

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4864–4873 | 4864

Reinforcement Learning for Elasticity Control in Containerized Cloud

Applications: A Model-Based Approach with Elastic Docker Swarm

Naimisha Shashikantbhai Trivedi
1**

, Dhaval Varia
2
, Jignesh Harenkumar Vaniya

3
 , Chetna Ganesh

Chand
4
, Nikunj Chunilal Gamit

5

Submitted: 20/02/2024 Revised: 25/03/2024 Accepted: 02/04/2024

Abstract: Software containers are becoming increasingly popular for managing and executing distributed applications on cloud

computing resources. By leveraging the horizontal and vertical elasticity of containers "on the fly," workload fluctuations can be

accommodated. The majority of current control systems do not consider horizontal and vertical scaling to be interconnected. In this

article, we provide Reinforcement Learning (RL) strategies for controlling the vertical and horizontal elasticity of container-based

systems to enhance their adaptability to various workloads. Although RL is an interesting technique, it may have a long learning period if

nothing is known about the system beforehand. To accelerate learning and discover more effective adaptation strategies, our proposed

reinforcement learning approaches—Q-learning, Dyna-Q, and Model-based methods—leverage varying degrees of knowledge about

system dynamics. The recommended policies are incorporated into Elastic Docker Swarm, an add-on for the container orchestration

platform Docker Swarm. Through prototype-based experiments and simulations, we demonstrate the effectiveness and adaptability of

model-based RL techniques.

Keywords: Elastic Docker Swarm, RL, Dyna-Q, Q-learning, Prototypes, Model-Based, Strategies

1. Introduction

The cloud is a new kind of computing that allows users to

rent out resources according to their own needs, on an as-

needed basis. In order to keep up with the ever-changing

workload, there are a number of cloud platforms and

virtual data centers that provide elastic services. [1, 2] The

capacity of a system to dynamically adjust its resources in

response to changes in load is known as its elasticity. [3]

One of the ever-changing features of cloud computing is

this. First, service elasticity improves Quality of Service

(QoS) by maximizing certain metrics like response time,

CPU load, requests processed per second, etc. Service

Level Agreements (SLAs) guarantee quality of service

between customers and cloud resource providers. [4, 5]

Preventing the system from over-provisioning resources is

the second benefit, which lowers total power usage. The

term "over provisioning" describes the practice of

allocating more resources than are really needed to manage

peak demands. [6, 7]

The fundamental aspects of elasticity are efficiency and

scalability. How well computer resources are used when

scaling is what efficiency is all about. [8, 9] The efficiency

improves as the number of resources required decreases. A

machine is scalable if and only if it can take on additional

work when its resources are added to [10, 11].

When it comes to hosting their services, cloud companies

rely on virtualization. Hardware platforms, storage devices,

and network resources may all be "virtualized" in the

process of producing a virtual version of them.

Hypervisors and containers allow for the implementation

of virtualization [12, 13]. Containers are a lightweight

software alternative to hypervisors that outperform virtual

machines in terms of start/stop time and overhead. A

software developer may use containers to bundle a

programme with all of its dependencies, including

libraries, and then distribute it out as a single package. You

may do auto scaling in two ways: reactively or proactively

[14, 15].

Response time, CPU load, memory use, etc., are all

examples of thresholds that may be improved in a reactive

strategy. Resources may be raised or lowered depending on

the period after which we notice that they have exceeded

this threshold. While reactive scaling relies on historical

data, proactive scaling uses machine learning or deep

learning techniques to forecast future workloads. [16, 17].

Next, we determine how many resources will be required

to handle the anticipated workload. Be careful not to scale

____________ _________ ________ ________ ________ ________ ________ ________ ________ __

1Information Technology Department, Vishwakarma Government

Engineering College, Ahmedabad

ORCID ID: 0000-0002-8395-1586
2 Information Technology Department, Vishwakarma Government

Engineering College, Ahmedabad

ORCID ID: 0000-0003-4505-1509
3 Information Technology Department, Vishwakarma Government

Engineering College, Ahmedabad

ORCID ID: 0009-0002-4121-0074
4 Information Technology Department, Vishwakarma Government

Engineering College, Ahmedabad

ORCID ID: 0009-0003-1876-8472
5 Information Technology Department, Vishwakarma Government

Engineering College, Ahmedabad

ORCID ID: 0009-0004-2821-4606

**Corresponding Author Email: naimishatrivedi@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4864–4873 | 4865

up too quickly while adopting proactive tactics. We have

to scale up our resources again soon after we scale down

since a rush of requests comes just after we scale down.

