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Abstract: The growing adoption of deep learning within the domain of medical imaging has yielded substantial enhancements in the 

capabilities of computer-assisted diagnosis and prognosis. However, the ability to interpret and explain the decisions made by these models 

continues to pose a significant obstacle, which impedes their successful integration into clinical practice. This review paper explores a 

hybrid approach that leverages the Gradient-weighted Class Activation Mapping technique and the Shapley Additive Explanations 

technique to bridge the artificial intelligence explainability gap in cardiac imaging. The paper discusses the strengths and limitations of 

these techniques, their application in cardiac imaging, and the potential for integrating them into a machine learning pipeline for robust and 

trustworthy artificial intelligence systems. Furthermore, it emphasizes the significance of developing artificial intelligence systems that are 

clinically translatable, addressing the explainability gap between clinical experts and non-experts. This ensures wider inclusion of diverse 

stakeholders involved in patient care, ultimately leading to improved patient outcomes and enhanced trust in AI-driven healthcare solutions. 
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Introduction 

Cardiovascular diseases have been a major death-leading 

cause worldwide, driving extensive research efforts to 

enhance diagnostic and prognostic capabilities [1], [2]. 

Technological breakthrough within the artificial 

intelligence (AI) domain have revolutionized the field of 

cardiac imaging, enabling more efficient and personalized 

patient care [3]. However, the opaque decision-making 

process of numerous AI models presents a substantial 

obstacle, hindering the absolute adoption of these 

techniques in clinical practice [1]. Explainable Artificial 

Intelligence (XAI), a recent paradigm, aims to address the 

issue of AI model opacity through making the decision 

processes more transparent and understandable [4]. 

Over the past decade, scholars have developed various XAI 

models to improve the interpretability of diverse machine 

learning (ML) algorithms, with a particularly focus on the 

domain of cardiac imaging. According to [5], Gradient-

Weighted Class Activation Mapping (Grad-CAM), SHapley 

Additive exPlanations (SHAP), and Local Interpretable 

Model-Agnostic Explanations (LIME) are identified as 

three of the most effective XAI techniques employed in this 

domain. [5]. While these XAI techniques offer promising 

outcomes, it is apparent that they possess distinct limitations 

and drawbacks [6]. For example, saliency-based methods 

like Grad-CAM can have problems like localization errors 

and insensitivity to specific model architectures [5] as well 

as occlusion [7]. Similarly, Patricio et al. [8] posit that 

perturbation-based model explanations like SHAP may 

struggle to adequately capture the complex, non-linear 

relationships inherent to medical imaging data. A further 

limitation of these techniques is the challenge in quantifying 

the Grad-CAM output, despite its demonstrated 

effectiveness in interpreting and visualizing deep learning 

models [8]. Additionally, SHAP can be computationally 

demanding and less scalable when applied to high-

dimensional data [9], [10], [11]. 

To address these limitations and leverage the strengths of 

these popular techniques, a number of researchers have 

attempted a hybrid model for enhanced interpretability [8], 

[12]. This study presents a non-exhaustive literature review 

to evaluate the effectiveness of a hybrid framework that 

integrates Grad-CAM and SHAP to augment the 

interpretability of deep learning models (DLM) applied to 

the domain of cardiac imaging. The goal is to bridge the 

divide that lies between AI-driven decisions and the 

understanding of clinical procedures among both expert and 

non-expert users. 

This study offers a key contribution by addressing the 

fundamental need for intelligible and transparent 

explanations of AI-driven decisions in medical applications. 

Furthermore, the study identifies specific challenges 

associated with applying the SHAP technique to complex 

cardiac imaging data, such as computational demands and 

visual complexity. The proposed hybrid approach, which 

combines Grad-CAM and SHAP, is shown to mitigate these 

limitations, presenting a more practical and effective XAI 
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solution. Finally, recognizing the significance of robust 

evaluation, this work emphasizes the importance of 

developing methodologies to quantify the impact of hybrid 

XAI models on clinical judgment and patient outcomes in 

the domain of cardiac imaging, paving the way for future 

research in this critical area. 

Explainable AI (XAI) 

XAI is a rapidly emerging field that focuses on developing 

AI models which are not only accurate but also transparent 

and interpretable [13], [14]. The ultimate goal of XAI is to 

create AI systems that can explain their decision-making 

process in a way that humans can understand and trust [15], 

[16], [17]. This is particularly crucial in sensitive domains 

like healthcare, where AI-based decisions can have 

significant impact on patient outcomes [18], [19]. 

