
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 440–450  |  440 

Predict the Mechanical Properties of Cementitious Materials Containing 

Carbon Nanotubes Using Machine Learning Algorithms 

Niranjana A. R. 

Submitted: 06/08/2022     Revised: 26/09/2022        Accepted: 10/10/2022 

Abstract: In this work, the use of machine learning algorithms to predict the mechanical properties of cementitious materials boosted 

with carbon nanotubes (CNTs) is investigated. The main goal is to estimate the flexural strength and elastic modulus of these novel 

composite materials, which have the potential to have a big influence on the building industry. The water-to-cement ratio, sand-to-cement 

ratio, curing age, CNT aspect ratio, CNT content, surfactant-to-CNT ratio, and sonication duration were among the seven crucial factors 

that were investigated. Support vector regression, histogram gradient boosting, and artificial neural networks were among the prediction 

techniques used. The neural network model was also used to develop an easy-to-use formula. Each model's performance was evaluated, 

and the results showed that the neural network was the best at predicting the elastic modulus and the histogram gradient boosting model 

was the best at doing so for flexural strength. These findings demonstrate how well the methods used may predict the characteristics of 

cementitious materials boosted by carbon nanotubes. Furthermore, the formulas that are extracted from the neural network provide 

important information on how input parameters and mechanical qualities relate to one another. 

Keywords: Carbon nanotubes, Composite materials, Computational intelligence, Elastic modulus, Flexural strength.  

1. Introduction 

In modern construction, concrete is the foundation. 

However, researchers are constantly looking for new 

ways to improve this essential material as the need for 

stronger, more durable, and sustainable constructions 

grow. Nanotechnology has revolutionized many 

industries in recent years, and the construction industry 

is no exception. Carbon Nano-Tubes (CNTs), one of the 

major developments driving this change, have shown 

tremendous promise in structural engineering and are 

among the most exciting opportunities in this developing 

field [1]. Compared to their bulk counterparts, 

engineered materials have unique properties that stand 

out. Their exceptional adaptability to different design 

and structural requirements supports their widespread 

use in the building industry [2]. A novel approach to the 

development of composites is the cooperative integration 

of carbon nanotubes (CNTs) with cement-based 

materials. In this regard, CNTs have a major impact on 

the material's mechanical characteristics. This innovative 

method has spurred a great deal of research to fully 

evaluate these composites' performance under various 

circumstances [3]. [4] investigated the impact of carbon 

nanotube configurations on cement composites' 

mechanical characteristics. In the cement paste, different 

kinds of carbon nanotubes and dispersion methods were 

used. The findings showed that the mechanical properties 

of the composites were greatly impacted by the structural 

features, dispersion techniques, and interactions with the 

cement matrix. [5] Examined the use of solutions of 

highly concentrated carbon nanotubes as additives for 

cementitious composites reinforced with nanofibers. 

Their creative study developed a method for using a 

centrifugal process to reduce the water content of CNT 

suspensions. These concentrated suspensions 

successfully preserved their reinforcing qualities while 

keeping their solubility and dispersion when 

incorporated into cement paste. Numerous aspects of the 

inclusion of carbon nanotubes in cementitious materials 

have been investigated by researchers, including 

synthesis methods, microstructural study, and 

mechanical property investigation. These studies have 

produced important new information that helps to 

improve cement-based composites. Many studies have 

looked into how CNTs affect mechanical characteristics. 

Even at higher temperatures, studies by [6] showed gains 

in characteristics like compressive and flexural strength. 

[7,8] underlined once more how crucial CNT diameter is 

in affecting these characteristics. Various CNT kinds and 

surface treatments have been investigated to increase 

dynamic strength and adhesion. [9] shown through 

experiments and simulations how sodium dodecyl sulfate 

surface treatments improved CNT-cement matrix 

adhesion. [10] examined how different CNT kinds 

affected dynamic compressive strength, emphasizing 

how type and dosage depend on one other. [11] It has 

also been demonstrated that surface treatments improve 

interfacial bonding and dispersion. By utilizing the 

power of data analysis, machine learning (ML) makes 
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significant progress and predictions possible in a variety 

