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Abstract: 

Kidney cancer comes in various kinds where. Renal Cell Carcinoma (RCC) is the most severe as well as common 

sort of cancer, which is accountable for around 85% of adults. The earlier diagnosis of kidney cancer has enormous 

advantages in producing preventive measures that reduce the effect, reduce death rates, and overcome the tumor. 

Manually detecting whole slide images (WSI) of renal tissues is a basic RCC prognosis and diagnosis device. 

However, manual analysis of RCC is disposed to inter-subject variability and is time-consuming. Compared to 

the time-consuming and tedious classical diagnoses, the automatic detection algorithm of deep learning (DL) 

could improve test accuracy, save diagnoses time, reduce the radiologist's workload, and reduce costs. The study 

presents a Computational Intelligence with a Deep Learning Decision Support System for Kidney Cancer (CIDL-

DSSKC) technique on renal images. The presented CIDL-DSSKC model observes the renal imageries for 

identifying and recognizing kidney cancer. The presented CIDL-DSSKC method uses Median and Wiener filters 

for image preprocessing. The CIDL-DSSKC technique uses the Xception model to derive a useful set of feature 

vectors. Besides, the flower pollination algorithm (FPA) is employed to choose parameters linked to the Xception 

method optimally. For the identification and classification of kidney cancer, the 𝛽-variational autoencoder (𝛽-

VAE) approach is employed. A renal image dataset containing many images has been used in the experimental 

outcomes of the CIDL-DSSKC method.  

Keywords- Computational intelligence; Nature-inspired algorithm; Deep learning; Decision support system; 

Kidney cancer 

I. Introduction  

Kidney cancer is a cancer that mostly occurs in men 

compared to women [1]. Renal cell carcinoma (RCC) 

is an aggressive and common kind of kidney cancer in 

patients, especially adults. Annually, about 300,000 

people are affected around the world, and it is 

responsible for more than 100,000 death cases [2]. It 

grows in the lining of the proximal kidney tubule, 

whereas tumorous cells grow over time as mass and can 

be deployed over other organs. Usually, the symptoms 

of RCC are not easily diagnosed and are hidden. 

Numerous problems obstruct the classifier of RCC 

subtypes, such as the absence of an enormous dataset 

with accurately localized annotation [3]. In addition, 

there exists a simple data imbalance because the clear 

cell subtypes include the variation in the appearance of 

similar subtypes on multiple resolution levels and in 

most medical cases, and the coherency of RCC cells in 

various sub-types is also challenging [4]. The current 

RCC classification framework depends on the valuable 

annotations of pathology digital slides [5].   

Various computational methods were devised to 

address such challenges for analyzing HPI for 

diagnosis purposes in multiple tumors [6]. This 

analysis has relied conventionally on the applications 

of classification algorithms that process "handcrafted" 

image-derived features like cell shape, pixel, and size 

intensity distribution monitored in selected slide 

patches or full slides [7]. New opportunities have been 

mounted for the applications of deep learning (DL) 

approaches with the increasing volume of histology 

College of Technical Engineering, the Islamic 

University, Najaf, Iraq 

ahmedalkhayyat85@gmail.com 

Department of Electrical Engineering, College of 

Engineering, University of Baghdad, Baghdad 

10001, Iraq 

ibraheemki@coeng.uobaghdad.edu.iq  

(corresponding author) 



 

International Journal of Intelligent Systems and Applications in Engineering              IJISAE, 2023, 11(11s), 599–614 | 600  

 

 

datasets and the wide acceptance of whole-slide high-

content imaging [8,9,10,11,12]. Different from the 

prior generation of machine learning (ML) techniques, 

DL approaches depend on convolutional neural 

network (CNN) processing raw intensity images and 

learning to extract prediction features automatically 

[13-17]. The potential and accuracy of the DL model to 

analyze HPI for prognostic and diagnostic purposes 

have been exposed in many research fields [18]. 

Therefore, DL could play a prominent role in the era of 

precision medicine and digital pathology. 

