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Abstract - This study explores the use of deep learning models for forecasting air pollution, specifically PM2.5 levels, using 

data from the Central Pollution Control Board (CPCB). The methodology involves extensive data preprocessing, including 

trend identification, missing value handling, and the extraction of temporal features to capture seasonal variations. The models 

evaluated include standalone LSTM, Hybrid LSTM-1D CNN, Hybrid LSTM-GRU, and Hybrid GRU-1D CNN. An 80:20 

training-testing split was used, with feature extraction methods applied to enhance predictive accuracy. The performance of 

the models was assessed using common metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), and R-squared (R2). The Hybrid GRU-1D CNN model demonstrated the best performance, achieving 

the lowest MSE (201.2), RMSE (14.1), and MAE (6.7), with a high R2 value of 0.99. These results highlight the potential of 

hybrid deep learning models for accurate air pollution prediction, offering valuable insights for environmental monitoring and 

policymaking. 
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1. Introduction 

Concerns over the damaging effects of deteriorating 

air quality on ecosystems, human health, and climate 

change have led to a critical shift in the focus of 

research and development towards detection of air 

pollution. Pollutant emissions, including 

particulates, nitrogen oxides, oxides of sulfur, 

carbon monoxide, and volatile organic compounds, 

have increased as industrialization and urbanization 

continue to grow. necessitating advanced methods 

for monitoring and managing air quality. Traditional 

air quality monitoring systems typically involve 

fixed sensor networks strategically placed in specific 

locations[1]. While these systems provide valuable 

data, they often exhibit limitations in terms of 

coverage, granularity, and real-time responsiveness. 

Sophisticated technologies have sparked a paradigm 

change towards more dynamic and all-

encompassing air pollution monitoring tactics, 

especially in the areas for sensor networks, satellite 

imaging, and data analytics. With pollutants like 

particulate matter (PM2.5, PM10), nitrogen oxides 

(NOx), sulphur dioxide (SO2), carbon monoxide 

(CO), and ozone (O3) profoundly affecting climate 

patterns, human health, and general ecological 

balance, air pollution remains one of the most urgent 

environmental challenges of the twenty-first 

century. Particularly in heavily inhabited urban 

regions where industrial emissions, vehicle traffic, 

and meteorological circumstances contribute to high 

pollution levels, accurate prediction of air pollution 

is essential for proactive policy decisions, 

emergency response preparation, and public health 

protection[2]–[4].  
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Figure 1 Air pollution Factors[5] 

Widely used are traditional air quality prediction 

models including statistical approaches including 

autoregressive integrated moving average 

(ARIMA), multiple linear regression (MLR), and 

Gaussian dispersion models, together with physics-

based numerical simulations including the Weather 

Research and Forecasting with Chemistry (WRF-

Chem) model and Community Multiscale Air 

Quality (CMAQ) model. These models find it 

difficult, meantime, to adequately capture the 

extremely nonlinear, complicated relationships 

among pollution sources, atmospheric conditions, 

and geographical factors[6]–[8]. By using 

hierarchical feature learning, end-to--end modelling, 

and large-scale data processing, deep neural 

networks (DNNs) have become a transforming tool 

for enhancing air quality forecasting accuracy. 

Convolutional neural networks (CNNs), which are 

effective in spatial feature extraction from remote 

sensing images and sensor network grids; recurrent 

neural networks (RNNs) and their advanced 

variants, long short-term memory (LSTM) networks 

and gated recurrent units (GRUs), which are 

especially suited for modelling temporal 

dependencies in sequential pollution data; and 

transformer-based models, which provide enhanced 

contextual understanding of time-series 

dependencies through self-attention mechanisms. 

Improved predictive accuracy follows from hybrid 

models that combine CNNs with LSTMs or GRUs 

incorporating both spatial and temporal correlations 

in air quality data. Furthermore investigated to 

improve air pollution prediction include attention 

mechanisms, self-supervised learning, and graph 

neural networks (GNNs), thereby enabling models 

to dynamically prioritise pertinent environmental 

information and link many pollution sources across 

cities and areas. By allowing constant, real-time 

monitoring and forecasting at fine geographical 

resolutions, the combination of deep learning with 

the Internet of Things (IoT), real-time sensor 

networks, and edge computing significantly 

improves predictive capabilities. Combining 

ground-based sensor readings with satellite imagery 

from sources such NASA's MODIS, Sentinel-5P, 

and Copernicus Atmospheric Monitoring Service 

(CAMS), data fusion methods help to enrich training 

datasets and increase model generalisability. While 

hyperparameter optimisation strategies like 

Bayesian optimisation, genetic algorithms, and 

reinforcement learning-based tuning improve model 

performance, preprocessing techniques including 

normalising, outlier detection, and missing value 

imputation are absolutely vital in ensuring data 

quality before feeding it into deep learning models. 

With methods including Shapley Additive 

Explanations (SHAP), Layer-wise Relevance 

Propagation (LRP), and Grad-CAM (gradient-

weighted Class Activation Mapping), explainability 

and interpretability in deep learning-based air 

pollution forecasting remain vital for ensuring 

transparency and trust. Transfer learning and 

domain adaption techniques help models trained on 

air quality data from one city or region to generalise 

across many geographical areas, hence reducing the 

requirement for intensive retraining on new datasets. 