This is called premature scaling. Premature scaling, then,

will result in unnecessary overhead and be ineffective from

the perspective of the cloud provider [18, 19].

The adoption of both reactive and proactive strategies in

auto-scaling may increase its efficiency [20, 21]. Auto-

Regressive Moving Average (ARMA), Auto-Regressive

Integrated Moving Average (ARIMA), Moving Average

(MA), and other proactive methods may be used to time-

series data for the purpose of doing workload prediction. A

load balancer may distribute future workloads across many

computers. [22, 23] The load balancer dynamically and

evenly distributes the burden over all the available nodes

by using various load balancing methods. In the long run,

this helps the system run better. The term "cloud load

balancing" refers to a technique used in cloud computing

for dividing up tasks and resources [24].

2. Review of Literature

• When putting their autoscaling rules into practice,

Hasan et al. (2022) [26] considered the four threshold

values. When autoscaling uses two threshold values,

it makes more accurate decisions. In addition to the

rule-based autoscaling mechanism, several

researchers have proposed an autoscaling mechanism

that integrates concepts from control theory. Thanks

to a controller, they are now functional. Given a

control input, the controller's task is to maintain a

specific level of system performance. Systems based

on maximum control employ reactive processes.

• Kan, C (2023) [27] When it comes to elastic services,

DoCloud offers an auto-scaling platform. Based on

the changing workload, it determines the optimal

number of containers. Specifically, it scales out using

a reactive strategy and scales in the number of

containers using a proactive approach when it comes

to auto-scaling. By comparing each container's CPU

utilization to a threshold value, the threshold-based

method is applied in the reactive approach.

• Al-Dhuraibi et al. (2017) [25] offered a rule-based

reactive strategy. Using ELASTICDOCKER, this

method is applied to the vertical elasticity of

containers. In order to adapt the RAM and virtual

CPU cores available in containers to different

workloads, the ELASTICDOCKER auto-scaler is

used. Various experimental values are used to change

the upper and lower threshold values of a container.

The one with the shortest reaction time is then

selected. The writers have fixedly assigned or

removed the CPU and RAM from a container. For

instance, the auto-scaler adds 256 MB of RAM to the

container if the memory utilization figure exceeds the

top limit of hits.

3. Objectives

• To create reinforcement learning (RL) systems that can

simultaneously regulate the vertical and horizontal

elasticity of container-based apps in order to boost

adaptability when managing different workloads.

• To investigate the effectiveness of RL solutions that

integrate varying degrees of system dynamics information,

such as Q-learning, Dyna-Q, and model-based, in order to

identify appropriate adaptation policies for container

elasticity and to expedite the learning process.

4. Statement of the problem

Effective resource management and scaling are crucial as

cloud-native apps developed using containerized

microservices gain popularity. Both vertical scaling

(resizing computational resources) and horizontal scaling

(adding/removing instances) present unique difficulties. In

order to maximize performance and minimize resource

waste, you must choose when and how to scale in response

to changing workload demands. Monitoring various

metrics, anticipating future requirements, and promptly

allocating resources across the dispersed containerized

services are all necessary for putting the proper auto-

scaling rules into place. Furthermore, if scaling events are

not properly managed, they may impact the operation and

availability of applications. The challenge is developing

self-adaptive, intelligent scaling systems that react to

changing real-world circumstances without compromising

cost and SLAs.

5. Significance of the study

The main elements that contribute to optimizing the

availability, affordability, and performance of

contemporary cloud-based applications are effective

resource allocation and scaling. A strong and intelligent

auto-scaling capacity is becoming increasingly crucial as

more and more companies go to containerized

microservice architectures operating in the cloud.

Applications must be scalable in order to handle changing

demands without under-provisioning, which degrades

performance, or over-provisioning, which leaves resources

underutilized. Being extremely responsive and elastic is a

fundamental requirement for cloud-native applications.

 6. Research methodology

• Issue Identification and System Model

We examine a model for applications that is very generic,

in which the application is a black-box entity that does

certain operations (such as calculation and data access). It

is possible to launch many application instances in parallel

in order to adequately handle ever-increasing incoming

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4864–4873 | 4866

workloads. Separate instances handle different portions of

the incoming requests. The programme reveals its response

time requirements, which are stated as a maximum reaction

time that should not be exceeded. Application deployment

and runtime management may be made easier using

software containers, such as Docker.

