35 2.56 

Median R (ms) 15.59 15.29 10.15 1 1 1 25 20.53 15.16 

Adaptations (%) 88.98 92.53 37.32 89.38 94.3 2.95 85.7 91.1 40.29 
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In this third scenario, we strike a compromise between the 

three deployment objectives, with wperf = wres = wadp = 

0.33. In comparison to the 9-action model , the 5-action 

model is able to decrease the amount of Rmax violations and 

adaptations. Compared to 9 actions, Q-learning and Dyna-

Q have 19% Rmax violations, but they underutilize 

computational resources, with an average utilization of 54-

56% instead of 65-69%. In this scenario as well, the 

model-based solution learns a more effective adaption 

approach, the impact of which is negligible relative to the 

action count. Rmax violations are reduced to 17% with 5 

actions of the model-based approach, which achieves an 

average resource utilization of 69%. It typically uses 2.5 

containers to operate the programme, with each container 

having the ability to consume 86% of the given CPU.  

Prototype-based  

Motivated by the promising outcomes in the simulation, 

we test the RL algorithms in a real-world setting. We 

achieve this goal by incorporating the suggested policies 

into EDS. Specifically, we evaluate Q-learning in 

comparison to the model-based RL solution for both the 5-

action and 9-action models. We do not take Dyna-Q into 

account because of space constraints, even though it offers 

a little improvement over Q-learning. Large Amazon 

Elastic Compute Cloud instances, each with two virtual 

CPUs and eight gigabytes of RAM, are used to install 

EDS. At user request, the reference app calculates the sum 

of the first n Fibonacci numbers (complexity O(n2)).  

 

Fig. 2: Workload used in the prototype-based experiments

  

Table 3: Application performance in various combinations of cost function weights and RL policies, using the 5-action 

adaptation model, as shown in prototype-based studies. 

Weights wperf = 0.09, wres = 0.90, 

and wadp = 0.01 

wperf = 0.09, wres = 0.90, and 

wadp = 0.01 

wperf = wres = wadp = 0.33 

Policy Q-learning Model-

based 

Q-learning Model-

based 

Q-learning Model-

based 

Rmax violations (%) 29.77 12.1 38.21 97.81 55.06 39.23 

Average CPU utilization (%) 48.81 37.35 50.87 90.85 63.55 52.22 

Average CPU share (%) 88.7 47.34 89.19 24.01 84.43 52 

Average number of containers 1.7 5.11 1.54 2.12 1.48 4.21 

Median R (ms) 4.18 6.11 4.24 25959.45 223.35 8.3 

Adaptations (%) 65.65 50.81 67.48 61.31 66.46 32.31 

 

Table 4:  Experimental setup for the 9-action adaptation model; application performance tested with varying weights for 

the cost function and RL rules. 

Weights wperf = 0.09, wres = 

0.90, and wadp = 0.01 

wperf = 0.09, wres = 0.90, 

and wadp = 0.01 

wperf = wres = wadp = 

0.33 

Policy Q-learning Model-

based 

Q-learning Model-

based 

Q-learning Model-

based 

Rmax violations (%) 80.54 24.11 88.19 97.58 96.77 33.6 

Average CPU utilization (%) 82.21 31.53 87.29 91.05 94.07 60.19 

Average CPU share (%) 45.14 46.03 39.37 20.16 40.4 36.72 

Average number of containers 1.58 7.1 1.46 2.32 1.49 4.59 

Median R (ms) 9738.49 6.92 16587.03 29654.97 18740.43 18.63 

Adaptations (%) 93.51 44.68 90.55 59.68 88.71 28 
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We begin with the following set of weights: wperf=0.90, 

wres=0.09, wadp= 0.01. In this scenario, minimizing 

adaptation costs is more essential than optimizing 

application reaction time, and conserving resources is 

secondary. Adapting the application deployment is 

something that Q-learning gradually becomes better at. 

Table show that when the 5-action model is taken into 

account, Q-learning often alters the application 

deployment, carrying out horizontal and vertical scaling 

operations 66% of the time. In addition, 30% of the time, 

the application's reaction time is longer than Rmax. The 

model-based approach uses the system knowledge to bring 

the number of Rmax violations down to 12%. In contrast to 

Q-learning, which makes use of a smaller number of 

containers, the model-based strategy deploys 5.11 

containers, each of which can access 47% of the CPU, 

rather than 1.7 containers, which can access 89% of the 

CPU. 

 

 

Fig. 3: Prototype-based experiments: Application performance resulting from different configurations of static 

deployment

Discussion  

The results of these trials highlight the value of system 

information in enhancing the learning process. Therefore, 

the model-based approach just estimates the unknown 

system dynamics based on the experience. Curiously, it 

achieves top performance in all scenarios that are taken 

into consideration. Additionally, the results demonstrate 

that the learning task is slowed down by the 9-action 

model due to the increased combination of state-actions 

that need to be assessed. But the model-based strategy 

succeeds because it makes full use of the 9-action model to 

scale horizontally and vertically at the same time while 

minimizing modifications. Experiments with prototypes 

often corroborate the merits of the model-based approach. 

In comparison to a static setup, as shown in Table,” the 

advantages of a model-based RL algorithm may be shown 

in Tables. Static configurations may achieve certain edge-

case deployment objectives in terms of performance, but 

they are application-specific and hence unable to handle 

unexpected spikes or changes in demand. On the other 

hand, the RL-based method is adaptable and flexible; all 

that's needed is to define the deployment goals. [28,29]. 

The difficulty of the computations that follow is 

 However, the complexity decreases to due to 

the small number of actions and the fact that many 

transition probabilities are equal to 0. 

.[30]  

8. Conclusion 

The majority of current elasticity rules rely on heuristics 

that are based on thresholds and need the specification of 

precise ways to accomplish objectives. A variety of RL 

strategies for managing the elasticity of container-based 

applications are presented in this article with the goal of 

developing a more generic and adaptable solution. In 

particular, we have developed and tested model-based and 

model-free approaches, which make use of varying degrees 

of information on the dynamics of the system. The various 

RL techniques were evaluated in depth via the use of 

simulations and tests based on prototypes. A self-adapting 

extension of Docker Swarm, we call EDS, was born out of 

this need.  

8.1 Findings of the study 

The experiments showed the significance of using system 

knowledge to make RL for container elasticity better. The 

model-based RL solution, which is based on experience, 

used to estimate the unknown system dynamics, got the 

highest performance among all the scenarios by 

successfully combining the vertical and horizontal scaling 
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to reduce the adaptations. The prototype experiments 

proved that the model-based approach is better than the 

static configurations that cannot adapt to the changes in the 

workload. Although the model-based solution is more 

computationally demanding, its ability to dynamically 

learn the best adaptation strategy that aligns with the user-

specified deployment objectives makes it a promising 

approach for managing the elasticity of container-based 

applications with varying workloads. 

8.2 Scope for further research 

The RL principles that have been suggested to manage 

applications with several components, such as 

microservices, that are set up in a geo-distributed fog 

computing setting. In this kind of setup, the computing 

resources are heterogeneous and the network latencies are 

not insignificant. A new decentralized control pattern for 

managing the elasticity of container-based systems, such as 

returning to a hierarchical control solution, will be 

designed and integrated into the EDS architecture.  
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