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Abstract: The exponential growth of digital information in the healthcare industry has led to the 
generation of vast amounts of data, known as Big Data. Traditional data storage systems are incapable 

of handling such large volumes of data, making it challenging to analyse using typical analytic tools. 
Cloud computing has emerged as a solution to address the challenges of managing, storing, and 

analysing Big Data by distributing large datasets over a network of cloudlets. However, storing 

private data in the cloud raises concerns about data leakage and lack of user control. This study 

introduces a system for secure data storage utilizing Ant Colony Optimization and Generative 
Adversarial Networks (GANs). The process begins with data normalization through Filter Splash Z 

normalization, followed by the application of GANs to assess similarity, thereby ensuring data 

accuracy and reducing computational expenses. A novel encryption approach is employed to 
safeguard outsourced data, preventing the exposure of sensitive information. The research utilized 

health data from a major city, sourced from the Kaggle database. The proposed encryption technique 

enables users to maintain privacy while efficiently storing vast amounts of data in the cloud, resulting 
in time and cost savings. This innovative framework has the potential to transform healthcare 

decision-making by offering data-driven insights while maintaining the highest standards of 

confidentiality and privacy protection. 

Keywords: Big Data, Cloud Computing, Data Privacy, Ant Colony Optimization (ACO), Generative 

Adversarial Networks (GANs), Healthcare Data, Data Encryption 

1.Introduction  

The exponential growth of digital information 
in the healthcare industry has led to the 

generation of vast amounts of data, known as 

Big Data. This surge in data volume, velocity, 
and variety presents both unprecedented 

opportunities and significant challenges in 

healthcare management and decision-making 

[1]. Traditional data storage and analysis 
systems are increasingly inadequate for 

handling such large-scale, complex datasets, 

necessitating innovative approaches to data 

management and security [2]. 

Cloud computing has emerged as a promising 

solution to address the challenges of 
managing, storing, and analysing healthcare 

Big Data by distributing large datasets over a 

network of cloudlets [3]. This approach offers 
scalability, cost-effectiveness, and improved 

accessibility to healthcare data. However, the 

migration of sensitive health information to 

cloud environments raises critical concerns 
about data privacy, security, and user control 

[4]. 

Recent advancements in artificial intelligence, 

particularly in the domains of Generative 
Adversarial Networks (GANs) and Ant 

Colony Optimization (ACO), offer novel 

approaches to enhance the security and 

efficiency of cloud-based healthcare data 
management [5]. GANs, with their ability to 

generate synthetic data that preserves 

statistical properties of the original dataset, 
present a promising avenue for privacy-

preserving data sharing and analysis [6]. 
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Meanwhile, ACO algorithms have 

demonstrated effectiveness in optimizing 
complex healthcare processes, including 

resource allocation and data routing in cloud 

environments [7]. 

This paper proposes an innovative framework 
for secure cloud-based management of 

healthcare Big Data, leveraging the strengths 

of both GANs and ACO. Our approach begins 

with data normalization using advanced 
techniques such as Filter Splash Z 

normalization, which enhances data quality 

and reduces pPre-processing overhead [8]. 
Subsequently, we employ GANs to compute 

data similarity and generate privacy-preserving 

synthetic datasets, ensuring data correctness 
while minimizing the risk of privacy breaches 

[9]. 

The core of our framework lies in a novel 

encryption strategy that combines the 

optimization capabilities of ACO with the 
generative power of GANs. This hybrid 

approach not only secures the outsourced data 

but also optimizes the encryption and 
decryption processes, striking a balance 

between computational efficiency and robust 

security [10]. By intelligently routing data and 

dynamically adjusting encryption parameters, 
our ACO-based algorithm enhances the overall 

performance of the cloud storage system [11]. 

To assess the effectiveness of our proposed 

framework, we performed comprehensive tests 
using authentic health information from a 

major city, acquired from the Kaggle 

repository [12]. Our results demonstrate 

significant improvements in data security, 
computational efficiency, and data utility 

compared to traditional encryption methods 

[13]. The proposed system not only maintains 
high levels of data privacy but also facilitates 

advanced analytics on encrypted data, enabling 

healthcare providers to derive valuable 
insights without compromising patient 

confidentiality [14]. 

The primary Objectives of this paper  

 

 Establish a robust system for cloud-

based storage and management of 

extensive healthcare information by 

combining Ant Colony Optimization 

(ACO) and Generative Adversarial 

Networks (GANs). 

 

 Apply Filter Splash Z normalization to 

prepare large-scale healthcare data, 

ensuring precision in the encryption 

procedure. 

 

 Utilize GANs to assess data similarity, 

minimizing computational burden 

while maintaining data integrity. 

 

 Safeguard the privacy and security of 

confidential healthcare information 

during cloud storage and processing. 

 

 Deliver a method that allows for the 

safe transfer of substantial healthcare 

datasets to cloud platforms while 

preserving user data control. 

 

Problem Statement 

 

The medical sector produces enormous 

quantities of digital information, often referred 

to as Big Data. Conventional storage systems 

struggle to handle these extensive datasets, 

creating obstacles in both data administration 

and examination. While cloud computing has 

emerged as a potential answer for storing and 

processing Big Data, worries about privacy 

and information security in the cloud 

environment remain. Placing sensitive medical 

data in the cloud increases the likelihood of 

information leakage, security breaches, and 

diminished user control over confidential 

details. Existing encryption methods fail to 

sufficiently address these issues while 

maintaining cost-effectiveness and 

computational efficiency. 

Motivation 

The increasing use of cloud computing in 
healthcare for Big Data management has 

highlighted the need for improved security 
measures to address the challenge of balancing 

data accessibility, analysis, and confidentiality. 

Safeguarding sensitive patient information 
while ensuring smooth clinical decision-

making processes has emerged as a crucial 

concern. This study aims to address these 

issues by 



International Journal of Intelligent Systems and Applications in Engineering                                     IJISAE, 2024, 12(23s), 2155–2174 | 2157  

 Integrate cutting-edge methodologies 

such as Ant Colony Optimization 

(ACO) and Generative Adversarial 
Networks (GANs) to develop a robust 

and effective framework for managing 

healthcare big data securely. 

 Fill the void in existing encryption 

solutions by introducing an innovative 

approach that guarantees data 

protection, lowers computational 
demands, and improves the quality of 

decision-making processes. 

 Offer a solution that optimizes cloud 

storage expenses while simultaneously 

protecting healthcare information from 
unauthorized access and potential 

security breaches. 

The subsequent sections of the article are 

structured as follows: Section 2 presents a 
review of recent literature. Section 3 delineates 

the proposedMethod and frame work. Section 

4 offers an analysis of experimental results. 

Section 5 concludes the study. 