• Flattening In Both Directions With RL

By interacting with the system in a more natural way, RL

methods hope to discover the best way to adapt. The goal

of RL strategies is to minimize a numerical cost signal by

learning what to do (i.e., by mapping circumstances to

actions). The trade-off between exploring and exploiting is

one of the problems that comes up in RL. An RL agent's

goal is to minimize the gained cost by giving preference to

previously attempted actions that were successful

(exploitation). The agent uses an approximation of the so-

called Q-function to minimize the anticipated long-term

cost. The projected long-term cost that follows the

execution of action an in state s is represented by the

Q(s,a) terms. To scale, the agent uses the Q-function to

choose which action to take: given a system state s, it takes

action a that minimizes Q(s,a). The scaling strategy is

improved by updating Q(s,a) over time based on the actual

incurred expenses. In order to predict the long-term cost,

the various RL methods use different methodologies.

The condition of the programme at time i is defined as si =

(ki,ui,ci), where ki is the quantity of containers (application

instances), ui is the utilization of the CPU, and ci is the

proportion of CPU allocated to each container. By "S," we

mean the set of allui) states that the application makes use

of. Although u¯ and c¯u are appropriate quanta, we

discretize them despite the fact that CPU utilization (and

CPU share, ci) are actual numbers. The number of

containers where Kmax is the maximum application

replication degree is denoted by ci and the set {0,u,...,L¯

u¯} is also assumed.

Here, A is the set of all actions, and for any state s ϵ S, we

have a set of possible adaptation actions A(s) ⊆ A. The 5-

action model and the 9-action model are the two

alternatives that we provide. Both horizontal and vertical

scaling are possible in the 5-action model, but in the 9-

action model, we may scale in both directions at once. In

the formal sense, the 5-action model is represented by A =

{-r, - 1, 0, 1, r}, where ±r denotes a vertical scaling (i.e., +r

to increase CPU share and r to remove CPU share), ±1

denotes a horizontal scaling (i.e., +1 to scale-out and 1 to

scale-in), and a = 0 denotes the do nothing choice. A = {1,

0, +1} x {r, 0, r} is another way of looking at the 9-action

model. In a 5-action model, for example, the accessible

actions in state s with k = Kmax and c = Mc¯ are A(s) = {-

r, - 1, 0} (i.e., we cannot execute additional scale up and

out operations), although obviously not all actions are

available in every application state.

where 1{•} is the indicator function and sum of all is 1.

The application's reaction time in the state s = (k, u, c), and

are non-negative weights for the various expenses. In

addition, we break down action an into its component

parts, container count (a1) and CPU share (a2), in that

order.

We take a look at three distinct RL methods, each with its

own set of assumptions and learning process. We start with

the easy-to-understand Q-learning method; it doesn't rely

on models and doesn't need understanding the dynamics of

the system. Next, we introduce Dyna-Q, a system model

builder that uses real-world data. In addition, we provide a

model-based method that updates the Q-function

depending on the known (or estimated) system dynamics.

By providing RL agents with a system model, the model-

based approach accelerates the learning phase via

exploratory activities.

A. Q-learning

By averaging its samples, Q-learning is able to

approximate the ideal Q-function, Q*. With a probability

of ϵ, Q-learning chooses a random action at decision step i

to improve its application knowledge; with a probability of

1 - ϵ, it chooses the greedy action by exploiting its

application knowledge (i.e., an I = arg min). In this paper,

we examine the simple ϵ -greedy action selection method

 . The greedy policy typically chooses the

best known action for a given state, but it prefers to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4864–4873 | 4867

explore less optimum choices with low probability. Here is

how Q(si, ai) is changed at the conclusion of each time

period i:

where 2 [0, 1] is the parameter for the learning rate,

and is the range of values for the discount factor. Keep in

mind that (2) only incorporates the newly observed

variables into the previous estimate of Q, such as the cost

ci and the discounted cost anticipated when the system is

in si+1, min .

B. Dyna-Q

Dyna-Q is an alternative to Q-learning that attempts to

mimic the system's interaction with its surroundings in

order to expedite the learning process. The Dyna-Q

learning is summarized in Algorithm 1. Dyna-Q, like Q-

learning, watches the application state at runtime and

chooses an adaptation action based on the estimations of

Q(s, a). Dyna-Q uses a sampling system model, Model(s,

a), to mimic the application-environment interaction after

time step i concludes (lines 8–13). Dyna-Q keeps the

investigated state-action pair (s, a) up-to-date at runtime by

storing the next state s0 and cost c; for details, see line 7.