Explainability AI Taxonomy 

Researchers [19], [20] have broadly categorized the XAI 

models into two, intrinsic and post-hoc methods. While 

intrinsic methods like decision trees, linear regression, and 

logistic regression are inherently interpretable and are 

considered “ante-hoc” or “transparent” XAI models [20], 

[21] post-hoc methods are “black box” models that require 

additional explanations to understand the reasoning behind 

the predictions [20], [22]. The latter category is further 

subdivided into two, model-specific and model-agnostics.  

XAI explanations can be further classified into two primary 

categories according to the scope of the explanation: global 

and local. An explanation focused on a specific prediction 

or output is considered a local perspective, whereas an 

explanation encompassing the entirety of the model is 

regarded as a global perspective [20]. This work references 

the comprehensive taxonomy of XAI models adopted in 

[20] work as summarized and illustrated in Figure 1. 

Grad-CAM and SHAP as XAI Techniques 

The two XAI techniques central to this review are Grad-

CAM and SHAPley Additive Values.  

Gradient-Weighted Class Activation Mapping 

Gradient-Weighted Class Activation Mapping (Grad-CAM) 

is a popular visual explanation technique that generates 

saliency maps to highlight the regions in an input image that 

are most influential in the model’s decision-making process 

[21], [23]. 

Grad-CAM technique essentially uses the gradients of the 

target class flowing into the final convolutional layer to 

produce a coarse localization map highlighting the 

important regions in the input image [24]. Explanations in 

Grad-CAM are considered local as they provide insights 

into the model’s logic for a specific input [25]. Although 

Grad-CAM is a powerful XAI tool, it lacks the ability to 

quantify its output, which can be challenging for both 

experts and non-experts to accurately interpret the results 

[26]. 

SHapley Additive exPlanations 

SHAPley Additive Values is a model-agnostic technique 

that provides both local and global explanations [27]. SHAP 

values quantify the contribution of each feature to the 

model’s output for a specific instance, providing a detailed 

understanding of how the model arrived at a particular 

prediction [27], [28]. SHAP technique emerged from the 

game theory concept of Shapley values, which provides a 

principled way to allocate the output of a model among its 

input features [29]. SHAP values have been widely adopted 

in the field of XAI due to their theoretical grounding and 

ability to handle complex, non-linear relationships [30]. 

Comparative studies of SHAP, LIME and other 

permutation-based models have demonstrated the superior 

performance of SHAP in terms of accuracy, consistency, 

and computational efficiency [31], [32]. 

Explainability in AI-Driven Cardiac Imaging Diagnosis 

In researching the intersection of AI and healthcare, 

particularly in cardiovascular diagnosis, it becomes crucial 

to explore how explainability can enhance trust and 

understanding among diverse stakeholders [29]. Gunning et 

al. [29] further state that the establishment of trust is pivotal 

for the smooth integration of AI-driven technologies into 

clinical practice. This trust promotes collaborative 

partnerships between healthcare professionals and patients, 

ensuring that critical medical decisions are informed by 

transparent and interpretable data [19], [30].  

In recent years, Grad-CAM has gained significant attention 

as a visualization technique that facilitates the interpretation 

of convolutional neural network decisions, particularly 

within the medical imaging domain [33], [34]. Jahmunah et 

al. and Sakai et al. [35], [36] add that the technique has 

proven to be invaluable in providing insights into the areas 

of an image that most substantially contribute to a model's 

predictions, thereby enabling clinicians to better 

comprehend and validate AI-driven assessments. Although 

Grad-CAM visualizations have revealed considerable 

promise, challenges persist in providing coherent 

explanations that can be comprehended by all stakeholders 

engaged in patient care. A very serious concern of these 

visual interpretable models is their lack of quantitative 

evaluation metrics, which complicates the process of 

assessing their reliability and effectiveness in clinical 

settings [34]. Other challenges associated with heatmap-

based interpretable methods, like Grad-CAM, include the 

potential for misinterpretation of the results, which can lead 

to erroneous conclusions that may adversely impact patient 

outcomes [37].  
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Fig. 1. An illustration of Comprehensive XAI Taxonomy 

SHapley Additives values exPlanations (SHAP), on the 

other hand, offers a more robust approach to understanding 

model predictions by providing consistent and theoretically 

grounded explanations [38], [39]. Dewi et al. and Sheu et al. 