2. Related Work 

Parsa Sarosh et .al [15] Healthcare can be 
enhanced through Big Data analytics in the 

medical field by examining clinical images to 

identify medical conditions. The need for 
secure medical data management has been 

highlighted by the COVID-19 pandemic. This 

study introduces a security framework 

utilizing Logistic equation, Hyperchaotic 
equation, and DNA encoding. A Lossless 

Computational Secret Image Sharing (CSIS) 

technique is employed to transform encrypted 
secret images into shares for dispersed storage 

on cloud-based servers. The process involves 

Hyperchaotic and DNA encryption, along with 
pseudorandom number generation. Secret 

Sharing produces noise-like cipher images, 

bolstering the security of cloud-based 

cryptosystems. The proposed cryptosystem 
demonstrates high resilience against attacks 

and interferences. 

 
H. Bi, et .al [16] The industrial Internet of 

Things (IIoT) is facilitating smart healthcare 

through remote monitoring of health-related 

data from wearable devices. However, storing 
data on cloud servers presents security risks 

due to potential privacy breaches. This paper 

presents a deep learning-based system for 
privacy preservation and data analytics in IoT-

enabled healthcare. The system gathers raw 

data, separates users' private information, and 
examines health-related data without 

compromising user privacy. A convolutional 

neural network security module is developed 
for cloud analysis. The prototype system's 

effectiveness and robustness are verified 

through testing. 

 
S, G. et .al [17] The proliferation of consumer 

devices like smartphones and medical 

equipment, which rely on imaging techniques, 
has been driven by the Internet of Things 

(IoT). This has increased storage complexity 

and necessitated secure cloud-based image 
processing architecture. The study aims to 

develop a lightweight cloud architecture that 

efficiently transmits medical data while 

preserving privacy using deep learning 
methods. The proposed system incorporates an 

effective image denoising scheme with a 

hybrid classification model to ensure secure 
and reliable communication. A Pseudo-

Predictive Deep Denoising Network (PPDD) 

is created by combining deep learning 
algorithms, enhancing security in the Dark 

Cloud. The original data is concealed in the 

Deep Cloud using Gaussian noise, with the 

transformed images encapsulating the 
information. This approach renders the data 

highly secure and imperceptible to malicious 

users. The PPDD network model's 
performance is assessed using Signal-to-noise 

ratio (SNR), Similarity index (SI), Error Rate 

(ER), and Contrast to noise ratio (CNR). 

 
Suciu, G., et .al [18] This research investigates 

the combination of large-scale data processing 

with cloud-based machine-to-machine systems 
utilizing Remote Telemetry Units (RTUs) and 

suggests a unified E-Health framework built 

on Exalead Cloud View, an application driven 
by search functionality. The study aims to 

tackle the challenge of unifying current 

distributed cloud systems, general-purpose 

software for processing big data, and Internet 
of Things systems, while also examining key 

findings and potential future developments. 

 
Brij B. et .al [19] Gupta The medical field 

could see improvements from a system that 

enables secure and effective data exchange 
through business-to-business (B2B) methods. 

This would enhance patient-doctor 

communication, streamline information 

transfer, and boost care standards. However, 
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the primary obstacle lies in managing the vast 

amount of data produced by intelligent 
devices. This study examines big data 

challenges in B2B healthcare, exploring the 

benefits of employing big data technology, 
security considerations, and various protective 

measures proposed by researchers to maintain 

security in this domain. 

 
C. Esposito et .al [20] This paper examines the 

significance of cloud-based solutions for 

managing and sharing healthcare data. It 
introduces a novel microservices approach and 

outlines security and privacy requirements for 

cloud computing in medical systems. The 
compatibility of existing technologies can 

enhance quality of life and healthcare system 

efficiency, making them more individualized 

and patient-focused. However, security and 
privacy concerns must be addressed to create a 

socially acceptable health network service 

chain. The article investigates these 
requirements and evaluates existing methods, 

ultimately proposing a secure management 

architecture for cloud-based healthcare data 
handling and exchange. 

 

Arcangelo Castiglione et .al [21] The 

healthcare industry faces challenges due to 
limited access to resources and shared 

information, particularly in handling large 3D 

medical images. These images necessitate 
sophisticated network protocols, advanced 

compression, and security techniques. This 

research aims to secure 3D medical image 

management in a way that is transparent to 
end-users, regardless of their computational 

and networking capabilities. The researchers 

propose an engine for lossless dynamic and 
adaptive image compression, incorporating 

security watermarks. They also outline a 

Software-as-a-Service (SaaS) Cloud system 
architecture based on this engine, allowing 

devices with varying hardware and software 

specifications to interact seamlessly, making 

these differences imperceptible to end-users. 
 

H. Ghayvatet .al [22] Healthcare big data 

(HBD) is crucial for medical stakeholders to 
analyze and access patient health records, but 

it often faces issues like latency, computations, 

single-point failures, and security risks. To 
address these issues, a joint solution is 

proposed, integrating a blockchain-based 

confidentiality-privacy scheme called CP-

BDHCA. This scheme operates in two phases: 

HCA-ECC, a digital signature framework for 

secure communication, and HCA-RSAE, a 
two-step authentication framework. The 

scheme is compared against existing HCA 

cloud applications in terms of response time, 
average delay, transaction and signing costs, 

signing and verifying of mined blocks, and 

resistance to DoS and DDoS attacks. The 

proposed scheme outperforms traditional 
schemes like AI4SAFE, TEE, Secret, and 

IIoTEED, with lower response time and 

improved accuracy. 
 

Amir Rehman et .al [23] Digital technologies 

offer significant opportunities for improving 
healthcare services, particularly in cancer 

diagnosis. However, patient data privacy 

remains a concern. A secure FedCSCD-GAN 

framework is proposed for clinical cancer 
diagnosis, leveraging distributed data sources 

to improve accuracy while maintaining 

security measures. The system uses quasi-
identifiers as independent attributes and 

confidential information (CI) as confidential 

information. Differential privacy 
anonymization is performed on attributes, and 

the resulting data is mixed with CI attributes. 

The Cramer GAN is trained using Cramer 

distance for efficiency and privacy assessment. 
The proposed architecture achieves diagnosis 

accuracy of 97.80% for lung cancer, 96.95% 

for prostate cancer, and 97% for breast cancer. 
This paradigm has the potential to transform 

healthcare and improve patient outcomes 

globally. 

 
Jimmy Ming-Tai Wu et .al [24] The issue of 

protecting private information in identifiable 

health datasets, particularly during the 
pandemic, has become a trade-off. Privacy 

preserving data mining (PPDM) is crucial to 

address this issue, but mining information in 
such datasets is complex. This article presents 

an Ant Colony System to Data Mining 

algorithm that uses multi-threshold constraints 

to secure and sanitize patent records in 
different lengths, applicable in real medical 

situations. The algorithm not only hides 

sensitive information but also retains useful 
knowledge for mining usage in the sanitized 

database. 

