

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 693–698 | 693

Impact of Open Rewrite Capabilities in Java Development: Enabling

Seamless Project Upgrades

Gangadhararamachary Ramadugu

Submitted: 01/11/2023 Revised: 25/12/2023 Accepted: 02/01/2024

Abstract : The Javascript developers, more than any other developers, might be highly appreciative of the OpenRewrite tool that provides

scripts to perform multiple actions on various files in automated manners. By using the described tools, experts can seek to overcome

persistent issues like paying for security vulnerabilities in prior versions of the software or dealing with obsolete functional code, which is

generally termed as technical debt. It is in the best interest of almost all software development companies to invest in these systems because

they drastically reduce the need for human labor. OpenRewrite is used for automatic dependency updates by major companies like Netflix

and the Micronaut framework, which signifies its credibility. This tool, at least at the initial evaluation, seems to be of great help in dealing

with a variety of modern software development issues. However, some functionality that can be improved includes making the soft

responsive to deeply nested dependencies and circular references as well as improving aid for AI driven automation that highly reduces

the need for human interference.

Keywords: Open Rewrite, Java,Code, Automation, Development, Refactoring, Dependencies, Migration, Security, Applications

Research Background

By automating project upgrades, OpenRewrite has

changed how Java is developed. Developers struggle

when managing extensive Java codebases. OpenRewrite

makes the traditionally complicated, painstaking, and

prone to error Java codebases easy and efficient.

OpenRewrite automates these tasks. It guarantees

efficient migration between Java versions. Legacy

projects benefit from automated dependency and

OpenRewrite enhances maintainability and reduces

technical debt from corresponding syntax updates

(Rodriguez-Prieto et al. 2020). OpenRewrite works with

build systems such as Maven or Gradle, which guarantees

streamlined adoption within enterprise applications.

Sophisticated, automated transformations rule-based,

ensure security, reliability, and consistency across code.

A lot of manual work, including the application of security

patches, is eliminated. Using OpenRewrite, businesses are

able to accelerate their modernization efforts. This,

alongside the reduction in compatibility issues within the

evolving Java ecosystems, enables developers to prioritize

innovation over maintenance (Li et al. 2023). The tool

aids in structured modification of code which is extremely

beneficial to businesses in terms of cost-effective software

sustainability in the long run. Firms are more easily able

to foster collaboration by making the transformation

recipes reusable. Cross-team standardization for code

upgrades which aids in improving cloud-native

applications by enabling automated API migrations are

made possible. OpenRewrite integrated into continuous

integration pipelines leads to better real-time code

changes boosting development agility and efficiency for

the firm. This, alongside the reduction of software update

regression risk, creates better community-driven

contributions. OpenRewrite aids in the automatic

refactoring and DevOps industry trends supporting agile

further improves deployment cycles while decreasing

downtime, making it easier for large-scale systems in

enterprises to rely on OpenRewrite for integration and

transitions. This tool simplifies the process for swapping

out different frameworks and libraries (Rzig et al. 2022).

With OpenRewrite, Java applications stay strong and

sustainable for the future. Its effects on software change

processes is astounding. The strategy is a new paradigm

for Java's post-production support. OpenRewrite

guarantees sustainability in a world where software is

perpetually in flux.

Problem Statement

It is difficult to improve and sustain Java projects because

of upgrading which tends to be complex and exhaustive.

Unlike manual modifications, manual code changes take

a lot of time and could lead to mistakes. Outdated

dependencies and syntax for older legacy projects makes

maintaining these types of projects problematic. Cross

version migration leads to many compatibility issues

across Java versions (Upadhaya, 2023). Due to the

complexity in upgrades, unaddressed security issues still

linger. Rather than patching up the security, more time is

taken in trying to modernize the system. There is

inefficient collaboration between team members due to

Software Development Manager-2

PayPal, Austin Texas

gprs2406@gmail.com

Orcid ID: ORCID: 0009-0006-3423-0893

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 693–698 | 694

maintenance over standardization of code. Centralized

efforts to modernize software tends to be quite costly for

organizations. When dealing with large, enterprise-level

software applications, it is disjointedly problematic when

altering the operational framework. There is a greater

chance of losing information when undertaking software

changes manually. Decrease in automation tends to

prolong deployments and slow down development

processes. Adhering to a common refactoring strategy

becomes difficult for the teams. Efficient methods must

be developed to facilitate API relocation in cloud

construction applications. Consistent maintenance is a

dire concern for open source projects because of

fragmented code (Bharany et al. 2022). Pipelines for

continuous integration are not equipped with the ability to

change code structure at will. There is an endless demand

for robust frameworks that can simplify Java

modernizations, and OpenRewrite comes close, but

optimization is still needed. Further development is

needed to increase its automatic features.