Promising developments in physically consistent, 

interpretable air pollution predictions come from 

physics-informed neural networks (PINNs) and 

hybrid artificial intelligence-physics models, which 

combine deep learning with atmospheric chemistry 

simulations [9]–[11]. Notwithstanding these 

developments, several problems still exist: data 

shortage in underdeveloped areas, sensor errors 
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causing noisy measurements, high computational 

costs related to training deep networks, and 

adversarial robustness issues whereby small 

perturbations in input data can cause major 

predictions errors. To guarantee appropriate AI 

deployment, ethical issues include data privacy in air 

quality monitoring systems, algorithmic fairness in 

exposure assessments, and biases in model 

projections that disproportionately affect vulnerable 

populations must also be taken under consideration. 

New trends like neuromorphic computing, which 

seeks to create energy-efficient AI hardware, and 

federated learning, in which several distributed 

devices cooperatively train models without sharing 

raw data, present interesting paths for future 

enhancement of air pollution forecasting capability. 

These developments are being used by governments, 

environmental agencies, and researchers to create 

better, AI-driven environmental policies capable of 

reducing pollution-related health hazards and 

thereby supporting sustainable urban design. By 

enabling more accurate, real-time, scalable 

predictions, spatial-temporal data sources, and 

advanced AI technologies including transformers, 

GNNs, and hybrid models, so paving the path for 

data-driven air quality management, early warning 

systems, and global efforts towards cleaner, 

healthier environments. Deep neural networks have 

thus transformed air pollution forecasting[12]. 

1.1 Establishing Context and Significance 

Air pollution is a global challenge affecting public 

health and the environment, necessitating accurate 

forecasting for mitigation. Traditional models 

struggle with the nonlinear and dynamic nature of 

pollution, making deep learning techniques such as 

long short-term memory (LSTM), 1D convolutional 

neural networks (1D-CNN), and hybrid LSTM-

GRU models more effective. LSTMs capture long-

term dependencies in pollutant time series, while 

1D-CNNs extract local temporal patterns efficiently. 

Hybrid LSTM-GRU models combine LSTM’s 

sequential learning capabilities with GRU’s 

computational efficiency, improving predictive 

accuracy[13], [14]. These models benefit from 

incorporating meteorological data, traffic patterns, 

and industrial activity to enhance their contextual 

understanding of pollution trends. Integrating deep 

learning with IoT-based sensor networks enables 

real-time air quality monitoring, while edge 

computing ensures low-latency predictions. 

Transfer learning helps adapt models to data-scarce 

regions, improving forecasting reliability. Despite 

challenges such as missing data and sensor noise, 

robust architectures and hyperparameter 

optimization techniques enhance model stability. 

Explainability methods like SHAP and attention 

mechanisms make predictions interpretable for 

policymakers. As AI-driven air quality management 

gains traction, LSTM-based architectures are 

emerging as essential tools for high-accuracy 

pollution forecasting, enabling proactive 

interventions and data-driven urban planning for 

healthier environments[15]. 

2. Literature Review 

Kecorius 2024 et al. Urban air pollution, driven by 

pollutants like nitrogen oxides, ozone, and 

particulate matter, poses significant health risks. 

Machine learning, particularly deep learning, has 

shown potential in predicting pollutant 

concentrations but suffers from limited 

interpretability. the Temporal Selection Layer (TSL) 

technique within deep learning models for time 

series forecasting, improving both prediction 

accuracy and interpretability. Applied to hourly 

pollution data from Graz, Austria, the method 

enhances model transparency by embedding feature 

selection directly into the neural network. The 

results demonstrate that TSL improves model 

effectiveness, reducing computational costs, and 

leads to better air pollution management 

strategies[16]. 

Rautela 2024 et al. India's fight against air pollution 

requires a comprehensive approach combining 

advanced technology, robust regulations, and 

societal engagement. This study evaluates PM2.5 

levels using key aerosols like black carbon, dust, and 

sulphates, identifying vulnerable regions such as the 

Indo-Gangetic Plains and Western India. An 

AI&ML-based convolutional autoencoder model 

achieved high accuracy in forecasting PM2.5 

concentrations, with metrics like Structural 

Similarity Index over 0.60 and Mean Square Error 

below 10 μg/m³. Despite technological 

advancements, regulatory challenges persist. 

Addressing these demands tailored regional 

strategies, AI&ML integration, strengthened 

frameworks, sustainable practices, and global 

cooperation to mitigate air pollution effectively 

across India[17]. 

Fareena 2023 et al. Rapid urbanization and 

industrialization lead to increased air pollution, 

affecting health and the environment, making it a 
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public health emergency. Accurate air pollution 

forecasting is crucial for timely action.  Compares 

deep learning-based models (LSTM, GRU) and 

statistical models for forecasting five pollutants: 

NO2, O3, SO2, PM2.5, and PM10. Using a dataset 

from an air quality monitoring station in Belfast, 

Northern Ireland, the models are evaluated with 

RMSE, MAE, and R². Results show that deep 

learning models outperform statistical models, 

achieving the lowest RMSE of 0.59 and the highest 

R² of 0.856[18]. 