 
Purandhar, N., et .al [25] The healthcare 

industry generates vast amounts of data daily, 

including clinical, health history, and genetic 

information. Real-time monitoring and data 
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analysis are crucial for providing proper 

medications and reducing issues. Machine 

learning models have been introduced to 

manage big data, but their performance is 

hindered by data integrity, diversity, and 

inconsistency. This research uses fuzzy c 

means clustering and generative adversarial 

network to achieve maximum classification 

accuracy in healthcare data clustering and 

classification. The model outperforms existing 

techniques like support vector machine, 

decision tree, and random forest algorithms, 

achieving 97.8% and 98.6% accuracy, 

respectively. 

Table 1. Structuring the research inquiry for investigating encryption techniques in the 

healthcare big data studies. 

Reference Methods Data Encryption Limitations 

Parsa Sarosh 

et al. [15] 

DNA encoding, CSIS 

for cloud storage 

secret sharing, logistic 
equation, 

hyperchaotic 

equation. 

Encryption utilizing 

hyperchaotic systems and 

DNA; Generation of 
pseudorandom numbers; 

Cloud-based systems are 

safeguarded through secret 

sharing techniques that 
produce cipher images 

resembling noise. 

The approach primarily 

emphasizes image 

encryption, potentially 
overlooking the diverse 

array of data types 

encountered in healthcare 

settings. 

H. Bi et al. 
[16] 

IoT-enabled 
healthcare leverages 

privacy-preserving 

data analytics 

powered by deep 
learning techniques. 

A security module based on 
convolutional neural networks 

(CNN) is employed to isolate 

and examine data, ensuring 

privacy protection without 
compromising user 

information. 

Due to privacy 
vulnerabilities in deep 

learning systems, this 

approach may not 

completely protect all 
confidential health 

information stored in the 

cloud. 

S. G. et al. 

[17] 

A streamlined cloud-

based framework 

incorporating a hybrid 

classification system 
for cleansing medical 

information.. 

A streamlined cloud-based 

framework incorporating a 

hybrid classification system 

for cleansing medical 
information. 

 The Pseudo-Predictive Deep 

Denoising Network (PPDD) 
enhances data protection by 

embedding information in the 

cloud using Gaussian noise, 
creating an imperceptible 

encrypted layer. 

This image-focused system 

may encounter difficulties 

when attempting to denoise 

and secure other types of 
health information, such as 

written documentation and 

laboratory findings. 

Suciu, G. et 

al. [18] 

Integrated E-Health 

framework 
incorporating RTUs 

and Exalead Cloud 

View for cloud-based 
M2M systems. 

Data protection measures 

encompass encryption 
protocols embedded in the 

cloud infrastructure to ensure 

secure information storage 
and handling. 

Challenges include 

insufficient real-time 
encryption capabilities for 

extensive datasets and 

potential limitations in the 
framework's ability to scale 

for dynamic, rapidly 

changing healthcare 

information. 

Brij B. et al. 

[19] 

Framework for B2B 

data transfer designed 

to enhance healthcare 
big data analysis 

efficiency. 

Employs various security 

measures to handle 

substantial data quantities 
produced by medical devices; 

suggests encryption methods 

for secure data transfer. 

Managing extensive real-

time information remains 

problematic, especially 
when dealing with multi-

source B2B healthcare data 

transmission. 
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C. Esposito 

et al. [20] 

A microservices-

based system for 
healthcare data 

sharing in the cloud, 

incorporating a secure 
management 

framework. 

Emphasizes privacy-

protecting methods to 
guarantee safe information 

transfer between various 

health platforms, employing 
encryption and cloud-based 

security measures. 

The emphasis on system 

compatibility may restrict 
the level of security 

achievable across different 

platforms, with potential 
weak points emerging when 

multiple services are 

integrated. 

Arcangelo 
Castiglione 

et al. [21] 

Secure 3D medical 
image transmission 

utilizing a dynamic, 

adaptive compression 
system that preserves 

data integrity. 

Encrypted watermarks 
integrated into compressed 

3D imagery to ensure secure 

information transfer via 
cloud-based Software as a 

Service platforms. 

Primarily focused on image 
processing, with restricted 

applicability to other 

healthcare data formats; the 
computational requirements 

for dynamic, lossless 

compression may affect 

real-time operations. 

H. Ghayvat 

et al. [22] 

CP-BDHCA, a 

privacy scheme based 

on blockchain 
technology, aims to 

enhance security in 

healthcare cloud 

systems.   

This approach utilizes HCA-

ECC for protected 

communication and HCA-
RSAE for user verification, 

implementing a dual-stage 

encryption method to 

safeguard data. 

blockchain systems often 

face challenges related to 

delays and resource-
intensive operations, which 

can negatively impact 

performance in situations 

requiring real-time data 
processing. 

Amir 

Rehman et 

al. [23] 

FedCSCD-GAN 

framework for secure 

clinical cancer 
diagnosis. 

Differential privacy 

techniques used for 

anonymization; Cramer 
GANs ensure the secure 

transmission of sensitive 

patient data across distributed 
systems. 

Although secure, this 

framework may be 

vulnerable to subtle privacy 
leakage in distributed 

environments. 

Jimmy 

Ming-Tai 

Wu et al. 
[24] 

Ant Colony System 

employing multiple 

threshold constraints 
for protecting privacy 

in data mining 

applications. 

This approach safeguards 

medical information by 

creating anonymized datasets 
that eliminate sensitive details 

while retaining crucial data 

for analysis. 

The method shows reduced 

efficacy in preserving data 

usefulness within highly 
intricate datasets; the use of 

multiple threshold 

constraints may restrict 
adaptability. 

Purandhar, 

N. et al. [25] 

Healthcare big data 

classification is 

achieved through a 
combination of Fuzzy 

C-means clustering 

and GAN. 

While no specific encryption 

method is mentioned, the 

model indirectly enhances 
privacy protection by 

improving classification 

accuracy in data clustering. 

the system may encounter 

challenges with real-time 

performance, particularly 
when dealing with diverse 

healthcare data from 

multiple sources. 