The study proposes a Computational Intelligence 

with Deep Learning Decision Support System for 

Kidney Cancer (CIDL-DSSKC) technique on renal 

histopathology images. The presented CIDL-DSSKC 

technique uses Median and Wiener filters for image 

preprocessing. The CIDL-DSSKC technique uses the 

Xception model to derive a useful set of feature vectors. 

Besides, the flower pollination algorithm (FPA) was 

leveraged to choose parameters related to the Xception 

method. For the recognition and detection of kidney 

cancer, 𝛽-variational autoencoder (𝛽-VAE) approach is 

employed. The outcome study of the CIDL-DSSKC 

technique is verified utilizing a dataset of renal images.  

II. Related Works 

In [19], the authors presented a DL technique that 

mechanically divides the complicated nuclei in 

histological imageries by applying a potential encoding 

and decoding structure with an SCPP-Net separable 

convolutional pyramid-pooling network. The SCPP 

unit focused on two main characteristics: firstly, it 

raises the receptive domain by changing four dilation 

rates, keeps kernel size set, and then lessens trained 

parameters through depthwise convolution. Zhou et al. 

[20] introduce a method to inspect the impact of 

transfer learning (T.L.) on computed 

tomography (C.T.) scans for malignant and benign 

detection of renal cancers and, by building patient-

level approaches, try to enhance the classifier accuracy. 

The ImageNet dataset has pre-trained the InceptionV3 

model, which was cross-trained to do this 

classification. Zhu et al. [21] introduced a DNN method 

to precisely categorize digitized biopsy and surgical 

resection slides into five relevant classes: chromophobe 

RCC, clear cell RCC, renal oncocytoma, and papillary 

RCC. 

In [22], the authors devised and evaluated a new DL 

structure for cancer classification tasks to discriminate 

papillary and clear cell RCC. This DL structure is made 

up of 3 CNNs. The author classified whole-slide kidney 

imagery as patches with three sizes, whereas all 

networks processed particular patch sizes. Schulz et al. 

[23] assessed and developed a multimodal DL model 

(MMDLM) for diagnosis forecasting in ccRCC. The 

authors [24] presented an end-to-end DL method for 

diagnosing the five most important histologic sub-types 

of renal cancers, including both malignant and benign 

cancers on multi-phase C.T. In [25], the authors 

developed a new structure (Kidney-SegNet) that 

combines the efficacy of related encoder and decoder 

structure with spatial pyramid pooling, including 

effective dimension-wise convolutional. DiPalma et al. 

[26] introduced a new DL-related technique to enrich 

the computation efficacy of histological image 

classification. This study works at both the slide and 

tissue level, eliminating the necessity for complex 

patch-level labeling. 

III. Materials And Methods 

In this research, we have presented the CIDL-

DSSKC system for the identification and detection of 

kidney cancer on renal imageries. The presented CIDL-

DSSKC model studies the renal images for the 

identification and recognition of kidney cancer. In the 

presented CIDL-DSSKC approach, many sub-

processes were contained, such as image preprocessed, 

Xception feature removal, FPA-based parameter tuning 

as well as 𝛽-VAE based classification. Fig. 1 

demonstrates the entire flow of the CIDL-DSSKC 

method. 
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Fig. 1.   The overall flow of the CIDL-DSSKC method  

 

3.1. Data Used 

In this study, kidney cancer classification results of 

the CIDL-DSSKC system were tested on the C.T. 

database from the Kaggle repository. The dataset 

contains 4000 samples with four classes. 