[24], [27] describe SHAP as a XAI technique that quantifies 

the individual contribution of each input feature to the 

model's predictions, allowing clinicians to understand more 

the underlying factors critical to model’s decision. SHAP 

explanations are more intuitive and easier to communicate 

to stakeholders as every feature’s impact is presented in a 

clear and comprehensible manner, facilitating informed 

decision-making in clinical settings [22].  

A Hybrid XAI Approach for Cardiac Imaging 

Explainability 

Salau et al. [40] characterize medical data as extensive and 

intricate, which poses obstacles to efficient analysis and 

interpretation. Hou et al. and Li et al.’s [11], [41] study 

describe the heterogeneous nature of cardiac data and the 

intricacy of DLM as the instrumental factors that 

necessitated the development of various XAI techniques to 

address the black-box problem within this domain. Several 

studies have explored the individual application of Grad-

CAM [25], [42], [43], [44] and SHAP [9], [45], [46], [47], 

[48] in the domain of cardiac imaging, outlining their 

distinct drawbacks and caveats [9], [10]. Recognizing the 

complementary nature of these techniques, researchers have 

proposed hybrid approaches that leverage the strengths of 

both methods [49], [50] or either of them with other methods 

to enhance the interpretability of AI-driven cardiac 

diagnostics [51]. 

The existing literature features studies that have paired 

Grad-CAM or SHAP with other techniques to augment the 

interpretability of AI-driven explanations in cardiac 

imaging applications. For instance, [52] utilized SHAP and 

LIME in their study to understand the rationale behind the 

outcome of their stroke prediction model. [53] employed 

Grad-CAM and LIME to elucidate how a DLM’s uncovers 

the Aortic elongation of chest radiographic images. 

Additionally, [12] deployed Tree SHAP technique and 

extreme gradient boosting technique to evaluate their model 

for predicting the risk of fatal or non-fatal cardiovascular 

events among individuals diagnosed with Type 2 Diabetes 

Mellitus. 

 

Fig. 2.  A description of the hybrid DL model with two explainability display windows



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5290-5301  |  5293 

The study by Teuho et al. [54] provides a representative 

example of the hybrid setup discussed above. They 

developed a deep learning-based classifier that utilizes polar 

map images to identify flow-limiting coronary artery 

disease for detection of ischemia. Figure 2 mimics their 

hybrid approach where the model's rationale is presented 

through two distinct output windows. One window provides 

visual explanations, while the other offers numerical values 

to elucidate the model's decision-making process. 

According to [54], the image classification model, 

illustrated in figure 2, accepts a JPEG polar map only as 

input and employs Grad-CAM technique to generate visual 

images. The polar map data undergoes feature extraction 

through convolutional layers prior to the initial flattening 

layer. These extracted features are then fed into a dual-input 

model, which also incorporates raw tabulated clinical data 

as a secondary input. The image features and tabulated data 

are concatenated, and an NN conducts the final 

classification task [54]. 

The remaining parts of this paper are structured as follows: 

Section III outlines the method and materials used to select 

articles that specifically utilized both Grad-CAM and SHAP 

techniques. Section IV presents the discussion and research 

challenges. Finally, the paper concludes with Section V. 

Materials and Method 

This section describes the methodology employed in this 

non-exhaustive literature review on the hybrid use of Grad-

CAM and SHAP in cardiac imaging. The eligibility 

inclusion criteria, article identification process, and data 

extraction are explained.  

Inclusion Criteria 

To gather relevant data from various studies in a 

comprehensive and unbiased manner, aligned with the aims 

of this paper, the following criteria were established: 

i. Only research papers written in English are eligible 

for selection. 

ii. The study must focus on cardiovascular disorders 

and utilize a hybrid interpretable model that 

employs the SHAP XAI technique and Grad-CAM. 

Additionally, studies that employ more than these 

two XAI tools are also considered eligible. 

iii. The publications must be released between 2018 

and 2024. 

iv. The research papers should provide details on the 

dataset used, including its source and size. 