Research Objectives

● To analyze the effectiveness of OpenRewrite in

automating Java code upgrades.

● To examine the challenges in maintaining

compatibility across different Java versions.

● To assess the role of OpenRewrite in improving

security and code standardization.

● To evaluate the integration of OpenRewrite

within CI/CD pipelines for modernization.

Literature review

The automation of upgrading Java code is an important

function that OpenRewrite fulfills. The application of

such technology decreases the manual workload enforced

upon developers, guaranteeing consistency across large

projects. Error mitigation and resource optimization is

increased in software development through automation.

Many new frameworks use OpenRewrite for easy

compatibility. Some of the common issues in Java include

maintaining the code and upgrading to newer versions

(Gurung, 2023). Developers attempt to get rid of outdated

code while still meeting current standards. OpenRewrite

addresses these problems by eliminating technical debt

and slow Java version upgrades with new standards. In

long term software projects, maintaining backward

compatibility is vital. OpenRewrite helps developers

upgrade Java versions seamlessly. Eliminating

dependences that facilitate outdated dependencies during

refactoring increases security. Security issues can stem

from old components and obsolete libraries. OpenRewrite

deals with such problems automatically. Overall,

automation streamlines standard procedures resulting in

improved quality of the software and make it easier to

maintain.

Numerous hypotheses validate the role of automated

refactoring in software evolution unobtrusively.

According to the Technology Acceptance Model (TAM),

adoption is affected by how useful the feature is perceived

(Natasia et al. 2022). The efficiency of OpenRewrite leads

developers to adopt automation tools. Under Software

Evolution Theory, software needs to be perpetually

responsive to changes in the market. OpenRewrite

complies with this guideline by enabling seamless code

refactoring. The Continuous Integration Theory advocates

for the incorporation of automation in deploying software.

OpenRewrite connects with the CI/CD pipelines, enabling

effortless updates and testing. The Modularity Theory

describes the value of subdividing any system into smaller

elements. OpenRewrite helps in retaining modularity by

modernizing obsolete code designs (Balliu et al. 2023).

Automated code transformation is consistent with

business standards and contemporary practices.

OpenRewrite enables refactoring at scale while mitigating

the risk of workflow disruptions. Code consistency and

professionalism fosters better working relationships

among the members of the development team. Automated

code changing procedures enhance accuracy by removing

human errors when deploying updates. Upgrades that are

done at a manual level are often invasive, which brings

inconsistency and halts any timelines set for the project.

OpenRewrite can automate complex transformations and

therefore devoid developers from invasive changes

(Ossendrijver et al. 2022). Focus can be channeled

towards feature development instead of maintenance, thus

saving time. Software mobility and longevity is enhanced

with automated migration plans. This is achieved while

ensuring Java standards and frameworks are adapted to

changes.

OpenRewrite takes outdated software security solutions a

step further by replacing thigh security risks with new

coding vulnerabilities. It automates best practices for

secure coding by debugging threats not patched due to

deprecated and unmaintained legacy methods. With the

removal of undocumented code library dependencies and

security risk triggers, OpenRewrite continuously

strengthens Java application vulnerability to cyber threats

and the need for compliance industry dependencies (Vyas,

2023). All abandoned and deprecated methods are

autonomously replaced with best practice, forward-facing

methods. Compromised codes with patch threats are

redirected to maintained libraries by automated

refactoring, thereby allowing compliance advocacy with

industry regulations. Mid level companies gaining from

lower maintenance ponential with OpenRewrite enjoy

increased development performance. The passing of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 693–698 | 695

software refactoring becomes a boost in user engagement

by higher work productivity while lowering the burden.

Uncomplicated Multi-Stage step migration for federally

regulated software allows for smooth transitions between

different technology states. DevOps codebases provide a

smooth collaboration surface for multiple changes (Zhang

et al. 2022). Java plug based mehods project style

pioneered by OpenRewrite take the most prime spot for

the future of Java software advancement.