Zhu 2023 et al. Rapid urbanization worsens water 

and air quality through contaminants and 

competition for resources. This paper applies deep 

learning methods, specifically Convolutional Neural 

Networks (CNN) and Long-Short Term Memory 

(LSTM), to classify water quality and assess air 

quality in urban development. The proposed 

Conv.LSTM model captures both spatial and 

temporal dependencies, outperforming traditional 

models. Performance metrics such as accuracy, 

recall, precision, and F1-score show that 

Conv.LSTM achieved 92% accuracy for water 

pollution classification and 91% for air pollution, 

surpassing RNN (65%), DBN (78%), and LSTM 

(82%) in both datasets. Reducing pollution is 

essential for sustainable urban growth[19]. 

Guv 2022 et al. Air pollution prediction is crucial for 

public health, but traditional models often overlook 

peak value accuracy and lack interpretability. 

Presents a new Hybrid Interpretable Predictive 

Machine Learning model for Particulate Matter 2.5 

(PM2.5) prediction, combining a deep neural 

network with a Nonlinear Auto Regressive Moving 

Average with Exogenous Input model. The model 

integrates automatic feature generation and 

selection. Experimental results show the model 

outperforms others in peak value prediction 

accuracy and interpretability, with correlation 

coefficients of 0.9870, 0.9332, and 0.8587 for 1, 3, 

and 6-hour predictions, respectively, offering an 

interpretable framework for time-series data[20]. 

Table.1 Literature Summary 

Authors/year  Model/method Research gap  Findings References 

Abdelkader 2021 IMDA-VAE model 

enhances pollution 

forecasting accuracy. 

Lack of effective, 

interpretable, and 

efficient air 

pollution 

forecasting models. 

The IMDA-VAE 

model outperforms 

traditional models in 

air pollution 

forecasting. 

[21] 

Hähnel 2020  Deep-learning 

framework for air-

pollution forecasting. 

Limited deep 

learning application 

beyond traditional 

PDE solver 

domains. 

Deep learning 

improves air-pollution 

forecasting, reducing 

run-time significantly. 

[22] 

Mohammad 2020  Air quality prediction 

model. 

Need for optimized, 

multi-stage deep 

learning models for 

air prediction. 

SAQPM successfully 

predicts air pollutants 

using LSTM and PSO 

optimization. 

[23] 

Ameer 2019  Comparative 

regression models for 

air quality prediction. 

Lack of comparative 

analysis of 

regression 

techniques for air 

quality. 

Regression models' 

performance varies 

based on error rates and 

processing time. 

[24] 
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Serrano 2024  Forecasting air 

pollutant 

concentrations using 

Convolutional Long 

Short-Term Memory 

networks. 

Lack of 

comprehensive air 

quality forecasting 

frameworks for 

multi-pollutant 

analysis. 

Comprehensive AI 

framework for multi-

pollutant analysis 

versus existing 

methods 

[25] 

Tao 2023  Machine learning 

models predict PM2.5 

concentration using 

meteorological and 

soil data. 

Assessing machine 

learning models for 

high-resolution 

PM2.5 prediction. 

Evaluation of ML 

models' effectiveness 

in PM2.5 prediction 

debated. 

[26] 

 

3. Methodology 

This work presents the method for deep learning 

model-based deep learning air pollution detection. 

First, data on air quality taken from the Central 

Pollution Control Board (CPCB) guarantees the 

inclusion of important contaminants including 

PM2.5, PM10, NOx, SO2, and CO. Trend, missing 

value, and anomaly identification is accomplished 

via exploratory data analysis (EDA). Handling 

missing numbers, normalising pollution 

concentrations, and extracting temporal information 

including day, month, and year to capture seasonal 

fluctuations constitute aspects of data preparation. 

Training and testing are then split from an 80:20 

ratio in the dataset. Predictive accuracy is raised by 

means of feature extraction methods. LSTM-1D 

CNN is used in a hybrid deep learning framework 

including standalone LSTM for sequential 

dependencies, GRU for computational efficiency, 

LSTM-GRU model for enhanced long-term 

dependency handling, and LSTM-1D CNN for 

spatial-temporal feature learning. Accurate air 

pollution forecasting is ensured by training and 

performance evaluation of these models. 

3.1 Data Collection 

The dataset for this study comprises 18,776 entries 

with 9 key air quality variables, collected from the 

open-source Central Pollution Control Board 

(CPCB) database, focusing on towns in India's 

North Central Region, primarily Delhi NCR. The 

data covers major cities, including Sonipat, Panipat, 

Rohtak, New Delhi, Ghaziabad, and Gurgaon, 

ensuring diverse environmental conditions and 

pollution sources. The dataset includes critical air 

pollutants: PM2.5, PM10, NO, NO2, Ozone, SO2, 

CO, and NH3, which significantly impact air quality 

and public health. Each parameter is systematically 

recorded, ensuring consistency and reliability for 

analysis. Data collection spans multiple years to 

capture seasonal and temporal variations, allowing 

deep learning models to learn long-term patterns. 

This rich dataset forms the foundation for accurate 

air pollution forecasting, facilitating advanced 

preprocessing, feature extraction, and model 

training for predictive assessments using deep 

learning techniques such as LSTM, GRU, and 

hybrid LSTM-1D CNN architectures. 