of fields. [11], [12], and [13]. By using data to make 

well-informed decisions, this methodology helps civil 

engineers choose better building materials and designs 

that will be stronger and more durable [14]. Machine 

learning algorithms are used to predict the key factor that 

determines concrete strength [15] and to improve 

corrosion inhibitor formulation, which extends the life of 

structures [16]. This method improves recycled 

concrete's resistance to temperature changes [17] and 

improves the mechanical and electrical properties of new 

concrete formulations [18]. Apart from material 

enhancements, machine learning is having a substantial 

impact on structural analysis and health monitoring, 

including the assessment of reinforced concrete elements 

and the estimation of recycled concrete composites' 

tensile strength [19]. The goal of this study is to assess 

the flexural strength and elastic modulus of cementitious 

composites reinforced with carbon nanotubes (CNTs) 

using machine learning algorithms. Through the 

combination of computer modeling and experimental 

data analysis, the study seeks to produce reliable 

forecasts of these crucial mechanical properties. The 

anticipated outcomes may have a significant influence on 

the development and use of cutting-edge, high-

performance materials in the building industry. 

Furthermore, the carefully examined results from the 

Artificial Neural Network (ANN) model will be 

converted into a formula that is easy to understand. The 

results are more practically relevant as a result of this 

effort to elucidate the basic relationships between input 

variables and mechanical behaviors. 

1.1 Research significance 

The intricate interactions between carbon nanotubes 

(CNTs) and the surrounding matrix make it difficult to 

anticipate the mechanical behavior of cementitious 

composites reinforced with CNTs. A reliable method that 

makes it possible to forecast these characteristics without 

the need for time-consuming and expensive testing 

processes is machine learning. This study investigated 

the use of three sophisticated models: Histogram 

Gradient Boosting (HGB), Support Vector Regression 

(SVR), and artificial neural networks (ANN). The ANN 

model provided a significant advantage in terms of 

interpretability in addition to its excellent accuracy. 

Researchers discovered significant insights into the 

relationships between input parameters and the final 

mechanical properties by deriving formulas from the 

ANN. This knowledge can be applied to improve the 

creation and design of CNT-reinforced composites that 

meet particular needs. The investigation's findings are 

especially encouraging for the building industry. 

Machine learning-driven predictions of mechanical 

characteristics can speed up the development of cutting-

edge materials by permitting the synthesis of novel 

composite materials with improved performance, thereby 

improving the caliber and reliability of building projects. 

For broader acceptability among practitioners and 

academics, interpretable models—such as artificial 

neural networks (ANNs) with their derived formulas and 

statistical evaluations—must be developed. This method 

greatly increases the research's impact and accessibility. 

2. Literature review 

One important area of attention has been predictive 

modeling. [26] suggested a model based on CNT 

dispersion and volume fraction for flexural strength and 

elastic modulus. Many studies have looked into how 

CNTs affect mechanical characteristics. Even at higher 

temperatures, studies by [27] showed gains in 

characteristics like compressive and flexural strength. 

[28] underlined once more how crucial CNT diameter is 

in affecting these characteristics. Various CNT kinds and 

surface treatments have been investigated to increase 

dynamic strength and adhesion. [29] demonstrated 

through tests and simulations how sodium dodecyl 

sulfate surface treatments improved CNT-cement matrix 

adhesion. [30] examined the effects of several CNT 

types on dynamic compressive strength, emphasizing the 

dosage and type dependence. [31] Surface treatments 

have also been shown to enhance interfacial bonding and 

dispersion. In addition to mechanical qualities, research 

has tackled issues including rheology and dispersion. 

[32] investigated the best additive concentrations for 

dispersion and how they affected mechanics and 

hydration. Organosilanes were studied as coupling 

agents to enhance bonding and dispersion [33]. [34] 

created a model to forecast viscosity by examining the 

rheological behavior of CNT-cement composites. The 

emphasis on high-performance nanocomposites goes 

beyond modeling to include predictive methods. [35] 

Investigated deep neural networks for elastic modulus 

and flexural strength prediction. This method promotes 

the design of these materials and supports modeling 

efforts. Incorporating CNT has also improved fire 

resistance and other qualities. [36] looked at how the 

composition of the cement matrix affected the strength of 

the adhesion between CNTs and the matrix. [37] 

Investigated the application of hybrid aqueous solutions 

to promote interfacial bonding and dispersion, which will 

improve mechanical properties. Last but not least, [38] 

demonstrated that CNTs, even when derived from 

mining tailings, can improve mechanical qualities and 

decrease porosity. The vast amount of research 

highlights the complex ways in which carbon nanotubes 

affect cementitious materials' mechanical characteristics. 