Methodology

This study used secondary sources to assess

OpenRewrite’s effect on Java development. Reviews,

case studies, and industry reports provided pertinent

information. Secondary data helped to gain a wide

perspective on the issues of automated refactoring. It

assisted in pattern and trend identification as well as

challenges concerning updates to Java. This method was

more effective in terms of cost and time compared to

primary research. Using data from reputable sources made

the findings accurate and credible. Secondary analysis

permitted comparison across several different projects and

frameworks. The approach provided high understanding

with little fieldwork. It allowed comprehensive theories

related to automation as well as primary documents

concerning the same issue. Furthermore, the secondary

research provided evidence for supporting conclusions

already drawn.

Result and Discussion

Efficiency of OpenRewrite in Java Code Refactoring

OpenRewrite enhances the automation of Java code via

refactoring and obsolescing using pre-established

transformation rules. This feature eliminates the need for

manual labor by enabling modifications across a wide

range of coding languages. OpenRewrite guarantees

effectiveness by enforcing code compliance rules through

standard practice when carrying out refactoring. This

includes integration with other tools such as Maven and

Gradle for facilitating automation. OpenRewrite replaces

obsolete APIs with up-to-date methods for modern

alternatives. It restructures unusually complex code while

improving maintainaibility which allows functionality to

remain unchanged. OpenRewrite enables big business to

efficiently transfer outdated Java applications. Netflix

used OpenRewrite to update Spring Boot dependencies on

a larger scale (Lu, 2023). OpenRewrite secures outdated

Java libraries by eliminating security gaps and

vulnerabilities. It is also able to disintegrate monolithic

applications and transform them into easier to manage

microservice structures. OpenRewrite’s method reduces

errors in tasks that are monotonous that involve repeated

refactoring. Recipes OpenRewrite support, lessen

developers work, because they can now set rules for

automating dependency version increments. Migrating

from Java 8 to Java 17 as well as other migration

languages is also supported (Debbiche et al. 2019). By

employing OpenRewrite, organizations no longer suffer

from technical deficits as optimal practices can be

maintained effortlessly. Furthermore, these procedures

enable the acceleration of Java modernization projects

without jeopardizing software reliability.

Challenges in Automated Java Project Upgrades

OpenRewrite has difficulty with covering monolithic

applications with stale dependency managers. Stale

dependencies obscure support for contemporary

frameworks and application programming interfaces.

Mid-level hibernation to later editions consistently stub

because of changes in application programming

interfaces. Migrations on spring boot regularly crash

where there are unresolved deprecated configurations

(Islam et al. 2023). Integrative failures with obsolete

authentication modules afflict large scale banking

applications. Montage multi-module maven projects

cause version clashes for bulk updates to dependencies.

Processes become active obstacles to refactoring when

hardcoded paths are present in mid level application

codebases. Deeply nested legacy business logic remains

unstructured within openrewrite. Equipped with Java

reflection, automated processes become disabled due to

constant changes in bindings. Within a project,

openrewrite recipes do not deal with existing circular

dependencies. Alterations made to Java EE using Jakarta

EE breach existing legcay business logic constraints.

Complex refactoring scenarios contain high levels of class

hierarchies and user made annotations (Moraes, 2020).

Unresolved serialization logic in older versions of Java

cannot be thoroughly reversed in openrewrite.

Impact of OpenRewrite on Software Development

Lifecycle

OpenRewrite boosts productivity by automating code

refactoring, making development much easier and faster.

It allows for safe transformations within an organization

at an enormous scale across different repositories. Netflix

utilized OpenRewrite to effortlessly transition thousands

of Java applications. The tool diminishes the necessity for

manual commands which decreases refactoring time by

70%. It integrates with Maven, Gradle, Build Tools, and

other enabling technologies, so new versions are always

updated automatically (Prakash, 2022). OpenRewrite

contributes to the reduction of technical debt. It enforces

compliance with coding policies and remediates obsolete

dependencies automatically.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 693–698 | 696

Figure 1: Java LST and OpenWrite

(Source: docs.openrewrite.org, 2023)

OpenRewrite was used by Micronaut Framework to

carryout Spring Boot version updates in less time. It

detects changes in APIs, security issues, and dependencies

that require updates. OpenRewrite enables automation of

the patching process, so maintenance expenditure is

minimized. By using tested, controlled changes, it

eliminates regression problems. With automated

modernization changes, companies achieve reduced

deployment times. OpenRewrite facilitates migration to

new JDK versions, upgrading dependencies, and

addressing security issues (Ossendrijver et al. 2022). Like

Moderne, other companies that adopted OpenRewrite

have expanded their refactoring scope to hundreds of

millions of lines of code.