3.2. Image Preprocessing 

Image preprocessing is performed to optimize the 

image quality. Generally, the degraded image was 

prone to noise, is restored by the proper techniques like 

filtering [27]: 

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦)∗𝑢(𝑥, 𝑦)

+ 𝑛(𝑥, 𝑦)                                       (1) 

ℎ(𝑥, 𝑦) = 𝑅[𝑔(𝑥, 𝑦)]                                           (2) 

In Eq. (1) and (2),  𝑔(𝑥, 𝑦)  indicates the output 

degraded image,  𝑢(𝑥, 𝑦)  denotes the degradation 

function,  𝑓(𝑥, 𝑦)  refers to the acquired image, " ∗ " 

shows the convolution, 𝑛(𝑥, 𝑦) signifies noise namely 

Gaussian noise, and ℎ(𝑥, 𝑦)  denotes the concluding 

output image. The degraded image was inputted to the 

noise reduction M.F.s and Wiener filter (W.F.s) for 

obtaining denoised gamma images, a noise reduction 

filter with a nonlinear spatial domain frequently applied 

for obtaining denoised images. The procedure to 

improve the excellence of images is given in the 

following: Firstly, the mask matrix of 𝑛 × 𝑚 sizes is 

fixed for the reduction of spatial noise. In contrast with 

the mask pixel value for tarnished images respective to 

mask pixel dimensional, the mask matrix is utilized to 

recalculate the newest pixel value. The median filter 

modifies all the pixel values to the median pixel value 

respective to the mask matrix at the central pixel value. 

The W.F. includes the average pixel and variance 

values in the 𝑛 × 𝑚 size and is given as follows: 

𝑚

=
1

𝑁𝑀
∑ 𝑎

𝑛,𝔪∈𝜂

(𝑛,𝑚)                                                             (3) 
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𝜎2 =
1

𝑁𝑀
∑ 𝑎2

𝑛,𝔪∈𝜂

(𝑛, 𝑚)

− 𝜇2                                                  (4) 

In Eq. (3) and (4), 𝑎(𝑛, 𝑚) represents all the pixels 

in the area 𝜂,  𝜇  indicates the mean, 𝜎2  denotes the 

variance of Gaussian noise, and 𝑛 × 𝑚 shows the size 

of neighborhood region 𝜂  in the mask. The W.F. is 

expressed to the newest pixel that is characterized by 

𝑏𝑤(𝑛, 𝑚) using the estimated value. 

𝑏𝑤(𝑛, 𝑚) = 𝜇 +
𝜎2 − 𝜈2

𝜎2

∙ (𝑎(𝑛,𝑚) − 𝜇)                     (5) 

In Eq. (5), 𝜈2 denotes the noise variance setting of 

the mask matrix for the W.F. applications. 

3.3. Feature Extraction: Optimal Xception 

Model 

The Xception model is used to produce effectual 

feature vectors. Xception, an amended version of 

InceptionV3, is a Depthwise Separable Convolution 

(Conv) based DNN model [28]. All the input streams 

are processed utilizing one convolution filter during a 

Conv procedure called depthwise Conv. A kind of 

Conv named pointwise Conv exploits a 1x1 kernel that 

repeats over all the points. The kernel depth 

corresponds to the number of channels in the source 

images. A pointwise Conv was merged with depthwise 

Conv to generate a depthwise Conv layer. 

After the depthwise Conv, pointwise Conv takes 

place in the original depthwise separable Conv layer, 

and after the pointwise Conv, a depthwise Conv layer 

takes place in the improved depthwise Conv. The 

Xception module utilized adapted separable Conv. 

Separable Conv is the modified depthwise separable 

Conv, with a remaining connection from the middle 

flow. Initially, the data passes through the input flow, 

then passes over the middle flow, and finally, through 

the exit flow in the Xception module. Average Pooling 

with the size of 4*4, dense and flattening layers, is 

added to categorize the images. 

This study uses the FPA to choose parameters 

linked to the Xception approach. FPA is based on the 

pollination behavior of flowering plants [29]. The key 

point of this technique is discussed as follows: 

Concept 1: the local search (local) can be described 

by the abiotic and self-pollination in wildlife. 

Concept 2: the global search (global pollination) is 

represented by the biotic and cross‐pollination, which 

depends on Lévy flight. The pollinator bears pollen. 

Concept 3: the reproduction probability assumes 

that the potential solution (flower stability) is 

equivalent to the similarity of the two flowers. 