The CNTs have a profound effect on the overall strength 

and structural integrity of concrete by greatly enhancing 
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the crucial building engineering characteristics of 

flexural strength and elastic modulus. 

The structure of the proposed work is as follows: section 

1 explains the introduction, section 2 explains the 

literature review, section 3 explains the proposed 

methodology, section 4 explains the discussion of the 

proposed work, and the conclusion part in section 5. 

3. Proposed methodology 

As a subfield of artificial intelligence, machine learning 

(ML) has become a powerful tool in the engineering 

field, especially in structural engineering. It increases the 

accuracy of structural performance forecasts, simplifies 

design processes, and makes it easier to analyze complex 

data. Despite the fact that machine learning techniques 

have shown effective in predicting the behavior of 

various reinforced concrete components, a careful review 

of the existing literature reveals that precise 

methodologies are often not presented. In order to 

predict the elastic modulus and flexural strength of 

cementitious composites enhanced with carbon 

nanotubes (CNTs), this study employs three main 

machine learning techniques, acknowledging the 

importance and efficacy of these approaches in 

addressing complex and non-linear behaviors in 

structural engineering. The next subsections provide a 

thorough description and explanation of the methods 

used. Additionally, a model of a single-layer artificial 

neural network is created to do complex statistical 

studies, with the aim of determining mathematical 

relationships and providing easily understandable 

insights for determining the goal parameters. 

3.1 Support Vector Regression (SVR) 

One of the most efficient techniques for simulating 

nonlinear connections is Support Vector Regression 

(SVR). This method converts complicated nonlinear 

qualities into controllable linear ones by using kernel 

functions. It is a simple yet effective variation of SVMs 

and has been successfully used in a number of domains 

outside of structural engineering, [20] demonstrating its 

strength as a prediction method.  

3.2 Histogram gradient boosting regressor (HGB) 

HGB is a tree-based machine learning technique that 

efficiently handles numerical information by utilizing the 

benefits of histograms and gradient boosting.  This 

sophisticated technique entails building an ensemble of 

decision trees one after the other, with each new tree 

being taught to fix the mistakes of its predecessors. By 

using gradient descent to optimize a loss function during 

the training phase, HGB enables [21] the algorithm to 

iteratively improve its model in order to lower prediction 

errors and increase accuracy. Data scientists and machine 

learning experts appreciate HGB because of its 

exceptional efficiency, which is particularly noticeable 

when working with datasets that have more than 10,000 

samples. In these cases, it outperforms conventional 

gradient-boosting regressors greatly. 

3.3 Artificial neural network (Multi-layer perception) 

The multilayer perceptron (MLP) is one of the most 

basic forms of artificial neural networks (ANN). An 

input layer, one or more hidden layers, and an output 

layer make up this design. While the number of intended 

outputs defines the output layer, the number of input 

features determines the input layer. User [22] 

requirements are used to establish the hidden layer 

configuration. Depending on the type of data being 

processed, the weights assigned to each layer might form 

simple or complex networks. Beyond structural 

engineering, MLP-ANN has shown promise in a number 

of other domains. Equations (1) and (2) determine the 

number of neurons in each of the m hidden layers that 

make up the internal structure. 

 

Fig 1: ANN architecture 
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Where I is the input, o is the output, na is the threshold 

of 
thn neuron, jnw is the weight value of 

thj input neuron 

and kg is the activation function of 
thk layer.  