 

Figure 2 Pandas Dataframe of the dataset 
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3.2 Data Preprocessing 

Data preprocessing is a crucial step in preparing 

datasets for analysis or Deep learning modeling. It 

involves cleaning and transforming raw data into a 

format that makes it suitable for effective analysis 

and prediction. The process typically includes 

handling missing values, scaling features, extracting 

date-based features, creating lagged features, and 

removing irrelevant or redundant columns. 

1. Handling Missing Data 

Missing values can occur in datasets due to various 

reasons such as errors during data collection or 

entry. It's important to deal with missing data to 

prevent it from negatively impacting the 

performance of machine learning models. In this 

case, the missing values are identified using 

data.isnull().sum(), which provides a count of 

missing values in each column. One common 

method for handling missing data is interpolation, 

where the missing values are estimated based on the 

values of nearby data points. Linear interpolation is 

a simple and commonly used technique, where 

missing values are filled based on a linear 

relationship with adjacent points. By using 

data.interpolate(method='linear', inplace=True), we 

apply this technique to fill missing values in the 

dataset. 

2. Converting Date to DateTime Format 

Many datasets contain date or time-based 

information, which is often crucial for time-series 

analysis or feature engineering. In this case, the 

dataset includes a 'date' column, which is converted 

into a proper DateTime format using 

pd.to_datetime(data['date']). This step ensures that 

the 'date' column is properly recognized as a date, 

allowing for easy manipulation and extraction of 

time-related features such as the hour, day, month, 

and weekday. 

3. Setting the Date as Index 

For time-series data, it's beneficial to set the date 

column as the index of the dataset. This step helps 

with organizing the data chronologically, making it 

easier to analyze and perform time-based operations. 

Using data.set_index('date', inplace=True), we set 

the 'date' column as the index of the dataset, which 

facilitates time-based slicing and feature extraction. 

 

 

4. Scaling Data  

Feature scaling is an important preprocessing step, 

especially when the dataset includes numerical 

features with different ranges. Machine learning 

algorithms may perform poorly if features are on 

different scales, as they can give undue importance 

to larger numerical values. One common technique 

for scaling numerical features is MinMax scaling, 

which normalizes the data to a range between 0 and 

1. This transformation is performed using the 

MinMaxScaler from sklearn.preprocessing. The 

scaler.fit_transform(data) method scales all the 

numerical features in the dataset. Scaling helps in 

improving the performance of models such as neural 

networks, k-nearest neighbors, and support vector 

machines. 

5. Extracting Time-Based Features 

In many time-series problems, it is important to 

extract useful features from the date and time 

information. By adding features like the hour, day, 

month, and weekday, we can provide the model with 

additional information that may improve predictive 

accuracy. These features can help the model capture 

seasonality, trends, and other time-based patterns in 

the data. The hour, day, month, and weekday are 

extracted from the index using data.index.hour, 

data.index.day, data.index.month, and 

data.index.weekday respectively, and added as new 

columns in the dataset. 

6. Creating Lagged Features 

Lagged features are valuable for time-series 

forecasting tasks, where the value of a variable at a 

previous time step may help predict its value at a 

future time step. In this case, three lagged features 

are created for each of the columns co, pm2_5, and 

pm10, using the .shift() method. The shift method 

moves the data by a specified number of periods (in 

this case, 1, 2, and 3). By creating lagged features, 

the model can learn the relationships between past 

and future values, which is especially useful for 

forecasting tasks. This step is particularly important 

for models such as LSTM, and other time-series 

models. 

7. Handling Missing Data After Feature 

Creation 

After creating lagged features, it is possible that new 

missing values are introduced due to shifting 

operations. For example, the first few rows for the 

lagged features will have missing values, as there are 
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no previous data points for them. To remove these 

rows with NaN values, data.dropna(inplace=True) is 

used. This step ensures that the dataset does not 

contain any missing values and is ready for analysis 

or model training. 

Pseudocode for Data Preprocessing  

 

# Step 1: Load Data 

Load data into a DataFrame 

# Step 2: Handle Missing Values 

If there are missing values: 

    Check the sum of missing values in each column 

    Apply linear interpolation to fill missing values 

# Step 3: Convert 'date' column to DateTime format 

Convert 'date' column to DateTime 

Set 'date' as the index of the DataFrame 

# Step 4: Scale Features 

Initialize MinMaxScaler 

For each numerical feature in the dataset: 

    Scale the feature using MinMaxScaler 

    Store scaled features in a new DataFrame 

# Step 5: Extract Time-based Features 

For each entry in the 'date' index: 

    Extract hour, day, month, weekday from the date 

    Create new columns for 'hour', 'day', 'month', 'weekday' 

# Step 6: Create Lagged Features 

For each lag in the range from 1 to 3: 

    Create lagged features for 'co', 'pm2_5', and 'pm10' 

    Shift the column by lag periods and store in new columns with names 'co_lag1', 'pm2_5_lag1', etc. 