Under the assumption of a deterministic environment,

Dyna-Q utilizes the state-action pairs previously recorded

and updates the Q-function using (2).

• Model-Based Reinforcement Learning

Thirdly, we look at an RL technique that relies on a

complete backup model. The complete backup method

calculates the Q-function using the Bellman equation in

conjunction with a potentially approximated model of the

system:

We substitute the unknown cost function and the unknown

transition probabilities p(s0 | s, a).

based on the estimations they made using their knowledge.

In order to determine , Simply estimating the

probability of CPU utilization transitions will do the trick

. Actually, it is worth noting that:

in which the scaling action, denoted as a = (a1, a2), is

specified in terms of the updated amount of CPU share

(a2) and the updated number of containers (a1). The fact

that u is a discrete set value means that we may say

 "for short"

in this context. In the given timeframe, ni,jj0 represents the

number of occurrences when the CPU utilization switches

from state ju¯ to j0 u¯. At moment i,

the estimated probabilities of the transition are

 along with estimating pˆ(s0 |s, a). The

total of two terms, the known cost and the unknown cost,

may be expressed as the estimations of the immediate cost

c(s, a, s0):

In this situation, the known cost ck(s, a) takes into

consideration the costs of adaptation and resources, but it

is action and state dependent. What happens in the

following state s0 determines the unknown cost cu(s0).

The performance penalty is taken into consideration by

cu(s0). We need to make an online estimate of cu(s0) as

we are assuming that the application model is unknown.

Hence, the RL agent assesses cu,i (s0) at time i after seeing

the immediate cost ci:

In order to revise our estimate of the unknown cost

cˇu,i(s0), we follow these steps:

The projected cost for the undetermined is then used

to calculate the expense of implementing an in s in

accordance with (5). In the following state s0 = (k0, u0,

c0), it may be heuristically assumed that the predicted cost

due to Rmax violation does not decrease if the number of

containers, CPU utilization, and/or CPU share are lowered,

given a state e s = (k, u, c). The converse is also true.

Consequently, when

Here are several qualities that can be enforced:

• Docker-Based Technology

Containerized applications may be easily created,

deployed, and managed using Docker, an open-source

platform. A Docker container is an instance of a container

snapshot (or image), which includes the programme

combined with all the data required for its execution (e.g.,

dependencies, configuration file). You may construct and

execute containers with Docker using REST APIs or a

command-line interface. The Docker Engine is part of

Docker. With Docker, you may set a container's resource

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4864–4873 | 4868

quota, which controls how much of the hosting machine's

CPU and RAM the container an consume. Vertical

elasticity is achieved by being able to change the resource

quota during runtime. Starting with version 1.12, Docker

integrated the swarm mode with the Docker Engine,

making it easy to assign numerous containers on

distributed computing resources.

Elastic Docker Swarm Architecture

Here are the primary parts that make up the system:

 Client: This is the client application or user interface that

starts the requests or actions in the system.

 Message Broker: It is the main communication hub that

enables the messaging between different components of

the system to be done asynchronously. It is a go-between

that enables components to send and receive messages

without direct point-to-point connections.

 Docker Monitors: These parts are in charge of

overseeing and controlling the Docker containers or

containerized applications. They interact with the Message

Broker to get instructions or notifications and

communicate with Nodes to do the actions related to

containers.

 Nodes: These are the resources or servers where Docker

containers are deployed and executed. Nodes talk to the

Docker Monitors and the Message Broker to get

instructions and to give feedback on container operations.

 Container Manager: This component is in charge of the

containers which are spread across the Nodes. It talks to

the Message Broker to get requests or instructions and

communicates with the Nodes to do container-related

actions like deployment, scaling, or load balancing.

 The flow of communication and interactions in the system

can be described as follows:

1. The Client starts a request or an action, which is

forwarded to the Message Broker.

2. The Message Broker directs the request or action to the

right components like Docker Monitors, Nodes, or the

Container Manager, according to the message content or

topic.

3. The Docker Monitors get messages from the Message

Broker and communicate with Nodes to execute container-

related operations, like starting, stopping, or monitoring

containers.

4. The Nodes carry out the operations requested by the

containers and inform the Docker Monitors and the

Message Broker with the status updates or feedback.