Consequently, the input and output of the neurons in the 

output layer are represented by Equations (3) and (4), 

respectively. 
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Here, o1 stands for the output, i1 for the input, and a1 for 

the output layer's neuronal threshold. A key component 

of model training is backpropagation. The algorithm 

creates predictions and then adjusts the weights to 

improve on them based on the inaccuracy found. The 

seven input variables is calculated by using eqn (5) 

The MLP model's architecture, shown in Figure was 

painstakingly created with a clear framework. It had a 

first input layer with five different input features. This 

layer was linked to two hidden layers, each of which had 

40 neurons and 50 neurons in the first layer. With the use 

of the 'ReLU' (Rectified Linear Unit) activation function, 

these hidden layers played a crucial role in spotting 

intricate patterns in the dataset. [23] The 'ReLU' function 

is well known for its efficiency and ability to improve 

gradient propagation across the network, which helps to 

speed up convergence during training. The 'adam' solver 

was used to improve the performance of the MLP model 

even more. The model's effective convergence towards 

an ideal solution is made possible by this solver's use of 

adaptive learning rates and momentum. By setting the 

training schedule to a maximum of 1000 iterations, the 

model was able to understand complex correlations in 

the data while reducing the possibility of overfitting, a 

common problem in machine learning applications. 

3.4 For elastic modulus strength 

Three extremely precise machine learning-based 

computational frameworks for calculating the elastic 

modulus were shown in the section before this one. 

Another method using a trained single-layer neural 

network is introduced in this section. A neural network 

with a single hidden layer is first trained using this 

method. A number of sophisticated statistical analyses 

are then performed using the weight values that were 

acquired throughout the model training procedure. In the 

end, a simpler and well-organized formulation is 

produced for engineering applications [24], guaranteeing 

a trustworthy target parameter prediction. A single-layer 

perceptron neural network with the architecture shown in 

Figure is first trained to determine the elastic modulus in 

order to demonstrate this procedure. Six neurons, chosen 

by a trial-and-error method, make up this network's 

hidden layer. 
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where W is the weight, j is the number of nodes in the 

middle layer, i is the number of input nodes, k is the 

number of output nodes, nhidden is the number of nodes 

in [25] the middle layer, and Qik is the percentage 

influence of each parameter. Ninput is the number of 

inputs, and Woj is the connection weight between the 

output node and the middle layer nodes. Finally, Eq. (6) 

is obtained using regression analysis. In the context of 

sensitivity analysis, E1 stands for the elastic modulus 

(Target) that was obtained from the network. 

E1 = 0.245 X1, 3 + 18.29………………………….. (6) 

Table 1: Hyperparameters for elastic modulus estimation models 

Model Hyperparameter Hyperparameter 

value 

HGB regressor max_iteration 50 

SVR Regressor C_parameter 2 

epsilon 0.5 

MLP Regressor Number of hidden layers 2 

hidden_layer_sizes (neurons) (50, 40) 

activation ‘relu’ 

solver adam 
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max_iteration 1000 

random_state 43 

 

3.5 For flexural strength 

The specifics of the models used to determine the 

flexural strength are described in this section. Every 

model is characterized by its hyperparameters, which are 

crucial elements impacting its capacity for prediction. A 

detailed overview of the hyperparameters used for each 

model is provided in Table 5. As illustrated in Fig. 15, 

our MLP model's design included an input layer, a single 

hidden layer with 30 neurons, and an output layer. There 

are seven inputs in the input layer. Finally, each mean 

graph's regression equations are calculated and shown in 

Eqs. (13)–(18). Eq. (19) can be used to find the flexural 

strength in the end. The results of this section for the 

neural network and the formula produced from it are 

shown in Fig. 2. It is important to note that Table 3 

introduced the variables X2,1 through X2,7 for the 

flexural strength problem before. 

C (X2, 1 ) = 0.96X2 2,1 − 3.06X2,1 + 3.11 

……………………….. (7) 

C (X2, 2 ) = 0.09X2 2,2 − 0.12X2,2 + 1.02 

………………………. (8) 

C (X2, 3 ) = 0.07X2 2,3 + 0.04X2,3 + 

0.89…………………… (9) 

C(X5) = − 0.01X4 2,5 + 0.07X3 2,5 − 0.26X2 2,5 + 

0.10X2,5 + 1.09 …………… (10) 

C (X2, 6) = − 0.04X2 2,6 + 0.21X2,6 + 0.83 

……………….. (11) 

C (X2, 7) = 0.23X2 2,7 + 0.02X2,7 + 0.76 

………………….(12) 

1.92 ≤ ( Y2(MPa) = M1 C ( X2,1 ) C ( X2,2 ) C ( X2,3 ) 