# Step 7: Handle Missing Values After Lagging 

Drop rows with any remaining missing values (NaN) due to lagging 

# Final Output: Cleaned and Preprocessed Data 

Return the cleaned and processed DataFrame 

 

3.3 Exploratory Data Analysis 

Exploratory data analysis (EDA) is an essential first 

step in grasping the underlying trends and 

correlations of the dataset. Regarding the detection 

of air pollution, several visualisations are applied to 

evaluate patterns and relationships among 

pollutants. Observing the temporal variations of 

important pollutants including PM2.5, NO2, CO, 

and SO2 across time using a line plot helps one to 

spot seasonal trends and notable changes in air 

quality. Visualising the interactions between these 

pollutants depends on a correlation heatmap, which 

can be helpful for feature selection and knowledge 

of collinearity. It shows how closely related they are. 
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Visualising the distribution and spotting outliers in 

the pollution levels depends especially on box 

graphs, which also provide understanding of data 

variability and extreme values. Furthermore, count 

graphs or histograms can show the frequency 

distribution of particular pollution levels, therefore 

helping to identify skewness or imbalanced data. 

These visualisations taken together offer a complete 

awareness of the dataset, which guides next 

preprocessing and model building. 

 

Figure 3 Correlation Heatmap of Air pollutants 

This heatmap visually represents the pairwise 

correlations between various air pollutants such as 

PM2.5, NO2, CO, and SO2. By using color 

gradients to depict correlation values, it highlights 

how strongly different pollutants are related, helping 

to identify potential multicollinearity and informing 

feature selection for modeling. 

 

Figure 4 Boxplot of Monthly distribution of PM 2.5 Levels 

The boxplot illustrates the spread and distribution of 

PM2.5 levels across different months. It highlights 

the median, quartiles, and potential outliers, 

showing how PM2.5 concentrations vary month-to-

month. This helps identify seasonal fluctuations and 

anomalies in pollution levels over time. 

 

Figure 5 Line plot of hourly variation of PM 2.5 Levels 
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This line plot tracks the hourly variations in PM2.5 

levels. By presenting pollutant data across time 

intervals, it reveals daily patterns, peak pollution 

times, and the fluctuation of air quality throughout a 

typical day, which is important for understanding 

temporal trends in air pollution. 

 

Figure 6 Monthly variation of PM 2.5 Levels 

This plot displays the monthly trends in PM2.5 

levels. It offers insights into seasonal patterns, 

identifying months with higher or lower pollution 

levels, thus providing a clear view of how air quality 

changes on a longer time scale, often reflecting 

environmental or climatic factors. 

 

Figure 7 Monthly variation of Co, SO2 and PM 2.5 Levels 

This figure compares the monthly trends of CO, 

SO2, and PM2.5 levels, highlighting how different 

pollutants behave across the same timeframe. It 

helps understand how each pollutant fluctuates 

independently and in relation to others, offering 

insights into pollution sources and seasonal 

variations. 

 

Figure 8 Air pollutants trends over time 
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This plot visualizes the long-term trends of key air 

pollutants (PM2.5, NO2, CO, SO2) over time. By 

tracking these pollutants, the figure reveals how 

their concentrations have evolved, indicating 

potential environmental or regulatory changes and 

providing a clear view of air quality over the study 

period. 

 

Figure 9 Average Proportion of air pollutants 

This figure displays the average proportion of 

different air pollutants, helping to understand the 

relative contribution of each pollutant to overall air 

quality. It highlights the dominant pollutants and 

their impact on air pollution, providing a basis for 

focusing on the most critical factors in pollution 

control efforts. 

3.4 Feature Extraction 

Feature extraction is a critical step in preparing data 

for deep learning-based air pollution detection 

models. Initially, the dataset includes key air quality 

variables such as PM2.5, PM10, NOx, SO2, and CO, 

which are crucial for understanding the impact of 

pollution on public health. Temporal features, 

including the day, month, and year, are extracted 

from the 'date' column to capture seasonal and 

periodic variations in pollution levels. This is 

particularly important for predicting air quality 

changes over time, as these temporal patterns 

influence pollution concentrations. Additionally, 

lagged features are created by shifting the values of 

key variables (e.g., PM2.5, PM10) over previous 

time steps, allowing the model to learn dependencies 

between past and future pollution levels. These 

lagged features provide important context for long-

term prediction. The data is also normalized using 

MinMax scaling to ensure all features are on a 

comparable scale, improving model performance. 

By carefully extracting and engineering these 

features, the model can better capture the complex, 

temporal relationships inherent in air pollution data, 

enhancing predictive accuracy. 

3.5 Data Splitting  

Data splitting and reshaping are essential steps in 

preparing the dataset for training a hybrid deep 

learning model. In this process, the dataset is 

typically divided into training and testing sets, often 

using an 80:20 or 70:30 ratio, ensuring that the 

model is trained on a substantial portion of the data 

while retaining enough unseen data for evaluation. 

The training data is then reshaped to fit the input 

requirements of the hybrid model, such as an LSTM-

1D CNN architecture. This may involve adjusting 

the data to a 3D structure, where dimensions 

represent samples, time steps, and features, 

especially for time-series data. The reshaped data 

allows the model to learn both temporal 

dependencies (via LSTM) and spatial-temporal 

patterns (via CNN) effectively. Furthermore, scaling 

of features is typically performed to standardize the 

data within a consistent range, ensuring optimal 

performance of the model and preventing issues like 

vanishing or exploding gradients during training. 

This structured approach ensures robust model 

performance. 