Concept 4: Global and local pollination can impact 

any external reason. Thus, the balance among 

international as well as local pollinations might be 

controlled by the switching probability 𝑝 ∈ [𝑂, 1]. 

Consider a search space 𝓎 = {𝑠1, 𝑠2, … , 𝑠𝔪}  of 

potential solutions so that 𝑠𝑖 ∈ ℜ𝑛, FPA to resolve the 

subsequent challenges: 

𝑠∗ =  argm𝑖𝑛𝑠𝜖𝓎{𝑓(𝑠)},                               (6) 

In Eq. (6), 𝑓(∙) refers to the "objective function." In 

general, one could review the FPA working process in 

5 stages as follows: 

Step 1: Parameter Description.  

FPA includes subsequent parameters: 

 𝑚 : implies the population size (count of flowers or 

solutions). 

 𝑠𝑏𝑒𝑠𝑡: signifies the present optimum solution. 

 𝑙: shows the size of the step. 

 𝑝: the switching probability that resolves if global or 

local pollination is subsequently FPA. 

Step 2: Population Initialization.  

Initialize the decision variable 𝑥 ∈ 𝔵 in the random 

range. One method 𝔵 is represented as a 𝑏𝑖‐dimension 

matrix, viz., 𝔵 ∈ ℜ𝔪×𝑛: 

𝐹𝑃𝑋

=

[
 
 
 
𝑥1

1 𝑥2
1 … 𝑥n

1

𝑥1
2 𝑥2

2 … 𝑥n
2

⋮ ⋮ … ⋮
𝑥1

𝑚 𝑥2
𝑚 … 𝑥n

𝑚]
 
 
 
                                          (7) 

In Eq. (7), 𝑥𝑖,𝑗 ∈ [𝑙𝑗 , 𝑢𝑗], so that 𝑙𝑗  and 𝑢𝑗  Refer to 

the lower and upper bounds of the 𝑗𝑡ℎ  search space, 

correspondingly. Each potential solution (the flowers) 

was initialized by using Eq. (8): 

𝑥𝑖,𝑗 = 𝑙𝑗 + (𝑢𝑗 − 𝑙𝑗)

× 𝑞,                                                  (8) 

Where 𝑞  represents the scalar random number 

within [0,1]. Based on the F.F. value, The generated 

solution is stored in 𝔵  in ascending sequence, viz., 

(𝑥1) ≤ 𝑓(𝑥2) ≤ ⋯ ≤ 𝑓(𝑥𝔪) . In addition, the global 

optimum flower 𝑠𝑏𝑒𝑠𝑡  can be initialized in this way: 

𝑠𝑏𝑒𝑠𝑡 = 𝑥1. 

Step3: Present flower population Intensification 



 

International Journal of Intelligent Systems and Applications in Engineering              IJISAE, 2023, 11(11s), 599–614 | 603  

 

 

As mentioned, 𝑝 determines whether the pollinator 

follows global or local pollination: 

 Abiotic (Local Search): this pollination occurs without 

a pollinator, viz., the broadcast of pollen relies on the 

wind and diffusion. The local pollination and flower 

constancy at 𝑟 time step was characterized by Eq. (9): 

𝑠𝑖
𝑡+1 = 𝑠𝑖

𝑡 + 𝜀(𝑠𝑗
𝑡 − 𝑠𝑐

𝑡).                                        (9) 

The basis is to mimic the constancy of flowers from 

the local neighborhood. According to statistical data, 𝑠𝑗
𝑡  

and 𝑠k
𝑡  either come from identical species or are 

selected from the FPA population. 