C ( X2,5 ) C ( X2,6 ) C ( X2,7 )) ≤ 12.9……….(13) 

Table 5: Hyperparameters for flexural strength estimation models 

Model Hyperparameter Hyperparameter 

value 

HGB 

regressor 

max_depth 2 

 max_iteration 100 

    SVR 

Regressor 

C_parameter 4 

epsilon 0.7 

   MLP 

Regressor 

Number of hidden layers 1 

hidden_layer_sizes (neurons) 30 

activation ‘relu’ 

solver adam 

max_iteration 1000 

random_state 43 

4. Discussion 

The inability of machine learning models to effectively 

generalize outside of the data they were trained on is a 

significant drawback. This implies that only inputs 

falling within the range of values the model has 

experienced during training can yield accurate 

predictions. The model's predictions could become 

erroneous or unreliable if an input is provided that is 

outside of this range, which could produce misleading 

results. This restriction highlights how crucial it is to 

carefully choose and assess models, taking testing and 

training performance into account. For each model, 

performance indicators such as the correlation coefficient 

(R), mean absolute error (MAE), and root mean square 

error (RMSE) are presented with respect to Training 

Data, Test Data, and the combined dataset, known as All 

Data. 

4.1 Database 

This research makes use of a large database that has 165 

datasets on cementitious materials that have been 

improved using carbon nanotubes. Elastic modulus and 

flexural strength are two important mechanical qualities 

that can be predicted using machine learning models 

built on top of the database. By combining data from 

multiple experimental sources, data curation guarantees 

robustness. When creating a machine learning model, the 

data is carefully divided into training (60%) and sets for 
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testing (20%) and validation (20%). Normalization and 

randomization are crucial steps in data preprocessing for 

these sets. The database is carefully analyzed to 

guarantee model efficacy for each goal property (flexural 

strength and elastic modulus). For the particular target 

attribute for which they lack data, datasets with missing 

values for input variables are not included in the 

analysis. 

Table 3: Summary of results for predictive models of Elastic Modulus 

Model Training data Validation data Test 

data 

RMSE MAE R2 RMSE MAE R2 RMSE 

MLP 2.18 1.86 0.92 3.00 1.68 0.85 2.93 

HGB 2.95 2.42 0.87 2.06 1.86 0.84 3.16 

SVR 0.65 1.83 0.90 2.52 1.96 0.88 3.57 

Formula 3.29 2.65 0.82 4.30 3.54 0.75 2.95 

ANN 1.94 1.48 0.94 2.70 2.78 0.99 2.90 

 

Table 4: Summary of results for predictive models of flexural strength 

Model 
Training data Validation data 

Test 

data 

RMSE MAE R2 RMSE MAE R2 RMSE 

MLP 2 0.74 0.81 1.44 1.13 0.83 1.27 

HGB 0.92 0.69 0.85 1.32 200 0.85 1.32 

SVR 0.93 0.68 85 1.32 1.06 0.87 1.32 

Formula 1.95 1.6 0.57 1.68 1.32 0.73 1.75 

ANN 0.96 0.72 0.84 0.82 0.65 0.88 1.32 

 

The thorough examination of the flexural strength and 

elastic modulus prediction models, as shown in Tables 3 

and 4 and the accompanying figures, enhances 

knowledge of their application. These observations not 

only help choose the right model for precise forecasts, 

but they also add to the larger discussion on the 

developments and difficulties in material property 

prediction. The results offered here is a useful guide for 

directing future research paths and easing the 

incorporation of predictive models into practical 

applications as the area develops. 
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Fig 2: Correlation analysis of elastic modulus estimation parameters 

Curing age and the sand-to-cement (S/C) ratio have the 

strongest positive correlations with the output, whereas 

the water-to-cement (W/C) ratio has the strongest 

negative association, as shown in Figure 2. The W/C 

ratio, S/C ratio, curing age, CNT content, and surface 

condition were specifically chosen as X factors. The 

Elastic Modulus, one of the two mechanical 

characteristics examined in this article, is the Y 

parameter of importance in this research. A crucial 

component of the database is the connection between the 

elastic modulus and the X parameters. Furthermore, the 

correlation matrix that is displayed (see Figure 2) is 

customized for this specific database and offers 

important information about the relationships between 

the variables. This matrix is a tool for understanding the 

connections and possible correlations between the elastic 

modulus and the X parameters. For a more thorough 

rundown of the database. 