Identifying Potential Research Articles 

In October 2024, the researchers conducted a literature 

search to identify relevant studies on the application of 

explainable deep learning techniques in the cardiovascular 

domain. An initial exploratory search on the PubMed 

research database [55]using the keywords "Explainable 

Deep Learning AND Cardiovascular" was performed on 

October 19, 2024. This preliminary search yielded a limited 

number of articles, which were then subject to further 

refinement through the application of inclusion and 

exclusion criteria. As the initial search results were 

potentially insufficient, the researchers employed a more 

targeted search query, "Grad-CAM AND Cardiovascular", 

as outlined in the table 1, to obtain a more satisfactory set of 

relevant studies. On the same day, an additional targeted 

search was conducted in the ScienceDirect research 

database [56] using the query "Grad-CAM AND 

Cardiovascular AND Explainable AND SHAP" to further 

identify relevant studies. Subsequently, the Semantic 

Scholar research database [57] was also queried on October 

20, 2024, using the same search criteria to supplement the 

pool of potentially relevant literature. 

Included Studies 

The literature search yielded a total of 87 studies, with 17 

from PubMed, 46 from ScienceDirect, and 24 from 

Semantic Scholar. 

A systematic screening process was followed to identify 

relevant studies: 

1. Duplicate Removal: Two duplicate records were 

excluded, reducing the total to 85 studies. 

2. Relevance Screening: Twenty-six articles were 

removed due to lack of relevance to cardiovascular 

diseases, leaving 59 studies. 

3. Availability Screening: Two inaccessible studies 

were further excluded, resulting in 57 remaining 

studies. 

4. Exclusion of Review Articles: An additional 20 

review papers were removed, leaving 37 studies for 

further evaluation. 

5. Final Selection: After a comprehensive abstract 

review, only six studies met the inclusion criteria by 

employing both Grad-CAM and SHAP as hybrid 

XAI techniques for enhanced interpretability. 

Among these, two studies also incorporated the 

LIME method alongside Grad-CAM and SHAP. 
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Table 1. Search Equations 

# 

Database 

URL 

Date Accessed 

Search Words (Query) Number of Papers 

1 

PubMed 

https://pubmed.ncbi.nlm.nih.gov 

19th October 2024 

“Explainable Deep Learning AND 

cardiovascular” 
3 

"Grad-CAM AND Cardiovascular" 14 

2 

Science Direct 

https://www.sciencedirect.com 

19th October 2024 

“Grad-CAM AND Cardiovascular AND 

Explainable AND SHAP" 
46 

3 

Semantic Scholar 

https://www.semanticscholar.org 

20th October 2024 

“Grad-CAM AND Cardiovascular AND 

Explainable AND SHAP”. 
24 

As reported in Table 2, a total of 31 studies were excluded 

based on their methodological approaches. Specifically, the 

excluded studies employed either Grad-CAM alone, SHAP 

alone, Grad-CAM in combination with other XAI 

techniques while excluding  

Table 2. Inclusion and exclusion criteria 
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PubMed 

Explainable 

Deep 

Learning 

AND 

cardiovascula

r 

3 0 2 

0 0 15 0 13 2 0 0 0 15 

Grad-CAM 

AND 

Cardiovascul

ar 

14 0 0 

Science 

Direct 

Grad-CAM 

AND 

Cardiovascul

ar AND 

Explainable 

AND SHAP 

46 0 16 0 19 7 4 1 0 3 1 2 7 

Semanti

c 

Scholar 

Grad-CAM 

AND 

Cardiovascul

ar AND 

Explainable 

AND SHAP 

24 2 8 2 1 9 2 2 2 4 1 0 9 

Total 87 2 26 2 20 31 6 16 4 7 2 2 31 

Remaining 87 85 59 57 37 6        

https://www.sciencedirect.com/
https://www.semanticscholar.org/
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SHAP, SHAP in conjunction with other interpretable 

models while excluding Grad-CAM, or neither Grad-CAM 

nor SHAP. 

Following the final stage of the screening process, the 

number of eligible studies remained unchanged at six. 

Data Extraction 

The following parameters were considered important for 

assessing the literature: author name, year of publication, 

dataset type and size, open-source dataset use, 

region/country, algorithms, classifiers, disease type 

predicted, XAI techniques used, and algorithm and XAI tool 

performance.  

The selected study articles all focused on the prediction and 

diagnosis of cardiovascular diseases using DL approaches, 

and evaluated the associated metrics related to these tasks. 