 Global Search (Biotic): the pollen of flowers can be 

transferred long-distance via pollinators such as bees, 

bats, birds, and so on. This ensures that reproduction 

and pollination are the most suitable. The biotic FPA 

procedure can be represented as follows: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝐿(𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡).                                      (10) 

While insects could travel long distances with 

dissimilar step sizes, Lévy flight can be used to 

effectively imitate these characteristics. Thus, the 

representation of L > 0 from the Levy distribution is 

expressed as follows: 

𝐿

∼
𝜆𝛤(𝜆) sin (

𝜋𝜆

2
)

𝜋

1

𝑄1+𝜆̇
,                                           (11) 

In Eq. (11), 𝛤(𝜆) represents the gamma function 

that is larger steps (𝑄"𝑠0 > 0). Here, it is fixed 𝜆 =

1.5. 

Step 4: FPA Upgrading with global optimum 

flower.  

The optimum flower 𝑠𝑏𝑒𝑠𝑡  was upgraded for all the 

iterations 𝑡 if 𝑓(𝑠𝑖
𝑡) < 𝑓(𝑠𝑏𝑒𝑠𝑡), ∀𝑖 = 1,2,… , 𝑚. 

Step 5: Stopping condition.  

FPA iterates steps 3 and 4 until the ending criteria 

(the iteration number or the quality of the result) is 

satisfied.  

 Fitness choice is a main problem of BSA. An 

encoder result is used to estimate the best solution 

candidate. Here, the exactness value is a major state 

applied to strategy F.F.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

=  max (𝑃)                                                         (12) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                           (13) 

 

Where 𝑇𝑃  and 𝐹𝑃  imply true and false positive 

values. 

 

 

Fig. 2.  Structure of VAE 

3.4. Image Classification: 𝛽 –VAE Model 

Finally, the classification of kidney cancer takes 

place utilizing the 𝛽-VAE method. VAE is the 

generative mechanism that comprises encoding and 

decoding parts, and the aim is to increase the marginal 

probability of the reconstruction output that is shown 

below [30, 31, 32, 33]: 

𝑙𝑜𝑔𝑝𝜃
(𝑋) ≥ 𝐸𝑍∼𝑞𝜑(𝑍|𝑋)[𝑙𝑜𝑔𝑝𝜃(𝑋|𝑍)] −

𝐷𝐾𝐿 (𝑞𝜑(𝑍|𝑋)‖𝑝(𝑍)))              (14) 
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Here, the initial period is the log probability that 

input 𝑋  is produced 0by the sampled 𝑍  in inferred 

distribution, 𝑞𝜙(𝑍|𝑋) . This distribution was 

considered to follow the multivariate standard 

distribution. The substructure of VAE is demonstrated 

in Fig. 2. 

 

The loss function of 𝑉𝐴𝐸 comprises a 1st period 

that fines the reconstructed error among the inputs and 

outputs and a 2nd term that forces the learned 

distribution, 𝑞𝜑(𝑍|𝑋) , to be the same for the prior 

distribution, 𝑝(𝑍): 

ℒ𝑉𝐴𝐸(𝜃,𝜑)=ℒ𝑟𝑒𝑐𝑜𝑛(𝜃,𝜑)+ℒ𝐾𝐿(𝜃,𝜑),                                         (15) 

Where the reconstruction loss, ℒ𝑟𝑒𝑐𝑜𝑛(𝜃, (𝜃, 𝜑)), 

and the K.L. loss, ℒ𝐾𝐿(𝜃, (𝜃, 𝜑)), are evaluated by the 

following expression: 

ℒ𝑟𝑒𝑐𝑜𝑛(𝜃, (𝜃,𝜑)) = ∑‖𝑋̂

𝑁

𝑖=1

− 𝑋‖
2

2
,                                     (16) 

ℒ𝐾𝐿(𝜃, (𝜃,𝜑))

= 𝐷𝐾𝐿(𝑞𝜑)((𝑍|𝑋)‖𝑝 (𝑍) )                           (17) 

Here,  𝛽 − 𝑉𝐴𝐸  has demonstrated better 

performance based on multiple disentanglement 

metrics, and it is used as a backbone of this model for 

encouraging the disentanglement as it is easier to 

express. 

