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Abstract: Early detection of schizophrenia is critical to minimize its long-term effects. This study investigates the impact of 

low-dimensional (Regions of Interest) and high-dimensional features (Voxel-based morphometry) on models’ predictive 

performance for schizophrenia detection. Using the brain imaging data provided by RAMP, the study investigates the 

performance of a regularized linear, ensemble, and non-linear models combined with different cross-validation strategies on 

the low- and high-dimensional feature sets. The results show that the regularized linear model consistently outperforms the 

ensemble and non-linear models across both feature sets in terms of ROC-AUC, balanced accuracy, and computational 

efficiency. Our study also reveals that the choice of feature dimensionality does indeed impact schizophrenia detection as the 

low-dimensional features outperform high-dimensional features across all metrics and models. This suggests that the 

Regions of Interests, despite their reduced dimensionality and complexity, contain sufficient discriminative information for 

identifying schizophrenia, whereas the additional detail provided by the Voxel-based morphometry features does not 

necessarily enhance model performance. Overall, regularized linear model, combined with low-dimensional features and 

standard cross-validation, offers the most promising results. Using an interpretability tool, we obtained the features that have 

the most impact on schizophrenia detection with right pallidum grey matter volume being the most influential factor. 
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accuracy of 86%. A separate research [6] extracted 
1 Introduction 

Schizophrenia is a complex behavioral and 

cognitive syndrome arising from the disruption of 

brain development due to genetic, environmental, 

or combined factors [1]. This condition often 

results in individuals gradually losing touch with 

reality, leading to delusions, hallucinations, and 

disordered thinking [1]. While schizophrenia can 

be managed through medications and psychosocial 

support [2], the primary challenge in effectively 

addressing this condition lies in its early detection 

and intervention [3]. 

In previous studies, researchers have 

leveraged Machine Learning techniques to detect or 

diagnose schizophrenia based on magnetic 

resonance imaging (MRI) data [4]. A study by [5] 

implemented a multiple kernel learning SVM 

model for schizophrenia detection, achieving an 
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features from the hippocampus and dorsolateral 

prefrontal cortex for twenty schizophrenia and 

healthy control cases, attaining an AUC of 0.85 

with a random forest classifier. Also, [7] 

investigated anatomical brain connectivity for 144 

schizophrenia and 154 healthy control cases using 

spatial statistics and an ML approach, reaching an 

accuracy of 79.3%. Another investigation [8] 

analyzed MRI and fMRI data from 296 

schizophrenia and 452 healthy control subjects, 

finding that functional connectivity outperformed 

structural data, and combining both types of data 

led to the highest accuracy. Lastly, [9] reported that 

SVM and logistic regression (LR) produced the 

most accurate results in detecting schizophrenia. 

The aim of this study is to investigate the 

impact of low and high-dimensional feature sets, 

various machine learning algorithms and cross- 

validation strategies in predicting schizophrenia 

from brain grey matter measurements. The specific 

research objectives are as follows: 

1. To evaluate the impact of low- 

dimensional and high-dimensional 

http://www.ijisae.org/
mailto:e.alfahed@mu.edu.sa


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 01–08 | 2 
 

features on models’ predictive 

performance for schizophrenia 

detection. 

2. To investigate the performance of a 

regularized linear model, an 

ensemble model, and a non-linear 

model in predicting schizophrenia. 

 

2 Related Work 

 

2.1 Integration of Machine Learning in 

Schizophrenia Diagnosis 

The integration of Machine Learning (ML) in 

the diagnosis of schizophrenia has shown 

promising results, with various studies employing 

different ML techniques and neuroimaging 

modalities. A study by [1] effectively applied 

classification models to event-related potentials 

(ERPs) of patients and healthy subjects, achieving a 

high sensitivity and specificity with support vector 

machines (SVM). This aligns with [3] who 

explored the impact of various classification 

models and feature selection techniques on 

schizophrenia diagnosis, using structural magnetic 

resonance imaging data. The findings underscored 

the importance of selecting appropriate features and 

models, such as support vector machines with 

Gaussian kernels, to enhance diagnostic accuracy. 

The comprehensive overview by [4] of AI 

techniques, particularly ML and deep learning, in 

schizophrenia diagnosis using MRI modalities, 

further supports these findings. This study provided 

a detailed comparison between conventional ML 

and deep learning, revealing the superiority of AI- 

based computer-aided schizophrenia diagnosis 

systems (CADS) over traditional methods. 