5. The Container Manager gets the messages from the

Message Broker and coordinates container management

tasks across several Nodes, for instance, deploying new

containers, scaling the existing ones or performing load

balancing.

6. The Container Manager talks to Nodes to carry out

container management tasks and gets feedback or status

updates from them.

7. The system architecture supports the separation of

communication between components, scalability, and the

ability to manage and orchestrate containerized

applications across multiple compute resources.

• Elastic Docker Swarm

Elastic Docker Swarm, or EDS for short, is what we

propose as a way to provide Docker robotic capabilities. It

adds the MAPE control loop by extending the Docker

Swarm architecture. The self-adaptation functions are

handled by the latter, which consists of four primary

components: monitor, analyze, plan, and execute.

Application and execution environment data is collected by

the Monitor. To find out whether an adjustment is helpful,

the Analyze component looks at the data that was obtained.

If the adaptation is necessary, the application's adaptation

strategy is determined in the strategy component and then

executed in the Execute component. We were able to

seamlessly include our MAPE components into Docker

due to its modular design and extensive API support.

7. Results and Discussion

In this work, we use simulation and EDS-based

experiments to assess the suggested RL methods in depth.

Simulation

We begin by contrasting the model-free method with the

model-based RL techniques. Secondly, we look at the

advantages of a 5-action model and a 9-action model.

Thirdly, we demonstrate the adaptability of RL methods in

learning multiple adaptation strategies to prevent Rmax

violations, resource waste, or frequent adaptations,

depending on the weights of the cost functions. Since it is

reasonable to assume that the application gets M

independent and random requests, D deterministic service

time, and ki containers utilized at time step i equals the

number of servers, we model the reference application as

an M/D/ki queue. The maximum goal response time

(Rmax) is 50 milliseconds, and the service rate (µ) is 200

times the number of requests per second (ci), where ci is

the amount of CPU share (ϵ = 0 to 1].

Here are the parameters that are used by the RL

algorithms: For Q-learning and Dyna-Q, the discount

factor Y is 0.99, the learning rate ↵ is 0.1, and ϵ is equal to

1/I, where i is the time taken for the simulation. The

application state is discretized using u¯ = 0.1 and c¯ =

10%. An Intel Core i7-4700MQ (8 cores @ 2.40 GHz) and

8 GB of RAM are the specifications of the system that

operates the simulation. Table details the outcomes of the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4864–4873 | 4869

9-action model's simulation, whereas Table details the

outcomes for the 5-action model.

For the given set of weights (wperf = 0.09, wres = 0.90,

and wadp = 0.0101), it is crucial to prevent R max

violations. We can see that the 9-action model often slows

down learning by comparing Tables.

A conclusion might elaborate on the importance of the

work or suggest applications and extensions.

Fig. 1: Application workload used in simulation.

Table 1: Performance of the application with several configurations of RL policies and weights of the cost function, as

analysed via simulation using the 5-action adaption model.

Weights wperf = 0.09, wres = 0.90, and

wadp =0.01

wperf = 0.09, wres = 0.90, and

wadp = 0.01

wperf = wres = wadp = 0.33

Policy Q-

learning

Dyna-

Q

Model-

based

Q-

learning

Dyna-

Q

Model-

based

Q-

learning

Dyna-

Q

Model-

based

Rmax violations (%) 17.87 7.12 2.37 46.16 56.64 99.8 19.32 19.52 17.17

Average CPU

utilization (%)

55.83 48.66 60.54 72.63 79.83 99.85 55.89 53.68 69.01

Average CPU

share (%)

62.84 80.21 87.62 54.34 53.79 11.01 68.5 73.23 86.12

Average number of

containers

4.49 3.88 2.53 3.49 2.95 1.09 4.28 3.95 2.48

Median R (ms) 13.57 8.97 10.39 35.66 1 1 11.6 9.41 12.04

Table 2: Simulation-based analysis: Application performance under different configurations of cost function weights

and RL policies, when the 9-action adaptation model is used.