 

3.Proposed Method and frame work  

This integrated approach addresses the 

challenges of handling large volumes of 

sensitive healthcare data in a cloud 

environment, providing a balance between 

data utility, security, and computational 

efficiency. The system has the potential to 

revolutionize clinical decision-making by 

providing secure, efficient access to vast 

amounts of healthcare data while maintaining 

the highest standards of data privacy and 

security as showing below figure 1. Proposed 

work flow with healthcare data in a cloud 

environment 
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Figure 1. Proposed work flow with healthcare data in a cloud environment 

1.Input Layer: Health Data (Kaggle Source) 

This is the entry point of the system, where 

health data from a large metropolis, sourced 

from the Kaggle database, is input. The quality 

and diversity of this input data are crucial for 

the effectiveness of the entire system. It may 

include various types of health records, patient 

information, and medical data. This data 

serves as the foundation for all subsequent 

processing and analysis. 

2. Data Pre-processing 

The main objective of data pre-processing is to 

standardize and normalize healthcare data 
to prepare it for further analysis. In 
healthcare data, various features may have 

different scales and units, and there can be 

outliers or extreme values that skew the 

analysis. Standardization and normalization 
help ensure that the data is in a consistent 

format, which improves the performance of 

machine learning models [26]. 

In this proposed work the Filter Splash Z 

normalization method is applied to scale the 

data and remove outliers. This technique uses 

the Z-score normalization formula but 

introduces a threshold, α\alphaα, to handle 
extreme outliers. The idea is to standardize the 

data points and discard extreme values that are 

too far from the mean, thereby improving data 

quality and reducing noise in the analysis [27]. 

New Equation: The Filter Splash Z 

normalization is expressed as: 

𝑧𝐙 𝐧𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 {
𝑋−𝜇 

𝜎
   𝑖𝑓 |

𝑋−𝜇 

𝜎
| > 𝛼

0         𝑂𝑡𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒
 

     

   (1) 

Her, X is the original data value,μ is the mean 

of the data set.σ is the standard deviation of 

the α is the threshold parameter, which helps 

identify extreme outliers. Data set. 

1. Normalization: The data is first 
normalized by computing the Z-

score
𝑋−𝜇 

𝜎
, which rescales each data 

point based on its distance from the 

mean in terms of the number of 
standard deviations. 

2. Outlier Removal: If the absolute 

value of the Z-score exceeds a certain 

threshold 𝛼 the data point is 
considered an outlier and removed (set 

to zero). This prevents extreme values 

from unduly influencing the analysis. 

3. Threshold 𝛼: The parameter 𝛼 defines 

the outlier detection boundary. A 

typical value for α\alphaα might be 

between 2 and 3, depending on how 
strict the normalization needs to be. 

This parameter allows for flexibility in 

identifying and excluding extreme 

data points. 



International Journal of Intelligent Systems and Applications in Engineering                                     IJISAE, 2024, 12(23s), 2155–2174 | 2162  

Standardization it helps to Rescales all 

features to a common scale, which helps in 
comparing them and improving the 

stability of machine learning algorithms. 

Outlier Removal of Effectively 
eliminates extreme values that could 

distort model performance. Robustness 

the Improves the robustness of the analysis 

by handling both scaling and outlier 
detection in one step. This method ensures 

that the healthcare data is clean, 

standardized, and free from extreme 

outliers, allowing for more accurate and 

meaningful analysis in subsequent stages 

of the workflow. 

3.GANs for Data Similarity 

 

The objective of using Generative 

Adversarial Networks (GANs) for data 

similarity is to ensure data correctness by 

generating synthetic data that closely 

resembles the distribution of the real data. This 

technique helps to validate the data while 

reducing computational costs associated with 

data verification in large datasets. By using 

GANs, we can create data that is 

indistinguishable from real data, which can be 

used to assess the similarity between generated 

and original data[28]. 

 

Figure 2. Health care flow work with GAN Block diagram 

GANs consist of two components: 

1. Generator (G): This model generates 

synthetic data samples from a random 
noise vector based on the learned data 

distribution. 

2. Discriminator (D): This model 

evaluates whether a given data sample 
is real or generated. It tries to 

distinguish between real data and 

synthetic data generated by GGG. 

In traditional GANs, the Generator and 

Discriminator engage in a two-player 
minimax game where the Generator tries to 

produce data that is as realistic as possible, and 

the Discriminator tries to accurately 

distinguish real data from fake data. 

However, to compute data similarity and 
ensure data correctness, we extend the 

standard GAN loss function to include a 

similarity term. This similarity term measures 



International Journal of Intelligent Systems and Applications in Engineering                                     IJISAE, 2024, 12(23s), 2155–2174 | 2163  

how closely the generated data resembles the 

real data, and encourages the GAN to generate 
data that has not only visual or structural 

resemblance but also mathematical similarity 

to the real data. 

The extended GAN loss function that includes 

a similarity term is expressed as: 

𝑀𝑖𝑛𝐺𝑀𝑎𝑥𝐷𝑉(𝐷, 𝐺) =

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑍~𝑝𝑧(𝑧)[(1 −

𝑙𝑜𝑔𝐺(𝑧))] + 𝜆. 𝑆𝑍(𝑥)               (2) 

 

G(z) is the synthetic data generated by the 

Generator from random noise z.D(x) is the 

Discriminator's prediction on whether a given 

sample xxx is real or 

generated,𝐸𝑥𝑝𝑑𝑎𝑡𝑎 (𝑥)denotes the expectation 

over real data samplesx.𝐸𝑍~𝑝𝑧(𝑥)denotes 

theexpectation over the random noise vectorz, 

which is used by the Generator to create 

synthetic data. 𝑆(𝐺(𝑍)𝑥)is a similarity 

measure between the generated data 

𝑆(𝐺(𝑍)𝑥)is and the real data x.λ is a weighting 

factor that controls the importance of the 

similarity term in the overall loss function. The 

extended GAN loss function with a similarity 

term is a powerful way to generate synthetic 

data that not only fools the Discriminator but 

also closely resembles the real data. By 

ensuring data similarity, the framework can 

maintain data integrity, reduce computational 

costs, and improve the efficiency of large-

scale data processing tasks, especially in 

sensitive fields like healthcare and financial 

services. The similarity term allows the GAN 

to learn more precise data distributions, 

making the model highly effective for 

applications that require accurate and realistic 

data generation. 

4.ACO for Data Routing 

Ant Colony Optimization (ACO) is utilized in 
cloud data routing to enhance data 

transmission by identifying the most effective 

and secure routes. This approach, which 

emulates ant behavior in finding optimal paths, 
seeks to boost both efficiency and security in 

cloud networks. The primary challenge lies in 

striking a balance between efficiency (such as 
reducing latency or transmission expenses) 

and security (including safeguarding data 

confidentiality and integrity). 

ACO is a nature-inspired optimization 

algorithm that draws from the way ants locate 
the shortest route between their nest and food. 

In data routing applications, each "ant" 

symbolizes a potential data packet path from 
source to destination. As these ants explore 

various routes, pheromone trails build up on 

the most favourable paths over time, 

encouraging subsequent ants to use these 

routes more frequently. 