 

Fig 3: Correlation analysis of flexural strength estimation parameters 

Time (min) showed the strongest positive link with 

flexural strength, whereas the W/C ratio showed the 

strongest negative correlation, according to an 

examination of the correlation matrix (Figure 3). The 

W/C ratio, S/C ratio, aspect ratio, curing age, CNT 

content, surfactant/CNTs ratio, and time were among the 

X factors used for the model. These characteristics were 

selected because to their initial correlation, influence on 
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model complexity, and applicability to flexural strength estimate. 

 

Fig 4: Comparison of observed and predicted elastic modulus 

Each model's observed and anticipated elastic modulus, 

including training and test data, are displayed in Figure 

4. The best performance is shown by ANN, which makes 

correct predictions on both datasets. The excellent 

predictive skills of ANN are demonstrated by the close 

correspondence between observed and forecasted values. 

Moreover, HGB and SVR exhibit excellent performance. 

These results highlight how well ML, and particularly 

ANN, capture intricate relationships for the calculation 

of elastic modulus in cementitious materials reinforced 

with carbon nanotubes. 

 

Fig 5: Elastic modulus comparison between observed and predicted values using the formula and its reference ANN. 
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Fig 6: Comparison of Observed and Predicted Flexural Strength values 

ANN for the complete database, which is used to 

calculate the elastic modulus, is shown in Figure 5. A 

visual comparison of each model's predicted and actual 

flexural strengths for the training and testing datasets is 

presented in Figure 6. According to the figure, the SVR 

model predicts the most accurately, with the HGB model 

coming in second. Similar to the HGB and SVR models, 

the ANN model performs well, albeit with a little less 

accuracy. 

5. Conclusion 

A paradigm change in the creation and design of 

cementitious materials is made possible by this research, 

which represents a major advancement in the field of 

material property prediction. The study's main 

conclusions highlight the unique advantages of particular 

machine learning algorithms for forecasting important 

mechanical characteristics. With low mean absolute error 

and root mean squared error values, the artificial neural 

network was found to be the best accurate predictor of 

elastic modulus. Remarkably, by extracting interpretable 

formulas, the ANN also offered important insights into 

the complex interactions between the input parameters 

and the final mechanical properties. Additionally, the 

histogram gradient boosting model performed 

consistently and competitively across all datasets, 

exhibiting exceptional flexural strength estimation 

capabilities. High correlation coefficients demonstrated 

the ANN and HGB models' resilience in encapsulating 

the complex interactions seen in the corresponding 

datasets. Beyond the immediate advantages of correct 

predictions, the ANN model's interpretable formulas 

provide a significant advantage. With this information, 

engineers and researchers may better formulate and build 

CNT-reinforced composites for particular applications. 

The ANN offers important insights that can be used to 

customize the material properties for particular 

applications by revealing the intricate relationship 

between input parameters and mechanical qualities. In 

addition to advancing knowledge of cementitious 

materials reinforced with carbon nanotubes, the results 

given here provide a more comprehensive view of how 

machine learning could transform the design and 

optimization of a wide range of materials in numerous 

industries. 

Reference 

[1] Sharma, R., Jang, J.G. and Hu, J.W., 2022. Phase-

change materials in concrete: Opportunities and 

challenges for sustainable construction and building 

materials. Materials, 15(1), p.335. 

[2] Sadok, R.H., Belaribi, N.B., Mazouzi, R., Sadok, 

F.H., 2022. Life cycle assessment of cementitious 

materials based on calcined sediments from Chorfa 

II dam for low carbon binders as sustainable 

building materials. Sci. Total Environ. 826, 154077. 

[3] Kumar, A., Sharma, K. and Dixit, A.R., 2021. A 

review on the mechanical properties of polymer 

composites reinforced by carbon nanotubes and 

graphene. Carbon letters, 31(2), pp.149-165. 

[4] Huang, H., Teng, L., Gao, X., Khayat, K.H., Wang, 

F. and Liu, Z., 2022. Effect of carbon nanotube and 

graphite nanoplatelet on composition, structure, and 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 440–450  |  449 

nano-mechanical properties of CSH in UHPC. 