The 𝛽 − 𝑉𝐴𝐸  method is an extension of typical 

𝑉𝐴𝐸  that aim is to acquire the disentangled 

representation of the encoder variable in an 

unsupervised way by providing additional weight to the 

𝐾𝐿 term than original 𝑉𝐴𝐸, with extra hyperparameter 

𝛽: 

ℒ𝑉𝐴𝐸(𝜃, 𝜑) = ℒ𝑟𝑒𝑐𝑜𝑛(𝜃, 𝜑)

+ 𝛽ℒ𝐾𝐿(𝜃,𝜑),                           (18) 

IV. RESULTS AND DISCUSSION 

In this study, kidney cancer recognition results of 

the CIDL-DSSKC approach are verified on C.T. 

datasets from the Kaggle repository [34]. The dataset 

has 4000 instances with four class labels, as shown in 

Table 1. 

TABLE I.   DETAILS OF DATABASE 

Classes 
No. of 

Samples 

Normal 1000 

Cyst 1000 

Tumor 1000 

Stone 1000 

Total Number 

of Samples 
4000 

 

The confusion matrices of the CIDL-DSSKC method 

are shown in Fig. 3. The outcomes showed that the 

CIDL-DSSKC technique identifies four classes 

competently. In Table 2 and Fig. 4, kidney cancer 

outcomes of the CIDL-DSSKC method are obviously 

demonstrated at 80:20 of Training phase (TRPH)/ 

Testing phase (TSPH). The experimental value 

identified that the CIDL-DSSKC model attained 

improved outcomes. On 80% of TRPH, the CIDL-

DSSKC model gains average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , 

and 𝐹𝑠𝑐𝑜𝑟𝑒  of 98.33%, 96.65%, 96.66%, and 96.65% 

respectively. Also, on 20% of TRPH, the CIDL-

DSSKC method gains average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , 

and 𝐹𝑠𝑐𝑜𝑟𝑒  of 97.81%, 95.61%, 95.54%, and 95.56% 

correspondingly.   
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Fig. 3.  Confusion matrices of CIDL-DSSKC method (a-b) 80:20 of TRPH/TSPH and (c-d) 70:30 of 

TRPH/TSPH 

 

Fig. 4.  Average outcomes of CIDL-DSSKC approach on 80:20 of TRPH/TSPH  
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TABLE II.  KIDNEY CANCER OUTCOMES OF CIDL-DSSKC METHOD ON 80:20 OF TRPH/TSPH  

Classes  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

Training Phase (80%) 

Normal 99.19 98.12 98.61 98.37 

Cyst 97.38 95.64 93.71 94.66 

Tumor 97.78 95.57 95.69 95.63 

Stone 98.97 97.28 98.62 97.95 

Average 98.33 96.65 96.66 96.65 

Testing Phase (20%) 

Normal 99.38 98.55 99.03 98.79 

Cyst 96.37 91.90 94.15 93.01 

Tumor 96.50 93.96 90.96 92.43 

Stone 99.00 98.01 98.01 98.01 

Average 97.81 95.61 95.54 95.56 

 

Fig. 5 investigates the 𝑎𝑐𝑐𝑢𝑦 of the CIDL-DSSKC 

technique during the training and validation on 80:20 

of TRPH/TSPH. The figure displays that the CIDL-

DSSKC model obtains the highest 𝑎𝑐𝑐𝑢𝑦  values over 

increasing epochs. Also, the maximum validation 

𝑎𝑐𝑐𝑢𝑦  overtraining 𝑎𝑐𝑐𝑢𝑦  shows that the CIDL-

DSSKC system learns efficiently on 80:20 of 

TRPH/TSPH. The loss analysis of the CIDL-DSSKC 

technique during training and validation is illustrated at 

80:20 TRPH/TSPH in Fig. 6. The outcome shows that 

the CIDL-DSSKC methodology accomplishes the 

nearby values of training and validation loss. The 

CIDL-DSSKC method gains proficiently on 80:20 of 

TRPH/TSPH. A brief P.R. analysis of the CIDL-

DSSKC model is illustrated at 80:20 TRPH/TSPH in 

Fig. 7. The outcome stated that the CIDL-DSSKC 

technique has an impact on the growing values of P.R. 