3.6 Deep Learning Model Implementation  

The deep learning models for air pollution 

forecasting are implemented using sequential 

architectures in Keras. The LSTM model utilizes 

stacked LSTM layers to capture temporal 
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dependencies in pollutant data. The Hybrid LSTM-

1D CNN model combines a convolutional layer with 

LSTM layers to capture both spatial features and 

long-term temporal dependencies. The Hybrid 

LSTM-GRU model merges LSTM and GRU layers 

to leverage LSTM's ability to handle long-term 

dependencies with GRU's efficiency. Finally, the 

Hybrid GRU-1D CNN model combines CNN for 

spatial feature extraction and GRU for capturing 

sequential patterns, improving overall forecasting 

accuracy. 

• LSTM Model 

The Long Short-Term Memory (LSTM) model is a 

powerful recurrent neural network (RNN) 

architecture designed to handle sequential data, 

making it well-suited for time-series forecasting 

such as air pollution prediction. In this model, the 

LSTM layer is used to capture long-term 

dependencies in the data, enabling it to learn 

temporal patterns such as trends and seasonal 

variations. The model consists of two LSTM layers, 

one with return_sequences=True to preserve the 

sequential data for further processing and another to 

output the final prediction. A dropout layer is 

included to prevent overfitting by randomly 

dropping a fraction of neurons during training. The 

final output layer is a dense layer with a single 

neuron, predicting the PM2.5 levels. The model is 

compiled using the Adam optimizer, which adapts 

the learning rate during training, and mean squared 

error (MSE) as the loss function to minimize 

prediction errors. This architecture is effective for 

modeling sequential dependencies but might 

struggle with spatial-temporal relationships, which 

is addressed by hybrid models that combine LSTM 

with other techniques like CNN or GRU. 

• Hybrid LSTM-1D CNN Model 

The Hybrid LSTM-1D CNN model combines the 

strengths of both LSTM and 1D Convolutional 

Neural Networks (CNN) to handle spatial-temporal 

data in air pollution forecasting. The CNN layer is 

used initially to capture local spatial patterns in the 

input data, such as sudden changes in pollutant 

levels. The 1D convolutional filter learns relevant 

features from the data, which are then passed to the 

LSTM layer. The LSTM layer captures long-term 

temporal dependencies, learning the sequential 

trends over time, such as seasonal variations in air 

quality. The model is structured with multiple 

LSTM layers, where the first LSTM layer retains 

sequences for further processing, while the second 

LSTM layer consolidates the learned information for 

the final prediction. Dropout layers are included to 

mitigate overfitting, ensuring the model generalizes 

well to unseen data. The hybrid nature of this model 

allows it to effectively handle both short-term and 

long-term dependencies, making it well-suited for 

complex air pollution forecasting tasks. Compiled 

using the Adam optimizer and MSE loss, this model 

aims to predict PM2.5 levels based on both temporal 

and spatial features. 

• Hybrid LSTM-GRU Model 

The Hybrid LSTM-GRU model integrates Long 

Short-Term Memory (LSTM) and Gated Recurrent 

Unit (GRU) layers to enhance the model’s ability to 

capture both long-term dependencies and 

computational efficiency for air pollution 

forecasting. The LSTM layer, positioned first, is 

responsible for capturing complex temporal 

dependencies in the data. The LSTM layer outputs 

sequences, which are then passed to the GRU layer. 

The GRU layer, with fewer parameters than LSTM, 

provides computational efficiency while still 

capturing significant sequential dependencies in the 

data. Dropout layers are introduced after each 

recurrent layer to reduce overfitting and improve 

generalization. The final fully connected dense layer 

predicts the PM2.5 levels, which is the target 

pollutant. By combining LSTM and GRU, this 

hybrid model leverages the strengths of both 

architectures—LSTM’s ability to learn long-term 

dependencies and GRU’s computational 

efficiency—making it ideal for time-series 

forecasting. The model is compiled with the Adam 

optimizer and MSE loss to minimize prediction 

errors, allowing it to accurately forecast air pollution 

levels based on historical data. 

• Hybrid GRU-1D CNN Model 

The Hybrid GRU-1D CNN model merges the power 

of Gated Recurrent Units (GRU) and 1D 

Convolutional Neural Networks (CNN) to 

effectively model both spatial and temporal 

dependencies in air pollution forecasting. The model 

begins with a 1D CNN layer, which is adept at 

detecting local spatial patterns in pollutant data, such 

as sharp variations or trends. This convolutional 

layer applies multiple filters to the input data, 

extracting key features before passing them to the 

GRU layer. GRU, known for its computational 

efficiency and ability to capture sequential 
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dependencies, is employed to learn long-term 

temporal patterns in the data. The hybrid structure 

allows the model to first capture spatial features and 

then model temporal relationships, which is crucial 

for forecasting pollutants like PM2.5. Dropout 

layers are used to prevent overfitting, ensuring that 

the model generalizes well to new data. The final 

dense layer outputs the predicted PM2.5 levels. This 

hybrid architecture is highly effective for complex 

time-series data, where both spatial and temporal 

dependencies must be captured, leading to accurate 

and robust air pollution forecasting. 