Weights wperf = 0.09, wres = 0.90, and

wadp = 0.01

wperf = 0.09, wres = 0.90, and

wadp = 0.01

wperf = wres = wadp = 0.33

Policy Q-

learning

Dyna-

Q

Model-

based

Q-

learning

Dyna-

Q

Model-

based

Q-

learning

Dyna-

Q

Model-

based

Rmax violations

(%)

27.17 25.77 2.85 61.18 62.58 99.8 39.69 35.64 19.5

Average CPU

utilization (%)

62.82 63.39 60.73 80.95 81.89 99.85 69.22 65.08 70.75

Average CPU

share (%)

61.32 62.6 87.43 46.62 46.32 11.04 53.62 54.61 78.35

Average number

of containers

3.87 3.56 2.57 3.08 3.7 1.09 3.89 4.35 2.56

Median R (ms) 15.59 15.29 10.15 1 1 1 25 20.53 15.16

Adaptations (%) 88.98 92.53 37.32 89.38 94.3 2.95 85.7 91.1 40.29

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4864–4873 | 4870

In this third scenario, we strike a compromise between the

three deployment objectives, with wperf = wres = wadp =

0.33. In comparison to the 9-action model , the 5-action

model is able to decrease the amount of Rmax violations and

adaptations. Compared to 9 actions, Q-learning and Dyna-

Q have 19% Rmax violations, but they underutilize

computational resources, with an average utilization of 54-

56% instead of 65-69%. In this scenario as well, the

model-based solution learns a more effective adaption

approach, the impact of which is negligible relative to the

action count. Rmax violations are reduced to 17% with 5

actions of the model-based approach, which achieves an

average resource utilization of 69%. It typically uses 2.5

containers to operate the programme, with each container

having the ability to consume 86% of the given CPU.

Prototype-based

Motivated by the promising outcomes in the simulation,

we test the RL algorithms in a real-world setting. We

achieve this goal by incorporating the suggested policies

into EDS. Specifically, we evaluate Q-learning in

comparison to the model-based RL solution for both the 5-

action and 9-action models. We do not take Dyna-Q into

account because of space constraints, even though it offers

a little improvement over Q-learning. Large Amazon

Elastic Compute Cloud instances, each with two virtual

CPUs and eight gigabytes of RAM, are used to install

EDS. At user request, the reference app calculates the sum

of the first n Fibonacci numbers (complexity O(n2)).

Fig. 2: Workload used in the prototype-based experiments

Table 3: Application performance in various combinations of cost function weights and RL policies, using the 5-action

adaptation model, as shown in prototype-based studies.

Weights wperf = 0.09, wres = 0.90,

and wadp = 0.01

wperf = 0.09, wres = 0.90, and

wadp = 0.01

wperf = wres = wadp = 0.33

Policy Q-learning Model-

based

Q-learning Model-

based

Q-learning Model-

based

Rmax violations (%) 29.77 12.1 38.21 97.81 55.06 39.23

Average CPU utilization (%) 48.81 37.35 50.87 90.85 63.55 52.22

Average CPU share (%) 88.7 47.34 89.19 24.01 84.43 52

Average number of containers 1.7 5.11 1.54 2.12 1.48 4.21

Median R (ms) 4.18 6.11 4.24 25959.45 223.35 8.3

Adaptations (%) 65.65 50.81 67.48 61.31 66.46 32.31

Table 4: Experimental setup for the 9-action adaptation model; application performance tested with varying weights for

the cost function and RL rules.

Weights wperf = 0.09, wres =

0.90, and wadp = 0.01

wperf = 0.09, wres = 0.90,

and wadp = 0.01

wperf = wres = wadp =

0.33

Policy Q-learning Model-

based

Q-learning Model-

based

Q-learning Model-

based

Rmax violations (%) 80.54 24.11 88.19 97.58 96.77 33.6

Average CPU utilization (%) 82.21 31.53 87.29 91.05 94.07 60.19

Average CPU share (%) 45.14 46.03 39.37 20.16 40.4 36.72

Average number of containers 1.58 7.1 1.46 2.32 1.49 4.59

Median R (ms) 9738.49 6.92 16587.03 29654.97 18740.43 18.63

Adaptations (%) 93.51 44.68 90.55 59.68 88.71 28

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4864–4873 | 4871

We begin with the following set of weights: wperf=0.90,

wres=0.09, wadp= 0.01. In this scenario, minimizing

adaptation costs is more essential than optimizing

application reaction time, and conserving resources is

secondary. Adapting the application deployment is

something that Q-learning gradually becomes better at.

Table show that when the 5-action model is taken into

account, Q-learning often alters the application

deployment, carrying out horizontal and vertical scaling

operations 66% of the time. In addition, 30% of the time,

the application's reaction time is longer than Rmax. The

model-based approach uses the system knowledge to bring

the number of Rmax violations down to 12%. In contrast to

Q-learning, which makes use of a smaller number of

containers, the model-based strategy deploys 5.11

containers, each of which can access 47% of the CPU,

rather than 1.7 containers, which can access 89% of the

CPU.