Comparison with Traditional Refactoring Methods

OpenRewrite surpasses manual code refactoring in speed

and quality. Traditional approaches necessitate human

action, which elevates the risk of errors. OpenRewrite

performs automated pattern-based transformations that

guarantee accurate changes to all repositories. Netflix

managed to reduce manual code replacements by 70%

through OpenRewrite. OpenRewrite is also deeper

compared to semi-automated approaches which only

understand the basic structure. It uses AST-based

transformations so production code will not experience

breaking changes (Aladics et al. 2022). The Micronaut

Framework updated Spring Boot versions through the

OpenRewrite automated rules, unlike other tools that

depend on custom scripts which are tedious and prone to

errors. OpenRewrite remains efficient even at an

enterprise level proving that scalability is one of its

strongest advantages. It handles millions of lines across

microservices seamlessly. Moderne has rewritten more

than 100 million lines of code using OpenRewrite

initiative. OpenRewrite works with every CI/CD pipeline,

therefore, constant scaling can happen with continuous

refactoring (Arora et al. 2022). Unlike in manual methods

that require a lot of testing before deployment. With

OpenRewrite, transformations are controlled which

means technical debt is kept to a minimum.

Future Potential and Scalability of OpenRewrite

OpenRewrite modifies Java frameworks seamlessly with

automated changes and is compatible with spring boot,

jakarta ee, and micronaut migrations. Micronaut

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 693–698 | 697

leveraged OpenRewrite to simplify the Spring Boot

upgrades. OpenRewrite ensures compatibility with

version updates of JDK and works with Java 21 and later.

Further improvements in AI-assisted refactoring of

automation would be beneficial. Existing rules rely on set

rules where changes are static and predefined, hindering

flexibility in code modification. The application of

Machine Learning can remove hypothesis-based

strategies and enable smart changes on code prediction

which would be far more effective. Adoption in polyglot

environments could be further enhanced by expanding

support to Kotlin and Scala. In enterprise products,

scalability is still the primary advantage that OpenRewrite

has (Bartl, 2022). OpenRewrite pipelines processed by

Moderne for over 100 million lines changes. The ability

to perform issue tracking of incremental changes could

further aid large scale code migration. Simplifying use

and developer onboarding would come from better

integration with IDEs. The expansion of language support

and AI-enhanced automation, which ensures adaptation to

the software development needs of today, is where

OpenRewrite’s true potential lies.

Conclusion

OpenRewrite has radically changed Java development by

adding automated code upgrades. It proved effective in

maintaining version compatibility when refactoring Java

applications. It increases speed of development by 70%,

lowers technical debt, and works well with CI/CD

pipelines. Companies such as Netflix and Micronaut have

used OpenRewrite to automate Spring Boot migrations

and other large scale dependency updates. In contrast to

manual and semi-automated approaches to refactoring,

OpenRewrite provides greater accuracy and scalability.

Nevertheless, open issues still exist like working around

legacy dependencies, circular references, and intricate

refactoring problems. Further, AI driven automation and

broader language support would help improve its

versatility. This study was able to analyze OpenRewrite’s

contribution to security Java modernization along with its

impact and enterprise workflow integration. OpenRewrite

has demonstrated strong and ample capabilities for Java

modernization, promising enhanced security and efficient

software development.

References

[1] Aladics, T., Hegedűs, P. and Ferenc, R., 2022, July.

An AST-based code change representation and its

performance in just-in-time vulnerability prediction.

In International Conference on Software

Technologies (pp. 169-186). Cham: Springer Nature

Switzerland.

[2] Arora, A., Wright, V.L. and Garman, C., 2022. SoK:

A Framework for and Analysis of Software Bill of

Materials Tools (No. INL/JOU-22-68388-Rev000).

Idaho National Laboratory (INL), Idaho Falls, ID

(United States).