Table 2. Hyperparameter Details of the Models 

Model LSTM Hybrid LSTM-1D 

CNN 

Hybrid LSTM-GRU Hybrid GRU-1D CNN 

Dropout Layers N/A Dropout(0.2) Dropout(0.2) after 

LSTM & GRU layers 

Dropout(0.2) after GRU 

layers 

 (8,1) (X_train.shape[1],1

) 

(X_train.shape[1],1) (X_train.shape[1],1) 

Optimizer Adam Adam Adam Adam 

Loss Function  MSE MSE MSE MSE 

Epochs 100 100 100 100 

Metrics MSE, MAE MAE MAE MAE 

Total & 

Trainable 

Parameters 

10,451 

10,451 

43,507 

43,507 

26,337 

26,337 

33,007 

33,007 

Learning Rate 

 

0.001 

 

0.001 

 

0.001 

 

0.001 

 

Activation 

Functions 

 

ReLU  ReLU ReLU for LSTM, Tanh 

for GRU 

ReLU for Conv1D, 

Tanh for GRU 

 

3.6 Performance Evaluation 

Performance evaluation of air pollution forecasting 

models is conducted using key metrics such as Mean 

Squared Error (MSE), Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE), and R-squared 

(R²) score. MSE quantifies the average squared 

difference between actual and predicted values, 

penalizing large deviations. MAE provides a more 

interpretable measure of absolute differences. 

RMSE, derived from MSE, retains unit consistency 

with the predicted variable, offering a more intuitive 

assessment of model performance. The R² score 

evaluates model explanatory power, with values 

closer to 1 indicating better fit. Additionally, time-

series models are assessed using visual comparisons 

of actual vs. predicted pollutant levels through line 

plots. Residual analysis is performed to ensure error 

distributions follow normality, confirming model 

reliability. 

4. Results and Discussion 

The evaluation of air pollution forecasting models is 

conducted using commonly used metrics such as 

Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), and Mean Absolute Error (MAE). 

These metrics quantify the accuracy of predictions 

by measuring deviations from actual values. Lower 

values indicate better model performance, ensuring 

minimal prediction errors. MSE captures the 

average squared differences, making it sensitive to 

larger deviations, whereas RMSE, being the square 

root of MSE, retains the unit consistency of the 

predicted variable. MAE provides an intuitive 

measure of absolute errors. Model performance is 

compared across different architectures, including 

LSTM, CNN-LSTM, LSTM-GRU, and GRU-CNN 
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hybrids, assessing their ability to capture 

spatiotemporal dependencies. A crucial aspect of 

evaluation is ensuring robust validation techniques; 

an error in performance assessment occurs when 

models are trained and tested on a single data split. 

Cross-validation mitigates this risk, providing a 

more generalized performance estimate. 

Additionally, graphical analysis of predicted vs. 

actual trends enhances interpretability. The 

discussion also emphasizes hyperparameter tuning 

and data preprocessing techniques that significantly 

impact model accuracy. Comparative results 

indicate that hybrid deep learning architectures 

generally outperform standalone models, 

demonstrating superior feature extraction and 

temporal sequence learning capabilities for air 

pollution forecasting. 

A. MSE (Mean Square Error) 

In order to evaluate the quality of images, the MSE 

has become the most widely used statistic. Since the 

number serves as an all-inclusive benchmark, the 

closer it is to 0, the better. The predicted value of this 

squared error loss can be expressed using a risk 

function denoted by the acronym MSE. Often, the 

mean squared error (MSE) is positive because of 

randomness or because the analyst overlooked 

information that may have produced a more precise 

estimate.  

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1                (1) 

B. RMSE (Root Mean Square Error) 

In statistics, the residuals' standard deviation is 

known as the RMSE. (errors in prediction). The 

root-mean-square error (RMSE) gauges how erratic 

the residuals are, whereas the residuals themselves 

measure the divergence from the regression line. It 

achieves this by showing how closely the data 

clusters around the ideal line of fit. The root-mean-

square error is a frequently used statistic in 

climatology, forecasting, and regression analysis to 

confirm the results of studies. 

𝑅𝑆𝑀𝐸 = √
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑛
                           (2) 

C. Mean Absolute Error  

The mean absolute error provides a quantitative 

means of comparing mistakes between two 

measurements that are indicative of the same 

phenomena. Comparing planned and actual 

numbers, beginning and finishing times, and one 

measuring method against another are a few 

examples of a Y against X comparison. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥𝑖 − 𝑥|𝑛

𝑖=1         (3) 

D. Coefficient of correlation (R²)  

The percentage of the variance of the dependent 

variable that has previously been linked to its 

independent variable is known as the R2 coefficient 

for determination, or R2 or R2. The ratio can be 

represented by the symbols R2, R2, or "R squared". 