To apply ACO to cloud data routing, the 

conventional ACO pheromone update rule is 

modified to incorporate a security component. 
This adaptation ensures that the system not 

only identifies the most efficient route but also 

takes into account security factors such as 
encryption strength, path vulnerabilities, or 

susceptibility to attacks.Thepheromone update 

rule in ACO is modified to include a security 

factor as follows: 

𝜏𝑖𝑗(𝑇 +) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗 + 𝛾. 𝑆𝑖𝑗

     

                (3) 

Where ,𝜏𝑖𝑗(𝑡) is the pheromone level on path 

at time(I,j)t.𝜌 is the evaporation rate of 

pheromones, which models the natural 

dissipation of pheromone strength over time. 
This prevents suboptimal paths from retaining 

high pheromone levels indefinitely.∆𝜏𝑖𝑗  is the 

pheromone deposit contributed by the ants that 

successfully used the path (i,j) This reinforces 

the attractiveness of this path if it was part of a 

successful or optimal route.𝑆𝑖𝑗  is the security 

measure for path (i,j) which accounts for the 

security attributes of the path, such as 
encryption strength, likelihood of data leakage, 

or vulnerability to attacks.𝛾is a security 

weighting factor that controls the influence 𝛾 

of the security measure 𝑆𝑖𝑗in the overall 

pheromone update process. A higher value of 

gives more importance to security in the 
routing decision, while a lower value focuses 

more on efficiency. 

By integrating Ant Colony Optimization 

(ACO) with a security factor, the proposed 

routing framework optimizes data transmission 

in cloud environments, addressing both 

efficiencyand security concerns. The new 

equation allows the routing algorithm to find 

the optimal paths for data transmission while 

taking into account potential security risks. 
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This leads to a more robust and secure data 

routing strategy, which is crucial for cloud-

based applications dealing with sensitive data, 

such as healthcare, financial services, and IoT 

systems. 

5.Cloud-Based Management (Key 

Optimization) 

 

The objective is to effectively handle and 

examine healthcare Big Data within a cloud-

based system while optimizing key 

management to strike an appropriate balance 

between security measures and operational 

efficiency. Effective key management is 

essential in cloud environments to safeguard 

sensitive healthcare information while 

reducing computational burden. The suggested 

approach introduces a key optimization 

technique that equilibrates security and 

performance based on two quantifiable factors: 

the strength of security measures and system 

efficiency. This approach aims to identify the 

ideal encryption key that provides robust 

protection while maintaining high-level 

performance in cloud-based data handling, 

retrieval, and storage operations [29]. The 

optimization of the encryption key KKK can 

be expressed as: 

𝑘𝑂𝑢𝑡𝑝𝑢𝑡 = arg 𝑚𝑎𝑥𝑘 (𝛼. 𝑆(𝑘)𝛽. 𝑃(𝑘) 

     

                (4) 

where𝑘𝑂𝑢𝑡𝑝𝑢𝑡  is the optimal key that balances 

security and performance.𝑆(𝑘) is a security 

measure for the key K, which could represent 
factors like encryption strength, resistance to 

attacks, or length of the key. 𝑃(𝑘) is a 

performance measure for the key K, capturing 
metrics such as encryption speed, system 

resource usage, and latency. 𝛼 and β are 

weighting factors that control the importance 

of security and performance, respectively. 
These parameters can be adjusted depending 

on the specific needs of the cloud 

environment. Thekey optimization strategy 
presented here provides a balanced approach 

to securely managinghealthcare Big Data in a 

cloud environment. By incorporating both 

security and performancemeasures, and using 

the weighting factors 𝛼 and β this method 

ensures the selection of an optimal encryption 

key that meets both security and efficiency 
requirements. This approach is highly 

applicable in healthcare and other industries 

where both data protection and system 
performance are critical for operational 

success. 

 

3.1. Generative Adversarial Networks 

(GAN) Layer in Healthcare Big Data 

Introduced by Ian Goodfellow and his team in 

2014, Generative Adversarial Networks 

(GANs) represent a category of machine 

learning systems. These frameworks comprise 

two neural networks a generator and a 

discriminator that undergo concurrent training 

through competitive processes. The generator's 

role is to produce artificial data samples, while 

the discriminator's task is to assess these 

samples against genuine data, striving to 

differentiate between the two [30]. 

Generator Network: The generator, denoted as 

G, accepts random noise z as input and creates 

data samples G(z). Its objective is to reduce 

the likelihood of the discriminator accurately 

identifying the generated data as artificial. 

.Loss Function 

𝑀𝑖𝑛𝐺𝑉(𝐺, 𝐷):𝐸𝑍~𝑝𝑧(𝑥)[log(1 − 𝐷(𝑧))]

                                           (5)  

Discriminator Network: The discriminator, D, 

receives both real data xx and generated data 

G(z) as input. Minimize the probability that 

the discriminator correctly identifies the 

generated data as fake 

 Loss Function 

:𝑀𝑖𝑛𝐺𝑉(𝐺, 𝐷):

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log(𝐷(𝑥))]𝐸𝑍~𝑝𝑧(𝑥)[log(1 −

𝐷(𝑧))]                (6) 

Adversarial Training:  The generator and 

discriminator are trained in a zero-sum game, 

where the generator aims to fool the 

discriminator, and the discriminator aims to 

correctly classify real and fake data [31]. 

Combined Objective:𝑀𝑖𝑛𝐺𝑀𝑎𝑥𝐷𝑉(𝐺, 𝐷)

     

                (7) 

Application in Healthcare Big Data 

 Data Augmentation: GANs can 

generate synthetic healthcare data that 

mimics real patient data, which is 
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useful for augmenting datasets, 

especially when dealing with rare 

conditions or small sample sizes. 

 Privacy Preservation: By generating 

synthetic data, GANs help in sharing 

healthcare data without compromising 

patient privacy, as the synthetic data 

does not directly correspond to real 

individuals. 

 Anomaly Detection: GANs can be 

used to identify anomalies in 

healthcare data by training the 

discriminator to recognize unusual 

patterns that deviate from the norm. 

 Data Imputation: GANs can fill in 

missing data points in healthcare 

datasets, improving data quality and 

completeness. 

Handling Healthcare Big Data: 

GANs can handle large volumes of data, 

making them suitable for Big Data 

applications in healthcare. The adversarial 

training process allows GANs to efficiently 

learn complex data distributions, which is 

crucial for modeling diverse healthcare 

datasets. Integration with Cloud Computing: 

GANs can be deployed in cloud environments 

to leverage computational resources, enabling 

real-time data processing and analysis Hence 

the GAN layer in the secure cloud-based 

management of healthcare Big Data plays a 

pivotal role in enhancing data quality, privacy, 

and utility. By generating realistic synthetic 

data, GANs facilitate advanced data analysis 

while maintaining patient confidentiality, 

making them an invaluable tool in modern 

healthcare data, management. 