Fig. 3: Prototype-based experiments: Application performance resulting from different configurations of static

deployment

Discussion

The results of these trials highlight the value of system

information in enhancing the learning process. Therefore,

the model-based approach just estimates the unknown

system dynamics based on the experience. Curiously, it

achieves top performance in all scenarios that are taken

into consideration. Additionally, the results demonstrate

that the learning task is slowed down by the 9-action

model due to the increased combination of state-actions

that need to be assessed. But the model-based strategy

succeeds because it makes full use of the 9-action model to

scale horizontally and vertically at the same time while

minimizing modifications. Experiments with prototypes

often corroborate the merits of the model-based approach.

In comparison to a static setup, as shown in Table,” the

advantages of a model-based RL algorithm may be shown

in Tables. Static configurations may achieve certain edge-

case deployment objectives in terms of performance, but

they are application-specific and hence unable to handle

unexpected spikes or changes in demand. On the other

hand, the RL-based method is adaptable and flexible; all

that's needed is to define the deployment goals. [28,29].

The difficulty of the computations that follow is

 However, the complexity decreases to due to

the small number of actions and the fact that many

transition probabilities are equal to 0.

.[30]

8. Conclusion

The majority of current elasticity rules rely on heuristics

that are based on thresholds and need the specification of

precise ways to accomplish objectives. A variety of RL

strategies for managing the elasticity of container-based

applications are presented in this article with the goal of

developing a more generic and adaptable solution. In

particular, we have developed and tested model-based and

model-free approaches, which make use of varying degrees

of information on the dynamics of the system. The various

RL techniques were evaluated in depth via the use of

simulations and tests based on prototypes. A self-adapting

extension of Docker Swarm, we call EDS, was born out of

this need.

8.1 Findings of the study

The experiments showed the significance of using system

knowledge to make RL for container elasticity better. The

model-based RL solution, which is based on experience,

used to estimate the unknown system dynamics, got the

highest performance among all the scenarios by

successfully combining the vertical and horizontal scaling

0 0

100

10
3.76 00

29.45

50

3 4.29 0

22.31

54.3 50

2

14.02

0
0

20

40

60

80

100

120

Rmax
violations

Average CPU Average CPU Average
number

Median R Adaptations

Static with 10 containers and 100% CPU share

Static with 3 containers and 50% CPU

share Static with 2 containers and 50% CPU share

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4864–4873 | 4872

to reduce the adaptations. The prototype experiments

proved that the model-based approach is better than the

static configurations that cannot adapt to the changes in the

workload. Although the model-based solution is more

computationally demanding, its ability to dynamically

learn the best adaptation strategy that aligns with the user-

specified deployment objectives makes it a promising

approach for managing the elasticity of container-based

applications with varying workloads.

8.2 Scope for further research

The RL principles that have been suggested to manage

applications with several components, such as

microservices, that are set up in a geo-distributed fog

computing setting. In this kind of setup, the computing

resources are heterogeneous and the network latencies are

not insignificant. A new decentralized control pattern for

managing the elasticity of container-based systems, such as

returning to a hierarchical control solution, will be

designed and integrated into the EDS architecture.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Zhang, Q., Cheng, L., Boutaba, R. (2020). Cloud

computing: state-of-the-art and research challenges.

Journal of Internet Services and Applications, 1(1): 7-

18.

[2] Smith, J., Nair, R. (2018). Virtual Machines:

Versatile Platforms for Systems and Processes.

Elsevier.

[3] Seo, K.T., Hwang, H.S., Moon, I.Y., Kwon, O.Y.,

Kim, B.J. (2019). Performance comparison analysis

of Linux container and virtual machine for building

cloud. Advanced Science and Technology Letters,

66(105-111). https://

doi.org/10.14257/ASTL.2014.66.25

[4] Moreno-Vozmediano, R., Montero, R.S., Huedo, E.,

Llorente, I.M. (2019). Efficient resource provisioning

for elastic Cloud services based on machine learning

techniques. Journal of Cloud Computing, 8(1): 5.

https://doi.org/10.1186/s13677-019-0128-9

[5] Jiang, J., Lu, J., Zhang, G., Long, G. (2017). Optimal

cloud resource auto-scaling for web applications. In

2013 13th IEEE/ACM International Symposium on

Cluster, Cloud, and Grid Computing, Delft,

Netherlands, pp. 58- 65.

https://doi.org/10.1109/CCGrid.2013.73

[6] Roy, N., Dubey, A., Gokhale, A. (2021). Efficient

autoscaling in the cloud using predictive models for

workload forecasting. 2011 IEEE 4th International

Conference on Cloud Computing, Washington, DC,

USA.