R2 =  
𝑛(∑ 𝑥𝑦−(∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2−(∑ 𝑥)2] [𝑛 ∑ 𝑦2−(∑ 𝑦)2]
                                           (4) 

 

Table 3. Performance Evaluation of Proposed Models 

Model MSE RMSE  MAE R2 

LSTM 243.5 15.6 10.9 0.99 

Hybrid LSTM-

1D CNN 

330.9 18.9 7.2 0.99 

Hybrid LSTM-

GRU 

697.0 26.4 20.6 0.98 

Hybrid GRU-

1D CNN 

201.2 14.1 6.7 0.99 
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Figure 10 Performance Evaluation of Models 

Table 3 presents the performance metrics of 

different deep learning models used for air pollution 

forecasting. The LSTM model achieves an MSE of 

243.5, RMSE of 15.6, and MAE of 10.9, with an R² 

of 0.99, indicating strong predictive capability. The 

Hybrid LSTM-1D CNN model, despite having a 

higher MSE (330.9) and RMSE (18.9), exhibits the 

lowest MAE (7.2), suggesting better absolute error 

minimization. The Hybrid LSTM-GRU model 

shows the highest MSE (697.0) and RMSE (26.4), 

along with a higher MAE (20.6), which indicates 

relatively weaker performance compared to other 

models. The Hybrid GRU-1D CNN model 

outperforms others with the lowest MSE (201.2), 

RMSE (14.1), and MAE (6.7), demonstrating 

superior accuracy and error minimization while 

maintaining an R² of 0.99. Figure 10 visually 

compares these models, highlighting the 

effectiveness of hybrid architectures, particularly 

GRU-CNN, in capturing temporal dependencies and 

reducing forecasting errors. 

 

 

 

4.1 Performance Graphs  

Figures 11–14 illustrate the Mean Absolute Error 

(MAE) progression over training epochs for 

different air pollution forecasting models. Figure 11 

(Hybrid LSTM-1D CNN) exhibits a fluctuating but 

steady decline in MAE, demonstrating improved 

learning stability through CNN feature extraction 

and LSTM sequence modeling. Figure 12 (LSTM) 

shows a smooth but slower MAE reduction, 

indicating the model’s reliance solely on temporal 

dependencies without additional feature extraction. 

Figure 13 (Hybrid LSTM-GRU) presents a less 

stable convergence pattern, with higher initial errors 

and slower improvement, suggesting challenges in 

learning complex pollutant variations. Figure 14 

(Hybrid GRU-1D CNN) demonstrates the most 

rapid and stable decrease in MAE, reinforcing its 

effectiveness in minimizing prediction errors. 

Across all models, hybrid architectures integrate 

complementary strengths, optimizing predictive 

accuracy. These performance graphs emphasize the 

necessity of structural modifications to deep 

learning models to achieve enhanced generalization 

and lower error rates across varying air pollution 

datasets. 

 

Figure 11 Hybrid LSTM-1D CNN 
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Figure 12 LSTM 

 

Figure 13 Hybrid LSTM-GRU 

 

Figure 14 Hybrid GRU-1D CNN 
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4.2 Prediction Graph of Hybrid GRU-1D CNN 

The prediction graph of the Hybrid GRU-1D CNN 

model demonstrates its superior forecasting 

performance for air pollution levels. This model 

effectively captures both spatial and temporal 

dependencies by leveraging 1D CNN for feature 

extraction and GRU for sequential learning, 

ensuring robust generalization. The graph exhibits a 

strong alignment between predicted and actual 

pollutant values, highlighting minimal deviations. 

Compared to other models, this hybrid approach 

achieves lower MSE, RMSE, and MAE, confirming 

its predictive accuracy. The smooth convergence 

and reduced error fluctuations indicate enhanced 

stability, making it the optimal model for precise air 

pollution forecasting in dynamic environments. 

 

Figure 15 Actual vs. Predicted PM2.5 Levels Using Hybrid GRU-1D CNN Model Forecasting graph 

Figure 15 illustrates the comparison between actual 

and predicted PM2.5 levels using the Hybrid GRU-

1D CNN model. The close alignment of the 

predicted values with actual data indicates the 

model's strong forecasting capability. Minimal 

deviations suggest high accuracy, demonstrating the 

model’s effectiveness in air pollution prediction. 

5. Conclusion 

In Conclusion, this study presents a robust 

methodology for air pollution forecasting using deep 

learning models, specifically targeting PM2.5 levels. 

The dataset, sourced from the Central Pollution 

Control Board (CPCB), includes critical pollutants 

such as PM2.5, PM10, NOx, SO2, and CO. 

Extensive data preprocessing, including exploratory 

data analysis (EDA), trend identification, and 

anomaly detection, was performed to prepare the 

dataset. Key steps like handling missing data, 

normalizing pollutant concentrations, and extracting 

temporal features such as day, month, and year were 

incorporated to address seasonal variations and 

enhance model accuracy. Four deep learning models 

were evaluated: standalone LSTM, Hybrid LSTM-

1D CNN, Hybrid LSTM-GRU, and Hybrid GRU-

1D CNN. The models were trained using an 80:20 

train-test split, with feature extraction techniques 

further improving prediction performance. Among 

these models, the Hybrid GRU-1D CNN 

outperformed others, achieving the lowest Mean 

Squared Error (MSE) of 201.2, Root Mean Squared 

Error (RMSE) of 14.1, and Mean Absolute Error 

(MAE) of 6.7, with a high R2 value of 0.99. These 

results highlight the model’s exceptional capability 

in accurately forecasting air pollution levels. While 

other models like LSTM and Hybrid LSTM-1D 

CNN also showed good performance, the Hybrid 

GRU-1D CNN demonstrated superior predictive 

accuracy. This research effectively illustrates the 

potential of deep learning models for environmental 

forecasting and their crucial role in supporting 

public health and policy-making. 
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