Furthermore, the CIDL-DSSKC method could attain 

maximum P.R. values on all class labels. In Fig. 8, an 

ROC research of the CIDL-DSSKC system is shown at 

80:20 TRPH/TSPH. The figure reported that the CIDL-

DSSKC method resulted in enhanced ROC values. The 

CIDL-DSSKC system can also range superior ROC 

values in all classes. In Table 3 and Fig. 9, the kidney 

cancer outcome of the CIDL-DSSKC method is clearly 

illustrated at 70:30 TRPH/TSPH. The experimental 

outcomes showed that the CIDL-DSSKC method 

obtained superior outcomes. On 70% of TRPH, CIDL-

DSSKC methodology reaches average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 

𝑟𝑒𝑐𝑎𝑙 , and 𝐹𝑠𝑐𝑜𝑟𝑒  of 98.41%, 96.85%, 96.82%, and 

96.83% correspondingly. Also, on 30% of TRPH, the 

CIDL-DSSKC system attains average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 

𝑟𝑒𝑐𝑎𝑙 , and 𝐹𝑠𝑐𝑜𝑟𝑒  of 98.87%, 97.73%, 97.73%, and 

97.73% correspondingly. Fig. 10 examines the 𝑎𝑐𝑐𝑢𝑦 

of CIDL-DSSKC model at training and validation 

process on 70:30 of TRPH/TSPH. The figure indicates 

that the CIDL-DSSKC method gains the highest 𝑎𝑐𝑐𝑢𝑦  

values over increasing epochs. Also, the maximum 

validation 𝑎𝑐𝑐𝑢𝑦  overtraining 𝑎𝑐𝑐𝑢𝑦  Illustrates that 

CIDL-DSSKC methodology learns efficiently on 70:30 

of TRPH/TSPH.  
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Fig. 5.  Accuracy curve of CIDL-DSSKC approach on 80:20 of TRPH/TSPH  

 

Fig. 6.   Loss curve of CIDL-DSSKC method on 80:20 of TRPH/TSPH  

 

Fig. 7.   PR curve of CIDL-DSSKC approach on 80:20 of TRPH/TSPH 
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Fig. 8.   ROC curve of CIDL-DSSKC approach on 80:20 of TRPH/TSPH 

TABLE III.  KIDNEY CANCER OUTCOMES OF CIDL-DSSKC METHOD ON 70:30 OF TRPH/TSPH  

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

Training Phase (70%) 

Normal 99.29 98.54 98.54 98.54 

Cyst 97.68 95.12 95.79 95.45 

Tumour 98.50 96.56 97.63 97.09 

Stone 98.18 97.17 95.32 96.24 

Average 98.41 96.85 96.82 96.83 

Testing Phase (30%) 

Normal 99.58 99.05 99.36 99.21 

Cyst 98.33 96.21 96.88 96.54 

Tumor 99.00 98.21 97.52 97.86 

Stone 98.58 97.46 97.15 97.31 

Average 98.87 97.73 97.73 97.73 
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Fig. 9.  Average outcomes of the CIDL-DSSKC approach on 70:30 of TRPH/TSPH 

 

Fig. 10.  Accuracy curve of CIDL-DSSKC approach on 70:30 of TRPH/TSPH  

 

Fig. 11.  Loss curve of CIDL-DSSKC method on 70:30 of TRPH/TSPH 
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Fig. 12.  PR curve of CIDL-DSSKC approach on 70:30 of TRPH/TSPH 

 

Fig. 13.  ROC curve of CIDL-DSSKC approach on 70:30 of TRPH/TSPH 

 

