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Abstract: In this study, we explore the application of Rangaig transforms combined with the Homotopy Analysis
Method (HAM) for solving systems of (2+1)D and (3+1)D nonlinear partial differential equations. Nonlinear
PDEs frequently arise in various scientific and engineering fields, modeling complex phenomena such as fluid
dynamics, heat transfer, and wave propagation. Traditional numerical and analytical methods often encounter
limitations when addressing such systems, particularly in higher dimensions. The Rangaig transform, a powerful
integral transform, is integrated with HAM to efficiently construct approximate analytical solutions to these
complex systems. The proposed methodology leverages the strengths of both techniques: the Rangaig transform
simplifies the PDEs by converting them into a more tractable form, while HAM provides a flexible framework
for obtaining convergent series solutions without restrictive assumptions on small parameters. We demonstrate
the effectiveness of this combined approach through several benchmark problems, showcasing its accuracy,
efficiency, and convergence properties. The results indicate that the Rangaig-HAM hybrid approach not only
accelerates the solution process but also extends the applicability of HAM to more challenging nonlinear PDE
systems in multidimensional spaces. This study contributes to advancing analytical techniques for solving high-
dimensional nonlinear PDEs and provides a robust tool for researchers and engineers dealing with complex
physical systems.

Keywords: “Rangaig Transform”, “Homotopy Analysis Method”, (2+1)-D and (3+1)-D system, PDE:s,
Test Examples.

1 Introduction Optimal solutions are difficult to obtain, and

The Nonlinear “partial differential equations though numerical methods can be employed

(PDEs)” form a basis for the description of
various physical and engineering processes,
such as fluid dynamics, heat transfer, and
propagation of electromagnetic  waves.
However, solving such PDEs unfortunately
remains a formidable task especially in two and
three dimensions because of the underlying
complexity and nonlinearity.

they are quite often computational and
numerical in higher dimensions.

In response to these difficulties, some
approaches have been searched for compound
numerical methods that use integral transforms
with effective approximations. Among these,
the Rangaig transform has attracted much
attention if needed for converting differential

equations into algebraic forms. By contrast, the
“Homotopy Analysis Method (HAM)”,
developed by Liao, is a powerful tool to obtain
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various transform methods, including Elzaki,
[4] Laplace [6], Sumudu [3], Aboodh [1], and
Natural transform method [9], Rangaig [20].
transforms. These integrations have resulted in
new approaches such as “The Laplace
transform with homotopy analysis method”
[24], ©“ The Shehu transform with homotopy
analysis” [16], “The Sumudu transform with
homotopy analysis” [21], the “Elzaki transform
with homotopy analysis” [4], [5].

Looking at the “Homotopy Perturbation
Method (HPM)”, “Adomian Decomposition
Method (ADM)”, “Variational Iteration
Method (VIM)”, “Differential Transform
Method (DTM)” and the “Laplace Adomian
Decomposition Method (LADM)”, one sees
some problems that limit their effectiveness in
solving complex nonlinear problems. Due to
the fact that HPM involves heuristic selection
of parameters, its major disadvantage is lack of
reliability and complexity, when managing
many solutions. It has been found that is ADMs
problem solving capabilities are restricted by
computational problems inherent with complex
polynomial recursion and confusion regarding
convergence, particularly in isolation. VIM
itself has problems of solving the optimum
Lagrange multiplier and has a high dependency
on the first approximations and is not capable
of providing tightly bound estimates for non-
smooth approximate solutions. DTM performs
dimensions or  significant
nonlinearities of the system increase;
conversely, the practical application of LADM
has difficulties with the inversion of Laplace

WOrse as

transforms and consideration of boundary value
issues. Common constraints of these
approaches are convergence uncertainty,
parameter dependency, heightened computing
complexity,  restricted  application  to
singularities and discontinuities, and the
necessity for substantial manual intervention.
Resolving these obstacles necessitates hybrid
methodology that include the advantages of
current techniques, sophisticated convergence
frameworks, and novel strategies for high-
dimensional and single issues. This research
highlights the need for advanced or hybrid

models to address the ongoing constraints of
existing approaches.

In this paper, we integrate the Rangaig
transform with HAM to create a versatile tool
for solving multidimensional nonlinear PDEs.
The combined methodology leverages the
advantages of both techniques, enabling
efficient simplification and accurate solution
construction. Several case studies are presented
to demonstrate the efficacy of this approach,
highlighting its potential for tackling real-world
problems.

The conceptual framework of this research
study is as follows: The Rangaig transform's
fundamental definitions and ideas are covered
in Section 2. In Section 3, the homotopy
analysis technique was covered. In Section 4,
test experiments have been conducted to solve
based on a mix of Homotopy analysis and the
Rangaig transform methodology of the
“nonlinear partial differential equations”
system in (2+1)-D and (3+1)-D. In Section 5,
the conclusion is covered.