A summary of these parameters is illustrated in Table 3. 

Outcomes of Grad-CAM and SHAP Hybridization for 

Cardiac Imaging Explainability  

The examined study by Le et al.  [58] leveraged both Grad-

CAM and SHAP techniques to improve the interpretability 

of the machine learning models employed. Specifically, [58] 

applied ML approaches on CT angiography images to 

predict the symptoms of carotid artery disease (CAD).  First 

ML approach they embraced was radiomics, a technique 

that used medical images to extracts quantitative features. 

SHAP was used to analyze the radiomic features behind the 

prediction. GRAD-CAM was utilized for the second 

approach to visualize the regions of interest where the DL 

model focuses. Also, [54] developed a DL-based classifier, 

which uses polar maps images, to identify flow-limiting 

CAD for ischemia detection. The authors [54] utilized Grad-

CAM and SHAP to visualize the regions and contributing 

variables that the model deemed important for its 

predictions, respectively.  

According to [58] findings, the SHAP interpretable model 

consistently identified high-value radiomic features that 

were integral to the classifier's decision-making mechanism. 

They further described the utilization of Grad-CAM as a 

means to enhance the robustness of the analysis for the black 

box algorithms employed in the DL approach, in which the 

features extracted are not predetermined by the user, 

providing an additional layer of analytic rigor. This 

approach helped the algorithms concentrated on the 

pertinent regions of interest. It was observed that the 

visualizations of the GRAD-CAM technique for both the 

DL models and VGG-16 models together with the simpler 

models were consistently centered on the carotid arteries 

[58]. Similarly, the SHAP values in Teuho et al’s study [54] 

categorically revealed how individual features contributed 

to the model’s prediction of ischemia detection for each 

input data point. Furthermore, the Grad-CAM outputs 

highlighted perfusion abnormalities on the polar map 

images, which were segmented according to the respective 

coronary artery territories [54]. 

Singh et al. study attempted to ensure accurate classification 

of arrhythmia from ECG datasets, the authors [32] utilized 

the ECANet attention module and proposed a new 

interpretable model K-Grad-CAM, after careful utilization, 

evaluation and comparison of SHAP, LIME and the Grad-

CAM models. The proposed interpretable model, K-Grad-

CAM which is an extension of the Grad-CAM, is developed 

to accommodate the strengths of both perturbation and 

gradient-backpropagation approaches. Further, K-Grad-

CAM addresses some of Grad-CAM’s flaws, as [32] 

described. The implementation of this approach was 

conducted through segmentation of ECG signals. Authors in 

[32] divided the ECG segment window into 10 distinct 

sections. The researchers [32] then evaluated the post-hoc 

explanation techniques and calculated the average saliency 

value for each of the designated ECG signal segments, 

thereby obtaining one saliency value per segment across the 

ECG window. In a relatively similar classification task goal, 

[10] employed image-based ECG recordings to detect 

different types of arrhythmias. To enhance the 

interpretability and trustworthiness of the diagnostic 

process, the authors [10] utilized cascading deep neural 

networks (CDNNs) in combination with both SHAP and 

Grad-CAM. The authors justified this approach as a means 

of providing a more comprehensive and transparent 

explanation, thereby facilitating the generation of clinically 

meaningful interpretations for therapeutic applications [10].  

Also, Singh and Sharma’s study [32] initially highlighted 

the strength of both perturbation, such as SHAP and LIME, 

and gradient-backpropagation, such as the Grad-CAM, 

approaches which they claimed as the most extensively XAI 

tools used in ECG time series classification. They also 

mentioned a number of drawbacks associated with each of 

the approaches describing SHAP’s explanations as, 

sometimes, unreliable because of its random perturbation 

nature of operation. High demand of large computational 

resources due to combinatorial complexities is another 

drawback that limits its applicability in a setting where the 

input data is large.  

Grad-CAM method, on the other hand, falls short in 

accurately pinpointing the importance of a feature in the 

data when multiple instances of the same feature exist. 

Additionally, it can only partially localize certain features 

due to the unweighted averaging of partial derivatives [32]. 

Similarly, the algorithm’s interpretability is limited in 

scenarios involving occlusion or overlap of specific 

features.  K-GradCam, however, was proposed to ensemble 

the benefits of the former models while addressing their 

specific drawbacks [32]. The technique was quantitatively 

compared with the post-hoc XAI methods, namely SHAP, 
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Grad-CAM and LIME, using dice loss. Results of the 

measurement demonstrated that the new K-GradCam 

outperformed all the three of these post-hoc XAI techniques. 