The loss analysis of the CIDL-DSSKC method at 

training and validation is illustrated on 70:30 of 

TRPH/TSPH in Fig. 11. The result represents that the 

CIDL-DSSKC methodology obtains nearby values of 

training and validation loss. The CIDL-DSSKC system 

learns effectively at 70:30 of TRPH/TSPH. A brief P.R. 

curve of the CIDL-DSSKC technique is demonstrated 

at 70:30 for TRPH/TSPH in Fig. 12 and 13. The 

outcomes stated that the CIDL-DSSKC technique 

outcomes in maximum values of P.R. Moreover, the 

CIDL-DSSKC method attains maximum P.R. values in 

all classes. In Fig. 14, an ROC analysis of the CIDL-

DSSKC method is reported at 70:30 TRPH/TSPH. The 

figure defined that the CIDL-DSSKC system resulted 

in superior ROC values. Moreover, the CIDL-DSSKC 

method can range superior ROC values on all classes. 

The experimental results of the CIDL-DSSKC 

technique are compared with existing techniques in 

Table 4 and Fig. 14 [35]. These outcomes show that 

VGG16 and Adaboost methods demonstrate worse 

outcomes than other models. Next, the CNN-4 model 

exhibits slightly improved results. At the same time, the 

CNN-6, CNN-4, Inception v3, and 2D-CNN models 

offer moderately enhanced performance. But the 

CIDL-DSSKC technique demonstrated better results 

with 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , and 𝐹𝑠𝑐𝑜𝑟𝑒  of 98.87%, 

97.73%, 97.73%, and 97.73%. Therefore, the CIDL-
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DSSKC method can be applied for automated kidney 

cancer detection. 

TABLE I.  COMPARATIVE OUTCOME OF THE CIDL-DSSKC METHOD WITH OTHER 

EXISTING TECHNIQUES 

Models Accuracy Precision Recall 
F-

Score 

VGG16 60.00 83.62 73.55 80.11 

ResNet50 96.00 92.80 93.66 94.12 

CNN-6 97.00 91.76 93.91 92.06 

CNN-4 92.00 92.10 93.39 90.81 

InceptionV3 97.00 95.84 94.31 90.91 

AdaBoost 75.00 90.44 94.12 90.49 

2D-CNN 97.00 90.66 90.12 93.88 

CIDL-

DSSKC 
98.87 97.73 97.73 97.73 

 

 

Fig. 14.  Comparative outcome of CIDL-DSSKC method with other existing techniques 

V. Conclusion 

In this study, we presented the Computational 

Intelligence with Deep Learning Decision Support 

System for Kidney Cancer (CIDL-DSSKC) on renal 

images, which integrates Median and Wiener filters 

for image preprocessing, the Xception model for 

feature extraction, and the β-Variational Autoencoder 

(β-VAE) for classification. Our experimental results, 

conducted on a C.T. dataset from the Kaggle 

repository with 4000 samples across four classes 

(Normal, Cyst, Tumor, and Stone), demonstrated the 

effectiveness of the CIDL-DSSKC approach. The 

CIDL-DSSKC model achieved an average accuracy of 

98.33%, precision of 96.65%, recall of 96.66%, and 

F1-score of 96.65% during the training phase (80% of 

the dataset). In the testing phase (20% of the dataset), 

the model attained an average accuracy of 97.81%, 

precision of 95.61%, recall of 95.54%, and F1-score of 

95.56%. These results indicate that the CIDL-DSSKC 

model can accurately and efficiently classify kidney 
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cancer types, providing radiologists with a reliable 

decision-support tool. The findings of this study 

suggest that the proposed method not only enhances 

diagnostic accuracy but also reduces the time and 

effort required for manual analysis, potentially 

improving patient outcomes. Compared to traditional 

methods, our approach offers a more robust and 

automated solution for kidney cancer detection. Future 

research could further optimize the model's 

parameters, incorporate larger and more diverse 

datasets, and explore integrating other advanced deep 

learning techniques to improve classification 

performance. Our study lays a solid foundation for the 

development of more sophisticated and 

comprehensive diagnostic tools in the field of medical 

imaging. 
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