Meanwhile, [5] investigated the application of 

Multiple Kernel Learning classifiers in conjunction 

with the Boruta feature selection method. This 

study achieved high classification accuracy, 

highlighting the utility of advanced ML techniques 

in distinguishing schizophrenia patients from 

controls using neurophysiological biomarkers. 

On the other hand, [6] approached the 

diagnosis of schizophrenia from a molecular 

perspective, using machine learning to analyze 

variations in neuroactive amino acids and synaptic 

elements. The study’s multivariable hypothesis- 

driven analyses revealed significant discriminative 

molecular signatures, indicating the potential of 

ML in uncovering novel biological insights related 

to schizophrenia. In contrast, [7] and [8] focused on 

anatomical connectivity and multimodal 

neuroimaging data, respectively. Leveraging 

machine learning techniques, [7] distinguished 

between schizophrenia and bipolar disorder based 

on white matter integrity patterns, while [8] 

integrated structural and functional MRI data to 

achieve a high classification accuracy for 

schizophrenia. 

 

2.2 Challenges in Schizophrenia Diagnosis Using 

Machine Learning 

Despite the progress, there are considerable 

challenges in diagnosing schizophrenia using 

machine learning techniques. The heterogeneity of 

schizophrenia, as [21] pointed out, poses a 

significant obstacle due to the complex nature of 

the human brain and the variability in clinical 

manifestations. Similarly, [18] emphasized the 

importance of addressing heterogeneity in machine 

learning approaches to improve predictions and 

understanding of schizophrenia's neurobiological 

background. 

Another challenge is the accuracy and 

reliability of these techniques. According to [9], 

while classifiers like SVM and Logistic regression 

performed well in classifying schizophrenia, 

autism, and other disorders, there were challenges 

in consistency and reliability, particularly when 

applied to ultra-high risk and first-episode 

psychosis subjects. This is corroborated by [20], 

who found that machine learning did not provide 

substantial added value over traditional statistical 

methods in predicting schizophrenia, indicating a 

need for further optimization of these models. 

Furthermore, [6] identified the need for a 

multi-level approach in studying the glutamatergic 

alterations in schizophrenia, highlighting the 

complexity of integrating various molecular data 

into machine learning models for accurate 

diagnosis. In a similar vein, [7] also encountered 

difficulties in differentiating schizophrenia from 

bipolar disorder using ML, despite identifying 

specific white matter integrity patterns, 

underscoring the challenge of distinguishing 

between similar psychiatric disorders with ML 

techniques. 

 

3 Methods 

 

3.1 Dataset 

The dataset used for this task is already pre- 

processed and was made available by RAMP as 
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part of a RAMP challenge. The input data consists 

of Regions Of Interest (ROIs) of Grey Matter (GM) 

scaled for the Total Intracranial Volume (TIV), 

with 284 features; these ROI features form the low- 

dimensional features in this study. In addition, the 

dataset includes Voxel-based morphometry GM 3D 

images. Masking the brain provides a flattened 

input of 331,695 features (voxels) for each 

participant; these VBM features form the high- 

dimensional features used in this study [10]. 

                   

= − log       ℎ    + λ ∗ Σ|β_i| 

where λ represents the regularization parameter and 

β_i represents the coefficients of the model. 

2. Ensemble Model - Random Forest 

Random Forest learns a model M by 

generating several decision trees, { 1, … ,    }, on 

various subsets of a given dataset that includes 
input variables {  , … ,   } and outcome variables 

1   

The training set has 410 samples, with 257 

samples having gender 0 and 153 samples having 

gender 1. There are two targets with the ‘ healthy 

control’ class having 222 samples and the 

‘schizophrenia’ class having 188. The age 

distribution in the training set reveals that most of 

the participants (169) fall in the 20-29 years’ age 

group. On the other hand, the test set has 103 

samples, with 65 samples having gender 0 and 38 

samples having gender 1. The ‘healthy control’ 

class has 55 samples while the ‘schizophrenia’ 

class has 48 samples. Like the training set, the age 

distribution in the test set also shows that most 

participants (41) fall in the 20-29 years’ age group. 

 

3.2 Model Selection 

The three machine learning models selected 

for this study include logistic regression (linear 

model), random forest (ensemble model), and SVM 

(non-linear model). 