Cement and Concrete Research, 154, p.106713. 

[5] Thomoglou, A.K., Falara, M.G., Gkountakou, F.I., 

Elenas, A. and Chalioris, C.E., 2022. Influence of 

different surfactants on carbon fiber dispersion and 

the mechanical performance of smart piezoresistive 

cementitious composites. Fibers, 10(6), p.49. 

[6] Irshidat, M.R., Al-Nuaimi, N., Salim, S., Rabie, M., 

2020. Carbon nanotubes dosage optimization for 

strength enhancement of cementitious composites. 

Procedia Manuf. 44, 366–370. 

[7] Gao, F., tian, w., wang, z, Wang, F., 2020. effect of 

diameter of multi-walled carbon nanotubes on 

mechanical properties and microstructure of the 

cement-based materials. Construct. 

Build.Mater.260, 120452. 

[8] Sindu, B., Sasmal, S., 2020. Molecular dynamics 

simulations for evaluation of surfactant 

compatibility and mechanical characteristics of 

carbon nanotubes incorporatedcementitious 

composite. Construct. Build. Mater. 253, 119190. 

[9] Wang, J., Dong, S., Ashour, A., Wang, X., Han, B., 

2020. Dynamic mechanical properties of 

cementitious composites with carbon nanotubes. 

Mater. Today Commun. 22, 100722. 

[10] Li, S., Zhang, Y., Cheng, C., Wei, H., Du, S., Yan, 

J., 2021. Surface-treated carbon nanotubes in 

cement composites: dispersion, mechanical 

properties and microstructure. Construct. Build. 

Mater. 310, 125262. 

[11] Krupa, K.S., Kiran, Y.C., Kavana, S.R., 

Gaganakumari, M., Meghana, R., Varshana, R., 

2022. Deep learning-based image extraction. 

Artificial Intelligence and Applicatons. 

[12] Mirrashid, M., Naderpour, H., 2022. Computational 

intelligence-based models for estimating the 

fundamental period of infilled reinforced concrete 

frames. J. Build. Eng. 46, 103456. 

[13] Sarker, I.H., 2021. Machine learning: Algorithms, 

real-world applications and research directions. SN 

computer science, 2(3), p.160. 

[14] Mirrashid, M., Naderpour, H., 2021a. Recent trends 

in prediction of concrete elements behavior using 

soft computing. Arch. Comput. Methods Eng. 28 

(4), 3307–3327. 

[15] Farooq, F., Ahmed, W., Akbar, A., Aslam, F., 

Alyousef, R., 2021. Predictive modeling for 

sustainable high-performance concrete from 

industrial wastes: a comparison and optimization of 

models using ensemble learners. J. Clean. Prod. 

292, 126032. 

[16] Raschka, S., Patterson, J. and Nolet, C., 2020. 

Machine learning in python: Main developments 

and technology trends in data science, machine 

learning, and artificial intelligence. Information, 

11(4), p.193. 

[17] Vlachakis, C., 2021. 3D printed alkali-activated 

sensors for civil infrastructure. 

[18] Usman, A., Sutanto, M.H., Napiah, M.B. and Yaro, 

N.S.A., 2021. Response surface methodology 

optimization in asphalt mixtures: a review. 

IntechOpen. 

[19] Zhang, J., 2020. Machine-Learning-Aided Concrete 

Mixture Optimization. 

[20] Flah, M., 2020. Classification, localization, and 

quantification of structural damage in concrete 

structures using convolutional neural networks 

(Master's thesis, The University of Western Ontario 

(Canada)). 

[21] Li, S., Zhang, Y., Cheng, C., Wei, H., Du, S., Yan, 

J., 2021. Surface-treated carbon nanotubes in 

cement composites: dispersion, mechanical 

properties and microstructure. Construct. Build. 

Mater. 310, 125262. 

[22] Li, P., Liu, J., Suh, H., Nezhad, E.Z., Bae, S., 2022. 

Understanding the role  grapheme oxide 

nanoribbons–functionalized carbon nanotubes–

graphene oxide (GNFG) complex in enhancing the 

fire resistance of cementitious composites. 

Construct. Build. Mater. 348, 128637. 