3.4.Ant Colony Optimization (ACO) in 

Healthcare Big Data 

ACO [31], a nature-inspired algorithm created 

by Marco Dorigo in 1992, simulates ant 

foraging behavior to identify optimal routes 

between their nest and food. This technique 

has found widespread application in 

optimization challenges, including healthcare 

big data, where it assists with tasks such as 

feature selection, classification, and resource 

allocation. 

3.4.1.ACO in Feature Selection for 

Healthcare Big Data 

In healthcare big data analysis, feature 

selection plays a crucial role. This process 

involves choosing relevant attributes from 

extensive datasets to enhance model efficiency 

and decrease computational demands. In the 

healthcare context, this could entail identifying 

key variables (such as biomarkers or clinical 

indicators) from electronic health records 

(EHRs) or data collected by wearable devices 

to forecast diseases or enhance treatment 

strategies. 

Mathematical Formulation of ACO in 

Feature Selection 

ACO functions on the principle of pheromone 

trails, where each artificial ant constructs a 

solution based on the pheromone levels left by 

previous ants. In the context of feature 

selection, individual ants represent potential 

feature subsets. 

Ant Movement Rule: Ants choose features 

probabilistically, guided by pheromone trails 

and heuristic information (such as feature 

significance or relevance scores). 

𝑃𝑖𝑗(𝑡) =
𝜏𝑖𝑗(𝑡)𝛼.𝜂𝑖𝑗(𝑡)

𝛽

∑ 𝜏𝑖𝑘𝑘𝜖𝑓 (𝑡)𝛼.𝜂𝑖𝑘
𝛽   

     

  (8) 

Here, 𝑃𝑖𝑗(𝑡) and 𝜏𝑖𝑗(𝑡)represents the 

pheromone concentration on edge (j) at time 

(t), 𝜂𝑖𝑗(t)indicates the heuristic attractiveness 

(such as feature significance value),  α and β 

regulate the impact of pheromone and heuristic 
data, respectively and  F denotes the group of 

potential features 

Pheromone Trail Modification: Once all ants 

have completed their feature subset 

construction, the pheromone pathways are 

adjusted to strengthen effective solutions. 

𝜏𝑖𝑗(𝑇 +) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗 + 𝛾. 𝑆𝑖𝑗

     

   (9) 

Here, 𝜌represents the rate at which 

pheromones evaporate (0 < ρ < 1), preventing 

excessive accumulation of pheromones.∆𝜏𝑖𝑗(t) 
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is the pheromone deposit, which depends on 

the quality of the solution (fitness function). 

In the realm of healthcare big data, evaluating 

fitness functions typically involves measuring 

the effectiveness of selected features in 

predicting health outcomes or their 

classification accuracy. The application of Ant 

Colony Optimization (ACO) in healthcare 

extends beyond feature selection, 

encompassing the enhancement of various 

operational aspects such as resource 

distribution, appointment planning, and patient 

flow management within medical facilities. 

For instance, ACO can be employed to 

streamline the allocation of critical medical 

equipment like ICU beds and ventilators, with 

the aim of reducing waiting periods and 

preventing resource scarcity. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝐶𝑖,𝐷𝑖 ,)
𝑛
𝑖=1    

                                

(10) 

Here, 𝐶𝑖,The expense associated with 𝐷𝑖 , 

assigning resource i corresponds to the 

requirement for resource i. 

The goal is to minimize overall expenses while 
satisfying demand requirements. Ant Colony 

Optimization (ACO) can discover ideal or 

close-to-ideal solutions by mimicking the 

behavior of multiple ants exploring various 
allocation possibilities and adjusting 

pheromone trails according to the 

effectiveness of the solutions found. 

The following outlines the sequential steps of 

the process, divided into distinct segments: 

Step-1: Data Acquisition 

Healthcare information, encompassing 

electronic health records (EHRs), data from 

wearable devices, genetic information, and 

more, is gathered. Various data sources are 

consolidated into a comprehensive big data 

repository. This includes information such as 

patients' medical histories, results from 

laboratory tests, and information collected by 

sensors. 

Step 2: Data Preparation 

The raw data undergoes preparation processes, 

including cleansing, standardization, and 

feature encoding. These procedures involve 

addressing missing information, standardizing 

data formats, converting categorical variables 

into numerical representations, and adjusting 

feature scales to ensure uniformity. 

Step 3: Feature Selection Using ACO 

Ant Colony Optimization (ACO) is utilized to 

identify and choose relevant features from the 

extensive healthcare dataset. This process aims 

to enhance the performance of the model by 

selecting the most pertinent information. 

 

 

Equations for Ant Movement and 

Pheromone Update: 

Ant Movement Rule: 

𝑃𝑖𝑗(𝑡) =
𝜏𝑖𝑗(𝑡)𝛼.𝜂𝑖𝑗(𝑡)

𝛽

∑ 𝜏𝑖𝑘𝑘𝜖𝑓 (𝑡)𝛼.𝜂𝑖𝑘
𝛽   

                              

(11) 

Pheromone Update Rule: 

𝜏𝑖𝑗(𝑇 +) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗 + 𝛾. 𝑆𝑖𝑗

     

  (12) 

Step-4. GAN-Based Data Augmentation 

Employing GANs for artificial data creation. 

Generative Adversarial Networks produce 

synthetic healthcare information to supplement 

existing data. This technique aids in balancing 

datasets, especially when dealing with 

uncommon medical conditions. 

Step-5. Model Training 

Developing machine learning algorithms. 

Various models (such as CNNs, RNNs, or 

combined structures) are educated using both 

authentic and GAN-created synthetic data to 

forecast health results or categorize illnesses. 

Step-6. Evaluation of Model 

Assessing model effectiveness through 

performance indicators. The trained algorithms 

are examined using metrics including 

classification accuracy, precision, recall, and 
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F1-score, with a focus on predictions such as 

disease identification, treatment enhancement, 

or patient outcome forecasting. 

Step-7. Optimization Feedback Loop 

ACO pheromone updates and GAN 

modifications. The model's performance 

guides ACO in refining the feature selection 

process by altering pheromone trails, while 

GAN parameters are adjusted to produce 

improved synthetic data. 

Step-8. Deployment 

Implementing the refined healthcare model. 

The final algorithm is put into operation for 

real-time medical applications, including 

personalized treatment strategies, automated 

diagnostics, or hospital resource allocation. 

4.Result and analysis  

This study employs a tenfold cross-validation 

method to train the classifier using various AI 

and big data mining techniques, with 

validation through data mining approaches. 