1. Linear Model - Logistic Regression 

This is a linear model that is well-suited for 

classification tasks. Logistic Regression was 

chosen for its simplicity, interpretability, and 

robustness to noise. Also, its computational 

efficiency means it can be trained faster on both 

high-dimensional and low-dimensional data. This 

study uses a regularized logistic regression to 

prevent overfitting and ensure that the model 

generalizes to the test set [16]. The regularization 

primarily adds a penalty term to the objective 

function, which discourages the LR model from 

giving too much importance to any single feature 

[11]. In Lasso regularization (L1), the penalty term 

is the absolute value of the coefficients, while in 

Ridge regularization (L2), it is the square of the 

coefficients [12]. After carrying out a GridSearch, 

the L1 regularization was selected as the most 

appropriate for this study; it can be represented as 

follows: 

Y. Predictions are made by each individual tree, 

and the overall prediction results from a collective 

aggregation, typically through majority voting, of 

these individual predictions. 

The choice of random forest is justified by its 

ability to handle complex patterns in data and 

parallelization [13] which offers faster training and 

feature importance estimation. 

3. Non-linear Model - Multi-layer 

Perceptron (MLP) 

Multilayer Perceptron (MLP) is a neural 

network that consists of multiple layers of 

interconnected artificial neurons. The model learns 

the optimal weights for these connections by 

minimizing an error function, typically using the 

backpropagation algorithm [14]. The choice of 

MLP is justified by its ability to model complex, 

non-linear relationships in the data and its 

suitability for high-dimensional data [14]. MLPs 

can capture intricate patterns in data, making them 

suitable for capturing the relationships between 

brain grey matter and schizophrenia. 

 

3.3 Model Pipeline 

The pipelines built for the three models 

involve data preprocessing, hyperparameter tuning, 

cross-validation, and model fitting based on the 

pre-extracted ROI and VBM features. In the data 

preprocessing step, a StandardScaler was used to 

standardize the features. The transformation is 

defined as: 

  = (  −  )/σ 

where z is the standardized feature, σ is the 

standard deviation, x is the original feature, and μ is 

the mean of the feature. This ensures consistent 

scales for all features and mitigates the potential 

adverse effects that disparate scales may have on 

the model learning process [15]. 

To find the best hyperparameters for each 

model, StratifiedKFold cross-validation with five 
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splits was used for hyperparameter tuning with 

GridSearchCV. The optimal hyperparameters 

found were C=0.1 and penalty=l1 for Logistic 

Regression; max_depth=10, min_sample_split=2, 

and n_estimators=200 for Random Forest; as well 

as hidden_layer_sizes=(200, 150, 100, 50, 25), 

alpha=0.0001, activation='relu', solver='adam', 

max_iter=1000, and learning_rate_init=0.001 for 

MLP. 

For model evaluation, two cross-validation 

strategies were used i.e. a standard cross-validation 

using StratifiedKFold (with 5 splits) and a group 

stratified cross-validation using GroupKFold (with 

2 splits), considering sex as the group. The standard 

cross-validation ensured consistent proportion for 

each class across all folds, thus reducing the 

possibility of biased estimates. Meanwhile, group 

stratified cross-validation maintained each distinct 

sex group in a single fold. The number of splits for 

GroupKFold cross-validation was set to 2, given 

that any split that exceeds the number of groups 

would compromise the required distinct separation 

and result in an error. 

 

3.4 Evaluation Metrics 

The models were evaluated using both 

performance and computational metrics. For 

performance evaluation, the area under the ROC 

curve (ROC-AUC) and balanced accuracy were 

used. ROC-AUC was chosen because it measures 

the ability of the model to discriminate between the 

schizophrenia patients and healthy controls classes, 

even when the classes are imbalanced [17]. 

Meanwhile, balanced accuracy was chosen because 

it provides a measure of the model's overall 

performance while accounting for class imbalance. 

Furthermore, three metrics were used for 

computational cost evaluation: training time, 

inference time, and model size. The training time 

captures the time taken for a model to learn from 

the training data; it was selected because it 

indicates the model’s efficiency. Meanwhile, 

inference time measures the average time taken for 

a model to make a single prediction on the test 

data, making it a critical metric for real-world 

application where prompt predictions are required. 