[23] Maiti, A. and Chatterjee, B., 2020. Improving 

detection of Melanoma and Nevus with deep neural 

networks. Multimedia Tools and Applications, 

79(21), pp.15635-15654. 

[24] Parmezan, A.R.S., Souza, V.M. and Batista, G.E., 

2019. Evaluation of statistical and machine learning 

models for time series prediction: Identifying the 

state-of-the-art and the best conditions for the use 

of each model. Information sciences, 484, pp.302-

337. 

[25] Desai, M. and Shah, M., 2021. An anatomization 

on breast cancer detection and diagnosis employing 

multi-layer perceptron neural network (MLP) and 

Convolutional neural network (CNN). Clinical 

eHealth, 4, pp.1-11. 

[26] Ramezani, M., Kim, Y.H., Sun, Z., 2019. Modeling 

the mechanical properties of cementitious materials 

containing CNTs. Cement Concr. Compos. 104, 

103347. 

[27] Irshidat, M.R., Al-Nuaimi, N., Salim, S., Rabie, M., 

2020. Carbon nanotubes dosage optimization for 

strength enhancement of cementitious composites. 

Procedia Manuf. 44, 366–370. 

[28] Gao, F., Tian, W., Wang, Z., Wang, F., 2020. 

Effect of diameter of multi-walled carbon 

nanotubes on mechanical properties and 

microstructure of the cement-based materials. 

Construct. Build. Mater. 260, 120452. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(1s), 440–450  |  450 

[29] Wang, J., Dong, S., Ashour, A., Wang, X., Han, B., 

2020. Dynamic mechanical properties of 

cementitious composites with carbon nanotubes. 

Mater. Today Commun. 22, 100722. 

[30] Li, S., Zhang, Y., Cheng, C., Wei, H., Du, S., Yan, 

J., 2021. Surface-treated carbon nanotubes in 

cement composites: dispersion, mechanical 

properties and microstructure. Construct. Build. 

Mater. 310, 125262. 

[31] de Andrade Pinto, S., Dias, C.M.R. and Ribeiro, 

D.V., 2022. Determination of the optimal additive 

content for carbon nanotube (CNT) dispersion and 

the influence of its incorporation on hydration and 

physical-mechanical performance of cementitious 

matrices. Construction and Building 

Materials, 343, p.128112. 

[32] Silvestro, L., dos Santos Lima, G.T., Ruviaro, A.S., 

de Matos, P.R., Mezalira, D.Z., Gleize, P.J.P., 

2022. Evaluation of different organosilanes on 

multi-walled carbon nanotubes functionalization for 

application in cementitious composites. J. Build. 

Eng. 51, 104292. 

[33] Li, P., Liu, J., Suh, H., Nezhad, E.Z., Bae, S., 2022. 

Understanding the role of grapheme oxide 

nanoribbons–functionalized carbon nanotubes–

graphene oxide (GNFG) complex in enhancing the 

fire resistance of cementitious composites. 

Construct. Build. Mater. 348, 128637. 

[34] M. Ramezani, D.-E. Choe, and A. Rasheed. 

Prediction of the Mechanical Properties of 

Cementitious Materials Reinforced with Carbon 

Nanotubes: AI-Based Approach, 2022. 

[35] Nazar, S., Yang, J., Ahmad, W., Javed, M.F., 

Alabduljabbar, H. and Deifalla, A.F., 2022. 

Development of the new prediction models for the 

compressive strength of nanomodified concrete 

using novel machine learning techniques. 

Buildings, 12(12), p.2160. 

[36] Li, S., Zhang, Y., Cheng, C., Wei, H., Du, S. and 

Yan, J., 2021. Surface-treated carbon nanotubes in 

cement composites: Dispersion, mechanical 

properties and microstructure. Construction and 

Building Materials, 310, p.125262. 

[37] Sun, H., Ling, L., Ren, Z., Memon, S.A. and Xing, 

F., 2020. Effect of graphene oxide/graphene hybrid 

on mechanical properties of cement mortar and 

mechanism investigation. Nanomaterials, 10(1), 

p.113. 

[38] Tian, C., Xu, Y., Li, Z., Zuo, W., Fei, L. and Liu, 

H., 2020. Attention-guided CNN for image 

denoising. Neural Networks, 124, pp.117-129. 

 