The authors claimed that the model combines Grad-CAM 

and SHAP techniques in a highly informative and effective 

manner. Similarity between K- GradCam and Grad-CAM 

was measured at 82% which outweighs other figures in 

comparison of the new method with the other two methods 

other than Grad-CAM [32]. 

Zeng et al.’s research demonstrated consistent findings with 

the results discussed above. SHAP values offer a 

comprehensive understanding of the significance and 

impact of individual features on the final classification of 

arrhythmia, rendering the decision process interpretable 

[10]. Conversely, Grad-CAM visualizes specific regions of 

interest and offers important insights into the internal 

mechanisms of the cascading deep neural networks. As 

Zeng and friends describe [10], the technique further 

illuminates the crucial regions in the transformed signal 

matrices that are instrumental to the model's classification 

choices. Commenting on the SHAP model's performance, 

[10] firmly believe that this integrated methodology has 

improved the clinical applicability and credibility of the 

arrhythmia classification system. The authors [10] add that 

the hybrid approach allows healthcare professionals to 

assess both the final prognosis and the ranked importance of 

the contributing features. The SHAP-based approach 

provides valuable insights by harmonizing clinical logic 

with the model outputs, thereby and promoting a better 

comprehension of the variables driving each classification 

decision. Turning to Grad-CAM visualization window, 

Zeng et al. [10] further state that specific regions of 

relevance in the relative positioning matrices transformed 

signals are visibly shown, and these localized features have 

a substantial impact on the CDNN model's predictions for 

different types of arrhythmias. In addition, the authors state 

that analyzing these visual explanations for each of the 

seven arrhythmia categories shows substantial variations in 

the model's areas of focus, thereby enabling a more holistic 

comprehension of each decision. 

Ribeiro et al. [49] approach was to qualitatively assess 

Grad-CAM, SHAP, and LIME interpretable models using 

DL models for detecting cardiomegaly, a condition marked 

by abnormal enlargement of the cardiac muscle. Instead of 

integrating the models to improve interpretability, the 

objective of this study was to assess the performance of each 

model alone and its appropriateness for deployment in 

diverse settings, including those necessitating prompt 

results [49].  

Valsaraj et al. [50] leveraged expert-curated 

echocardiographic measurements and video data from a 

patient cohort comprising individuals with and without heart 

failure (HF) to develop DL and gradient boosting-based 

models to forecast 1-year, 3-year, and 5-year mortality 

prognoses. The authors used Grad-CAM and SHAP to 

understand the inner workings of their model. [50] claim 

that no prior research has examined HF patients, simulated 

long-term mortality beyond one-year timeframe, and been 

externally validated in separate cohorts. Valsaraj et al. [50] 

accomplished amazing work by analyzing the behavior of 

the heart from echo films and forecasting the severity of the 

condition in terms of life expectancy, in contrast to other 

research where a specific disease is observed.

Table 3. Extracted Data from the selected articles 
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Results from [49] demonstrate the excellent performance of 

Grad-CAM and LIME by emphasizing the heart area as the 

most significant characteristic pertinent to the prediction. 

This is accurate from a physiological perspective because 

cardiomegaly is correlated with the size of the heart. 

Conversely, SHAP did not identify cardiac regions as the 

most important attribute for the prediction. Nonetheless, 

they ascribed this disparity to the segmentation technique 

used in the LIME and SHAP approaches when the images 

were perturbed, adding that results can be segmentation 

method-dependent. Their work also revealed that Grad-

CAM responded quickly, with output for the cardiomegaly 

and non-cardiomegaly detection tasks appearing in 15 and 

16 seconds, respectively, compared to LIME (6.74 minutes, 

6.42 minutes) and SHAP (3.36 minutes, 3.40 minutes) [49]. 

The employment of these perturbation techniques might not 

be feasible in a real-world situation where results must be 

produced as quickly as possible. 