The healthcare industry has experienced an 

exponential surge in digital information, 

resulting in massive datasets known as Big 

Data. Traditional storage systems face 

difficulties in managing these volumes, 

making analysis with conventional tools 

challenging. A viable solution is offered by 

cloud computing, which distributes large 

datasets across cloudlets, facilitating easier 

storage, management, and analysis of Big 

Data. However, concerns arise regarding 

potential data breaches and loss of user control 

when storing sensitive information in the 

cloud. To address these issues, this paper 

introduces a secure data storage framework 

that utilizes Ant Colony Optimization (ACO) 

and Generative Adversarial Networks 

(GANs).The process begins with data 

normalization using Filter Splash Z 

normalization. Subsequently, GANs are 

utilized to compute data similarities, ensuring 

integrity while reducing computational 

expenses. The proposed encryption method 

secures outsourced data from unauthorized 

access through encryption and decryption 

processes. 

The experiment utilized healthcare data from a 

major metropolitan area, obtained from the 

Kaggle database. Findings indicate that the 

proposed encryption technique enhances data 

privacy while minimizing time and financial 

costs associated with cloud-based storage of 

large datasets. Furthermore, the suggested 

framework has the potential to transform 

clinical decision-making by providing 

insightful data analysis while maintaining 

strict confidentiality and privacy standards. 

MATLAB played a crucial role in testing the 

model's effectiveness, further validating its 

applicability in real-world healthcare 

scenarios. 

 
Figure 4: Comparison of Accuracy with big data management techniques 
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This metric represents the percentage of 

correct predictions or successful operations 

performed by each technique. Higher accuracy 

indicates better performance. The GAN-ACO 

method shows the highest accuracy at 95%, 

suggesting it's the most effective for healthcare 

big data management. Apache Spark follows 

with 88%, then Hadoop Map Reduce at 85%, 

and MongoDB at 82%. 

 

 
Figure 5: Comparison of Computational cost performance 

 

The Proposed method was GAN-ACO which 

combines Generative Adversarial Networks 

with Ant Colony Optimization, demonstrates 

superior computational efficiency in handling 

large datasets within cloud environments 

figure 5. While it exhibits lower computational 

costs for smaller data volumes, its 

performance improves significantly as data 

size increases. At 10,000 GB, the system 

requires 130 computational units. Hadoop 

MapReduce, known for its batch processing 

capabilities, demands more computational 

resources, particularly with larger datasets. Its 

computational cost escalates dramatically to 

750 units for 10,000 GB of data, indicating 

potential inefficiencies when managing 

massive datasets compared to alternative 

models. Apache Spark, renowned for its in-

memory computing abilities, outperforms 

Hadoop in iterative processes. It shows 

moderate computational costs, especially for 

larger data volumes, requiring 350 units for 

10,000 GB, which is considerably less than 

Hadoop's 750 units. MongoDB, a NoSQL 

database optimized for scalable storage and 

retrieval, maintains relatively low 

computational costs. However, these costs 

increase steadily with data size, reaching 190 

units for 10,000 GB. Among all these systems, 

GAN-ACO exhibits the highest computational 

efficiency across various data sizes, making it 

the optimal choice for Big Data 

management.Hadoop MapReduce, while 

effective for batch processing, shows a higher 

computational overhead, especially for large 

data sets, making it less efficient for Big Data 

tasks.Apache Spark offers a balanced approach 

between performance and computational cost, 

particularly excelling in environments 

requiring iterative tasks.MongoDB remains a 

competitive choice for lower computational 

cost in scalable storage and query applications 

but scales less efficiently compared to GAN-

ACO and Spark for massive datasets. 
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Figure 6: Comparison for latency performance 

The GAN-ACO method demonstrated superior 

latency performance figure .6 across all data 

volumes. It exhibited the lowest latency, 

ranging from 5 ms for 100 GB to 280 ms for 

10,000 GB. This exceptional efficiency can be 

attributed to its adaptive nature and 

optimization techniques, combining 

Generative Adversarial Networks with Ant 

Colony Optimization. These characteristics 

make GAN-ACO particularly well-suited for 

applications requiring real-time processing and 

swift response times. Hadoop MapReduce 

displayed the highest latency among the 

compared methods. Its performance ranged 

from 25 ms for 100 GB to 1800 ms for 10,000 

GB. The substantial latency increase, 

especially with larger data sizes, is due to 

MapReduce's batch processing approach, 

which involves multiple I/O operation stages. 

This makes Hadoop more appropriate for 

extensive, time-insensitive batch operations. 

Apache Spark showed intermediate latency 

performance. Its in-memory processing 

capability resulted in lower latency compared 

to Hadoop, ranging from 12 ms for 100 GB to 

900 ms for 10,000 GB. While Spark performs 

more efficiently than Hadoop, particularly for 

iterative workloads, its increased complexity 

relative to GAN-ACO leads to longer response 

times. MongoDB exhibited balanced 

performance with latency ranging from 8 ms 

for 100 GB to 475 ms for 10,000 GB. As a 

NoSQL database, MongoDB is engineered for 

quick querying and managing large datasets. 

However, its performance for intensive data 

processing tasks still lags behind specialized 

models like GAN-ACO. The superior latency 

performance of GAN-ACO makes it the most 

suitable option for real-time data processing 

tasks. This comparison highlights the 

efficiency of each method in terms of latency, 

aiding in the selection of the most appropriate 

technique based on an application's real-time 

processing requirements. 

 
Figure 7: Comparison of Throughput performance 
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The GAN-ACO approach demonstrated 

superior performance with the highest 

throughput figure 7 across all data volumes. 

This model excels in handling substantial data 

quantities, achieving an impressive 80 GB/s 

throughput at 10,000 GB. The exceptional 

efficiency of GAN-ACO underscores the 

effectiveness of combining Generative 

Adversarial Networks with Ant Colony 

Optimization, making it an ideal choice for 

large-scale data processing, particularly in 

cloud-based environments. Hadoop 

MapReduce exhibited the lowest throughput 

performance. It begins with a 5 GB/s 

throughput for 100 GB and scales up to 18.18 

GB/s for 10,000 GB. The batch processing 

nature of Hadoop MapReduce results in 

increased latency and reduced throughput, 

especially as dataset sizes grow. While robust 

for certain processing types, it lags behind 

other methods in real-time or iterative tasks. 