The model size indicates the memory requirements 

of each model; this is crucial for deployment in 

resource-constrained settings. 

 

4 Results 

The results obtained for the low-dimensional 

features (ROIs) are shown in Table 1.1 while the 

results obtained for the high-dimensional features 

(VBM) are shown in Table 1.2. In Table 1.1, the 

results for low-dimensional features show that 

Logistic Regression outperforms the other models 

in terms of ROC-AUC and balanced accuracy for 

the two cross-validation strategies, with ROC-AUC 

scores of 0.835438 and 0.786470 for standard 

cross-validation and group cross-validation, 

respectively. Meanwhile, MLP and Random Forest 

models record similar performance, with MLP 

having slightly higher ROC-AUC and balanced 

accuracy scores. In terms of computational cost, 

Logistic Regression has the lowest inference time 

while the MLP model has the highest inference 

time. 

Table 1.1. Results obtained for low-dimensional features 
 

Standard CV Group CV Time 

 ROC 

AUC 

Balanced 

ACC 

ROC 

AUC 

Balanced 

ACC 

Train 

(s) 

Inference 

(10
-3

) 

LR 0.835 0.762 0.787 0.696 1.833 0.056 

RF 0.804 0.735 0.773 0.689 1.794 1.788 

MLP 0.806 0.735 0.768 0.685 1.373 2.066 

 

The results for high-dimensional features 

(Table 1.2) exhibit similar trends to those observed 

for the low-dimensional features. Logistic 

Regression has the highest ROC-AUC for the two 

cross-validation strategies, with ROC-AUC scores 

of 0.715319 and 0.737097 for standard cross- 

validation and group cross-validation, respectively. 

However, MLP records the highest balanced 

accuracy score for standard cross-validation while 

Random Forest records the least performance 

across all performance metrics. In terms of 

computational cost, Logistic Regression remains 

the most efficient by having the least training time 

and inference time. 
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Table 1.2. Results obtained for high-dimensional features 
 

Standard CV Group CV Time 

 ROC 

AUC 

Balanced 

ACC 

ROC 

AUC 

Balanced 

ACC 

Train 

(s) 

Inference 

(10
-3

) 

LR 0.712 0.637 0.737 0.673 46.297 0.695 

RF 0.618 0.592 0.667 0.537 97.588 2.650 

MLP 0.669 0.643 0.706 0.658 265.587 2.244 

 

The results in Table 1.1 and 1.2 show that the 

Logistic Regression model consistently performs 

better than Random Forest and MLP in terms of 

ROC-AUC, balanced accuracy, and computational 

efficiency not just for low-dimensional features but 

also for the high-dimensional features. However, 

the difference in performance is more significant 

with low-dimensional features, indicating that LR 

may be more suited for handling such data 

especially given the model’s simplicity and linear 

nature. 

RF and MLP record similar performance for 

low-dimensional features, however, the case is 

different for high-dimensional features with MLP 

showing superior performance to RF. This can 

probably be explained by the fact that MLP is a 

non-linear model that can capture complex 

relationships within high-dimensional data 

compared to an ensemble or tree-based model like 

Random Forest. Also, all the models exhibit better 

performance with the low-dimensional features 

compared to high-dimensional features. This 

indicates that the ROIs might contain the most 

relevant and discriminative information for 

predicting schizophrenia compared to the high- 

dimensional features. 

4.2 Predictions on Test Data (ROIs) 

Predictions were also made on the low- 

dimensional test data. The results equally indicate 

that Logistic Regression has the highest 

performance with a balanced accuracy of 0.7814 

and an AUC-ROC of 0.8439. MLP follows with a 

balanced Accuracy of 0.7737 and an AUC-ROC of 

0.8356 while Random Forest has the least 

performance with a balanced accuracy of 0.7282 

and an AUC-ROC of 0.8034. These test results are 

consistent with the trends observed in the cross- 

validation results. 

To understand the features contributing the 

most to the predictions, SHAP explainability 

framework was employed to generate a global 

explanation for the best performing model, Logistic 

Regression. The resulting SHAP plot (with top 

twenty features) as shown in Figure 1 reveals that 

rpal_GM_Vol ( (right pallidum grey matter 

volume), iMedfroCbr_CSF_Vol (intermediary 

medial frontal cortex cerebrospinal fluid volume), 

and IAntIns_GM_Vol (inferior anterior insula grey 

matter volume) are the top three features with the 

greatest impact on the the model’s prediction. 