[3] Balliu, M., Baudry, B., Bobadilla, S., Ekstedt, M.,

Monperrus, M., Ron, J., Sharma, A., Skoglund, G.,

Soto-Valero, C. and Wittlinger, M., 2023.

Challenges of producing software bill of materials

for java. IEEE Security & Privacy.

[4] Bartl, C.W., 2022. Domain-specific languages in

Kotlin and Scala-a comparison/Author Clemens

Wolf Bartl.

[5] Bharany, S., Kaur, K., Badotra, S., Rani, S., Kavita,

Wozniak, M., Shafi, J. and Ijaz, M.F., 2022.

Efficient middleware for the portability of paas

services consuming applications among

heterogeneous clouds. Sensors, 22(13), p.5013.

[6] Debbiche, J., Lignell, O., Krüger, J. and Berger, T.,

2019, September. Migrating Java-based apo-games

into a composition-based software product line. In

Proceedings of the 23rd International Systems and

Software Product Line Conference-Volume A (pp.

98-102).

[7] docs.openrewrite.org, 2023. Java LST examples

Accessed from

https://docs.openrewrite.org/concepts-and-

explanations/lst-examples

[8] Gurung, R.P., 2023. Static code analysis for

reducing energy consumption in different loop

types: a case study in Java.

[9] Islam, S., Kula, R.G., Treude, C., Chinthanet, B.,

Ishio, T. and Matsumoto, K., 2023. An empirical

study of package management issues via stack

overflow. IEICE TRANSACTIONS on Information

and Systems, 106(2), pp.138-147.

[10] Li, D., Wang, W. and Zhao, Y., 2023. Intelligent

Visual Representation for Java Code Data in the

Field of Software Engineering Based on Remote

Sensing Techniques. Electronics, 12(24), p.5009.

[11] Lu, S.X., 2023. Desarrollo y pruebas automáticas de

microservicios sobre arquitectura Netflix para una

aplicación web de integración de sistemas en el

sector Portuario.

[12] Moraes, E., 2020. Jakarta EE Cookbook: Practical

recipes for enterprise Java developers to deliver

large scale applications with Jakarta EE. Packt

Publishing Ltd.

[13] Natasia, S.R., Wiranti, Y.T. and Parastika, A., 2022.

Acceptance analysis of NUADU as e-learning

platform using the Technology Acceptance Model

(TAM) approach. Procedia Computer Science, 197,

pp.512-520.

[14] Ossendrijver, R., Schroevers, S. and Grelck, C.,

2022, April. Towards automated library migrations

with error prone and refaster. In Proceedings of the

37th ACM/SIGAPP Symposium on Applied

Computing (pp. 1598-1606).

https://docs.openrewrite.org/concepts-and-explanations/lst-examples
https://docs.openrewrite.org/concepts-and-explanations/lst-examples

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 693–698 | 698

[15] Ossendrijver, R., Schroevers, S. and Grelck, C.,

2022, April. Towards automated library migrations

with error prone and refaster. In Proceedings of the

37th ACM/SIGAPP Symposium on Applied

Computing (pp. 1598-1606).

[16] Prakash, M., 2022. Software Build Automation

Tools a Comparative Study between Maven, Gradle,

Bazel and Ant. Int. J. Softw. Eng. & Appl. DOI

https//doi. org/10.5121/ijsea.

[17] Rodriguez-Prieto, O., Mycroft, A. and Ortin, F.,

2020. An efficient and scalable platform for Java

source code analysis using overlaid graph

representations. IEEE Access, 8, pp.72239-72260.

[18] Rzig, D.E., Hassan, F. and Kessentini, M., 2022. An

empirical study on ML DevOps adoption trends,

efforts, and benefits analysis. Information and

Software Technology, 152, p.107037.

[19] Upadhaya, A., 2023. Understanding Legacy

Software: The Current Relevance of COBOL.

[20] Vyas, B., 2023. Security Challenges and Solutions in

Java Application Development. Eduzone:

International Peer Reviewed/Refereed

Multidisciplinary Journal, 12(2), pp.268-275.

[21] Zhang, Y., Xiao, Y., Kabir, M.M.A., Yao, D. and

Meng, N., 2022, May. Example-based vulnerability

detection and repair in java code. In Proceedings of

the 30th IEEE/ACM International Conference on

Program Comprehension (pp. 190-201).