Apache Spark showed moderate throughput 

performance. Known for its in-memory 

processing capabilities, Spark significantly 

enhances throughput compared to Hadoop. It 

starts at 10 GB/s for 100 GB and reaches 28.57 

GB/s at 10,000 GB. Spark's architecture is 

particularly well-suited for iterative 

workloads, offering greater efficiency than 

MapReduce for large datasets. MongoDB 

displayed competitive performance in data 

storage. It begins with 12.5 GB/s for 100 GB 

and scales to 35.71 GB/s for 10,000 GB. As a 

NoSQL database optimized for scalability, 

MongoDB provides commendable throughput 

when querying large datasets. It outperforms 

Spark and proves competitive for workloads 

involving complex queries on substantial data 

volumes. This comparative analysis aids in 

identifying the optimal data processing 

technique based on throughput, considering 

specific use cases and data sizes. 

 
Figure 8. Performance of security and privacy Comparison 

Figure 8. Security and Privacy Performance 

Evaluation of the GAN-ACO approach 

employs AES-256, a cutting-edge encryption 

standard that offers robust data protection, 

making unauthorized access extremely 

challenging. No security breaches have been 

reported for this method. The integration of 

Generative Adversarial Networks with Ant 

Colony Optimization not only enhances data 

processing efficiency but also provides 

superior security through advanced encryption 

protocols. GAN-ACO's Very High level of 

data protection makes it ideal for handling 

sensitive information in sectors like finance or 

healthcare where security is crucial. Hadoop 

MapReduce implements AES-128 encryption, 

which, while secure, is less robust than AES-

256. It has experienced 2 security breaches. 

The traditional batch processing framework 

and larger attack surface of Hadoop make it 

more susceptible to vulnerabilities, particularly 

in distributed systems with multiple data 
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nodes. Despite these breaches, Hadoop's 

security is considered High due to its extensive 

ecosystem of tools that can be layered to 

enhance protection (such as Kerberos 

authentication and encryption at rest), though 

it still falls short of more secure systems. 

Apache Spark utilizes AES-256 encryption, 

offering high-level protection comparable to 

GAN-ACO. It has recorded 1 security breach. 

Spark's in-memory processing architecture 

inherently provides better security, but like all 

systems, it has vulnerabilities, especially 

during large data transmissions and when 

handling unencrypted information. With High 

data protection, Spark is well-suited for secure 

data analytics, although occasional breaches 

highlight areas for improvement in data 

handling and network security. MongoDB also 

employs AES-256 encryption, safeguarding 

data both in transit and at rest. It has reported 1 

security breach, which can occur when default 

settings are not properly secured (e.g., open 

access to database instances). MongoDB offers 

High data protection through its default 

encryption and additional measures like access 

control lists and authentication mechanisms. 

However, it's essential for administrators to 

follow best security practices to prevent 

breaches. In terms of security and privacy 

performance, GAN-ACO leads the pack with 

its AES-256 encryption, zero breaches, and 

Very High data protection, making it the 

optimal choice for scenarios requiring 

stringent security measures. Hadoop 

MapReduce, while offering solid security 

features, lags behind due to its AES-128 

encryption and batch-based architecture, 

which increases its vulnerability. Both Apache 

Spark and MongoDB provide AES-256 

encryption and high data protection but have 

experienced occasional breaches, indicating 

room for further security enhancements. 

Table 2. Performance of Security and Privacy Comparison 

 

Technique Encryption Security Breaches Data Protection Level 

GAN-ACO AES-256 0 Very High 

Hadoop MapReduce AES-128 2 High 

Apache Spark AES-256 1 High 

MongoDB AES-256 1 High 

 

This table 2provides a comparison of security 

and privacy features for each technique: 

 Encryption: The encryption method 

used by each technique to secure data. 

 Security Breaches: The number of 

known security breaches for each 

method. 

 Data Protection Level: A qualitative 

assessment of the overall data 

protection provided. 

 

GAN-ACO uses AES-256 encryption, has had 

0 security breaches, and offers a Very High 

level of data protection. Hadoop MapReduce 

uses AES-128 encryption, has experienced 2 

security breaches, and provides a High level of 

data protection. Both Apache Spark and 

MongoDB use AES-256 encryption, have had 

1 security breach each, and offer a High level 

of data protection.GAN-ACO stands out with 

its perfect security record and very high data 

protection level. This could be due to the 

inherent security features of GANs, which can 

generate synthetic data for training purposes, 

reducing the exposure of real patient data. 

 

5.Conclusion  

The rapid expansion of digital information in 

healthcare has resulted in the creation of 

massive datasets, referred to as Big Data. 

Conventional data storage systems struggle to 

manage such vast quantities of information, 

making analysis with standard tools difficult. 

Cloud computing has emerged as a viable 

solution to tackle the challenges of Big Data 

management, storage, and analysis by 

distributing large datasets across a network of 

cloudlets. However, concerns about data 

breaches and limited user control arise when 

storing sensitive information in the cloud. 

This study introduces a framework for secure 

data storage utilizing Ant Colony Optimization 

and Generative Adversarial Networks (GANs). 

The process begins with data normalization 
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using Filter Splash Z normalization, followed 

by the application of GANs to assess 

similarity, ensuring data accuracy and 

reducing computational expenses. The 

proposed encryption strategy is employed to 

safeguard outsourced data, protecting 

confidential information from unauthorized 

access. The research was conducted using 

health data from a major city, obtained from 

the Kaggle database. The recommended 

encryption method enables users to maintain 

privacy while reducing time and costs 

associated with storing substantial amounts of 

data in the cloud. 

The proposed framework has the potential to 

transform clinical decision-making in 

healthcare by offering insights into data while 

maintaining the highest standards of 

confidentiality and privacy. The model for 

secure cloud-based management of healthcare 

big data, which incorporates GANs and Ant 

Colony Optimization (ACO), demonstrates 

considerable effectiveness in improving 

security, privacy, and data integrity. GANs 

provide adaptive data generation and robust 

privacy protection, minimizing the risk of 

exposing sensitive patient information. ACO 

complements this approach by optimizing 

secure data routing and encryption 

management, ensuring efficient and secure 

data handling across cloud infrastructures. 

This integrated approach addresses current 

security challenges and establishes a 

foundation for scalable and resilient healthcare 

data systems. 

Future research directions could explore 

integrating this model with emerging 

technologies such as block chain to enhance 

data traceability and security. Investigating 

methods to further optimize the model's 

scalability and performance, particularly in 

handling large-scale healthcare datasets, would 

be advantageous. Developing capabilities for 

real-time data processing and analysis could 

support timely decision-making in healthcare 

settings. Ensuring the model's compatibility 

with various cloud platforms and healthcare 

systems would facilitate widespread adoption. 

Further enhancing user privacy measures, 

possibly through advanced cryptographic 

techniques, could address evolving privacy 

concerns. These areas represent promising 

avenues for future research and development, 

aimed at refining and expanding the 

capabilities of the proposed model in secure 

healthcare data management. 
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