[7] Messias, V.R., Estrella, J.C., Ehlers, R., Santana,

M.J., Santana, R.C., Reiff-Marganiec, S. (2016).

Combining time series prediction models using

genetic algorithm to autoscaling web applications

hosted in the cloud infrastructure. Neural Computing

and Applications, 27(8): 2383-2406.

https://doi.org/10.1007/s00521-015- 2133-3

[8] Cocaña-Fernández, A., Sánchez, L., Ranilla, J.

(2016). Leveraging a predictive model of the

workload for intelligent slot allocation schemes in

energy-efficient HPC clusters. Engineering

Applications of Artificial Intelligence, 48: 95-105.

[9] Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.

(2017). Elasticity in cloud computing: state of the art

and research challenges. IEEE Transactions on

Services Computing, 11(2): 430-444.

https://doi.org/10.1109/TSC.2017.2711009

[10] Moreno-Vozmediano, R., Montero, R.S., Llorente,

I.M. (2022). IaaS cloud architecture: From virtualized

datacenters to federated cloud infrastructures.

Computer, 45(12): 65-72.

https://doi.org/10.1109/MC.2012.76

[11] De Abranches, M.C., Solis, P. (2023). An algorithm

based on response time and traffic demands to scale

containers on a Cloud Computing system. In 2016

IEEE 15th International Symposium on Network

Computing and Applications (NCA), pp. 343-350.

[12] Padala, P., Hou, K.Y., Shin, K.G., Zhu, X., Uysal,

M., Wang, Z., Merchant, A. (2019). Automated

control of multiple virtualized resources. In

Proceedings of the 4th ACM European Conference

on Computer Systems, pp. 13-26.

https://doi.org/10.1145/1519065.1519068

[13] Gao, Y., Li, Q. (2019). A new framework for the

complex system’s simulation and analysis. Cluster

Computing, 22: 9097-9104.

https://doi.org/10.1007/s10586-018-2071-9

[14] GOOGLE. Google horizontal pod auto-scaler.

Available from https: //github.com

/kubernetes/kubernetes/blob/release-1.2/docs/design/

horizontal-pod-autoscaler.md, accessed on dated 10-

05- 2019

[15] Meng, Y., Rao, R.N., Zhang X., Hong, P. (2017).

CRUPA: A container resource utilization prediction

algorithm for auto-scaling based on time series

analysis. In: 2016 International Conference on

Progress in Informatics and Computing (PIC), pp

468-472.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 4864–4873 | 4873

[16] E. A. Brewer, (2018)“Kubernetes and the path to

cloud native,” in Proceedings of the Sixth ACM

Symposium on Cloud Computing, p. 167, Kohala, HI,

USA.

[17] Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.

(2017). Autonomic vertical elasticity of docker

containers with ELASTICDOCKER. In 2017 IEEE

10th international conference on cloud computing

(CLOUD), Honolulu, CA, USA, pp. 472-479.

[18] Hasan, M.Z., Magana, E., Clemm, A., Tucker, L.,

Gudreddi, S.L.D. (2022). Integrated and autonomic

cloud resource scaling. In 2012 IEEE Network

Operations and Management Symposium, Maui, HI,

USA, pp. 1327-1334.

[19] Kan, C. (2023). DoCloud: An elastic cloud platform

for Web applications based on Docker. 2016 18th

International Conference on Advanced

Communication Technology (ICACT), Pyeongchang,

South Korea.

[20] Z. Zhong and R. Buyya, (2020) “A cost-efficient

container orchestration strategy in kubernetes-based

cloud computing infrastructures with heterogeneous

resources,” ACM Transactions on Internet

Technology, vol. 20, no. 2, pp. 1–2.

[21] T. Menouer,(2020) “KCSS: Kubernetes container

scheduling strategy,” 1e Journal of Supercomputing,

pp. 1–2.

[22] T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and

S. Kim, (2022)“Horizontal pod autoscaling in

Kubernetes for elastic container orchestration,”

Sensors, vol. 20, no. 16, p. 4621.