 

 

Figure 1. SHAP’s global explanation of LR’s predictions 
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5 Discussion 

 

5.1 Low vs High Dimensional Features 

The distinction between low- and high- 

dimensional features in our research, specifically 

ROIs and VBMs, significantly impacts the 

performance and computational efficiency of 

machine learning models used for schizophrenia 

detection. Low-dimensional features, derived from 

Regions Of Interest (ROIs) of Grey Matter (GM), 

consist of 284 features that provide a summarized 

view of the brain's structure. High-dimensional 

features, obtained from Voxel-based Morphometry 

(VBM) GM 3D images, offer a detailed 

representation with 331,695 features (voxels) for 

each participant. This granular view, while rich in 

information, presents challenges in model training 

and performance. 

Our findings indicate that models leveraging 

low-dimensional features consistently outperform 

those using high-dimensional features across 

several metrics, including ROC-AUC and balanced 

accuracy. This suggests that ROIs, despite their 

reduced complexity, contain sufficient 

discriminative information for identifying 

schizophrenia, whereas the additional detail 

provided by VBM features does not necessarily 

enhance model performance. This observation 

underscores the importance of feature selection in 

the development of effective diagnostic tools, 

where the goal is to maximize accuracy while 

minimizing computational demands. Furthermore, 

the computational load associated with processing 

high-dimensional data is notably higher, as 

evidenced by increased training times. This is 

crucial for the practical deployment of diagnostic 

models in clinical settings, where efficiency and 

timeliness are key. The preference for low- 

dimensional features, therefore, extends beyond 

their predictive performance to include 

considerations of computational feasibility and 

resource allocation. 

 

5.2 Standard vs Group cross-validation (CV) 

The performance of all the three models tend 

to be higher with the standard CV strategy 

compared to the group CV for both low and high 

dimensional features. This finding suggests that 

standard CV allows for more diverse training data 

which can improve models’ generalization. It is 

however important to note that standard CV may 

not account for the inherent grouping structure in 

the dataset (i.e. sex group 0 & 1). In contrast, group 

CV provides a more realistic assessment of model 

performance as it maintains the sex group structure 

during validation, thus better accounting for 

potential biases caused by sex-related differences in 

brain grey matter features. 

 

6 Conclusion 

This study investigated the performance and 

computational efficiency of three different machine 

learning models in predicting Schizophrenia on 

both low-dimensional (ROIs) and high-dimensional 

(VBM) data. Logistic Regression, Random Forest, 

and MLP were chosen as regularized linear, 

ensemble, and non-linear models, respectively. The 

impact of different cross-validation strategies i.e. 

standard CV and group CV were also assessed. 

From the results, Logistic Regression 

outperformed the other models in terms of ROC- 

AUC, balanced accuracy, and computational 

efficiency for both low-dimensional and high- 

dimensional features. However, the performance 

difference is more significant with low-dimensional 

features, suggesting that Logistic Regression is 

particularly well-suited for handling such data. In 

addition, all models performed better with low- 

dimensional features compared to high-dimensional 

features, implying that ROIs might already capture 

the most relevant and discriminative information 

for predicting schizophrenia. In addition, this study 

reveals that standard cross-validation produced 

better performance for all models compared to 

group cross-validation. However, that should be 

taken with a grain of salt given that group cross- 

validation offers a more realistic assessment of 

model performance by accounting for the inherent 

grouping structure in the data, such as sex-related 

differences in brain grey matter features. 

Using the SHAP explainability framework, the 

study identified the top twenty features with the 

greatest impact on the model's predictions, 

providing insights into the most important brain 

regions associated with schizophrenia. This 

information is critical to understanding the 

underlying neurobiological mechanisms of 

schizophrenia and can guide future research. 

Overall, the findings suggest that the linear 

model, when used with low-dimensional features 

and standard cross-validation, offers the most 

promising results in terms of accuracy and 

computational efficiency. Future studies integrate 

multimodal data to enhance predictive accuracy, 
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replicate findings across diverse populations to 

ensure generalizability, and evaluate machine 

learning models in clinical trials to bridge the gap 

between research and clinical practice. 

Availability of Data and Materials: The dataset 

used for this study is available on RAMP 

(https://ramp.studio/). 
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