 The Grad-CAM technique, however, was unable to uncover 

distinct and clinically meaningful patterns in Valsaraj et 

al.’s study [50]. Despite this, the model was able to detect 

key cardiac anatomical features that are essential for the 

interpretation task, such as the left atrium or the mitral and 

aortic valves [50]. Second, using the SHAP approach, the 

authors additionally reported interpretability for CatBoost 

models, which identified a small number of 
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echocardiographic measurement parameters as important 

factors contributing to mortality risk. Overall, the 

interpretable models in [50] study failed to capture distinct 

features relevant to the model decision. 

Discussion and Research Challenges 

The combined use of Grad-CAM and SHAP as hybrid XAI 

techniques for cardiovascular imaging has showcased 

substantial progress in addressing the interpretability gap 

inherent to artificial intelligence models. A key insight 

drawn from the reviewed literature is the complementary 

strengths of these methodologies. Grad-CAM excels at 

providing region-based visual representations that clinicians 

can intuitively comprehend, while SHAP contributes by 

delivering feature-level explanations that align with the 

theoretical foundations of predictive modeling. 

Collectively, these techniques constitute a robust framework 

tailored to the diverse needs of stakeholders, ranging from 

healthcare professionals to patients. 

The review highlights several challenges that warrant 

further consideration, despite the advancements in the field. 

Grad-CAM's reliance on visual saliency can occasionally 

lead to oversights, particularly in scenarios involving 

overlapping or occluded features. While SHAP is powerful 

in quantifying feature importance, its computational 

intensity may limit its applicability in resource-constrained 

environments. Additionally, there is a pressing need to 

establish standardized evaluation metrics that can 

quantifiably assess the efficacy of hybrid models in 

enhancing diagnostic precision and patient-oriented 

outcomes. 

The integration of Grad-CAM and SHAP techniques in a 

hybrid framework has been shown to augment the 

interpretability of DLMs, thereby promoting trust in AI-

driven diagnostic tools. This trust is crucial, as it ensures 

healthcare professionals maintain confidence in leveraging 

AI tools for critical decision-making. The variability in 

model performance observed across diverse study contexts 

underscores the importance of conducting rigorous, context-

specific evaluations of these explainable AI techniques. 

Factors such as the dataset type, size, and imaging modality 

significantly influence the reliability of Grad-CAM and 

SHAP outputs, indicating that a one-size-fits-all solution 

may not exist for explainable artificial intelligence in 

cardiac imaging.  

The findings also suggest that hybrid models could play a 

pivotal role in democratizing AI in healthcare. By providing 

both high-level visual explanations and granular feature 

contributions, these models can potentially bridge the 

expertise gap, enabling non-specialist stakeholders to 

comprehend AI outputs. This democratization may prove 

crucial in promoting broader adoption of AI technologies 

within clinical practice. 

In light of these observations, future research should focus 

on refining hybrid methods to address their current 

limitations. Efforts to enhance the computational efficiency 

of SHAP, improve the localization accuracy of Grad-CAM, 

and establish robust evaluation metrics will be critical. 

Moreover, the potential of combining these techniques with 

other XAI approaches, such as LIME or perturbation-based 

models, warrants further exploration. Such endeavors could 

pave the way for more holistic and versatile explainability 

frameworks in cardiac imaging. 

A key limitation of this review is the small number of 

studies examining hybrid Grad-CAM and SHAP models. 

Additionally, the diversity in imaging modalities, datasets, 

and evaluation metrics across studies complicates direct 

comparisons. While the reviewed studies offer valuable 

qualitative insights, there is a scarcity of quantitative 

evaluations measuring the impact of these hybrid models on 

clinical outcomes. Finally, the computational demands of 

SHAP and the contextual dependencies of Grad-CAM pose 

challenges for their broader adoption. Despite these 

limitations, this review provides a comprehensive overview 

of the current state of Grad-CAM and SHAP in bridging the 

AI explainability gap in cardiac imaging.  

Conclusion 

The hybridization of Grad-CAM and SHAP represents a 

promising step forward in making AI-driven diagnostics 

more interpretable and accessible. By leveraging the unique 

strengths of both techniques, researchers have demonstrated 

improved model transparency, which is crucial for 

cultivating trust and broader utilization within clinical 

environments. Nevertheless, challenges such as 

computational complexity, localization inaccuracies, and 

variability in performance highlight the need for continued 

innovation in this space. As XAI continues to evolve, hybrid 

models like those reviewed in this paper have the potential 

to revolutionize not only cardiac imaging but also the 

broader field of AI in healthcare. 
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