2 Concept of Rangaig Transform
[18], [20], [21], [25]

This segment presents the foundational
definitions and characteristics of the Rangaig
Transform, which are essential for the
discussions in this paper. The Rangaig
transform represents a recent mathematical
technique devised for functions with
exponential growth. Our attention is directed
towards operations in the set /, as outlined in
reference [25].

H = {A(£) AN, Ay, A, > 0, |A(E)]
> Nediltl ¢ (1)
e (-1t
X (=0,0)}

N, the arbitrary constant. The arbitrary
constants A; and A, can possess either an
infinite or a perpetually finite value. We now
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present a novel transformation that may be
included in (/) as follows:

R [A(6)] = T(p)
P )

=1JO epth(t)dti<p<—
PJ_w TAL T T A

The definition can be stated as a transformation
where the factor p substitutes for the variable £
within the function £, known as the Rangaig
Transform. On the other hand, one can state that
there is transitioning, in terms of describing the
function A(£) in the rho space T(p). The
following exercise exemplify how the “Rangaig
Transform” can be used in order to arrive at
solutions regarding a certain type of
function.[18], [20], [21], [25]

The subsequent “Rangaig Transform” is
attained in some core forms [18]. The general
function is: - n(¥) = R{(N(#)}

« R0} =R =

« R} =-—

« Rt} =7

. B(t",n 20} = S0
o Risin(¥)} = —m

1
L4 m{COS(t)}—m B
o« Rit™ m < 0}=(_1)p#

1
* R = pp+a)

o RM(t—a)}= p—12e“*

Theorem I: -[20] The “Transformation of
Rangaig Derivatives”. If
A(t), A1 (t), A" (t) € H, then

RA™ (O] =T (p)

n—1

= (D" T + (D Y (D)
_ 1)/&'044,—2—/&%(%) (0) =0

Theorem II: - [20] The “Transformation of
Rangaig Integrals”. If.

m"(t) = fo " fo N fo :n“h(rxdr)ﬂ,

Where m(t) belongs to . Afterwards, we
define the Rangaig Transform of m”(t) as
follows:

n

Rt (@] = T,0) = (=) 7)

Theorem III: - [20] The convolution identity's
Rangaig Transform is defined as:

R[(A*g)(®)] = —pT1(p)T>(p)

Where (A *g)(®) = [ A (£ —P)g@)dr,
T1(p) and T,(p) are, correspondingly, the
Rangaig transforms of 4 (%) and g (%).

Theorem IV:- [20] (Duality relation of R-
Transform and L-Transform), The attributes of
the Rangaig Transform T (p)in relation to "The
Laplace Transform." F(p) of A(%) is defined
as follows if (#) and A (—%) are present across
H.

1
T(p) = ;T(—p)

Proposition-I: - If %. exist, the following

results can be obtained by using integration by
parts:
oW (x, %)
R|l———| = —pT (3
[ T ] pT(x p) @

1
+—-W(x0)
p

Demonstration- We utilize formula (2) and the
concept of integration of components to
demonstrate this.

Proposition-II: - Assuming T (%, p) represents
the “Rangaig Transform” ofn(x, %), the
following is obtained:
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% [E)”W(x, t)]
ot
=(=D"p ”T(?E p) )

*
+( 1)n+12( 1)/& n—2-— /aa I;I;(z 0)

Demonstration- We demonstrate that (3) is
correct by use of mathematical induction. By
assuming 7 = 1 and utilizing formula (5), we
derive:

owW(xt)| 3 1 (6)
R [T] =—pT(x,p) + P W(x, 0)

Therefore, using (4), we see that the formula is
valid for n = 1. Make an inductive assumption
that the formula is true for z, which means

"W (x,t)
"]
= (1D"p"T (. p) ™

£
+( 1)n+12 ( 1)k n—2— ka I;;(:O)

Show that 1t is st111 true at rank 7 + 1. Assume
"W (x,1)
atm

and (7), we get:
n+1
. [6 Wz, t)] _ 5 [60(%, t)
arntl ot

= v(x,%) and based on equations (4)

= —pR[v(x )] + %v(x, 0)

= —p [(—1)%”7 (xp)

= d*W (x,0)
_1\yn+1 Ak n—2—1£ 4
DM (D —j§r1
£=0
L1 )
p o0t"

— (_1)n+1pn+17~(x, ,0) + (_1)4¢+2 Z(
£=0

%W (x,0)

-1 #  n—1—-#
10"W(x, £
L1W G 1)

p oJ0t"
n
— (_1)n+1pn+1g~(x' P) + (_1)n+2 Z(
£=0

%W (x,0)

_ 1)kpn—1—k at&

Consequently, the mathematical induction
principle states that the formula (5) is valid for
every n = 1.

3 Introduction to Homotopy
Analysis Method [12]-[16]

Consider a particular nonlinear differential
equation that follows

NH@,0)] =0 ®)

Where V' is a nonlinear operator, $(£, t) is an
unknown function, and Q might be either {x, p}
or{x,9,3}. Time and space are the two
independent variables as represented by x,1), 3,
and t respectively. Making use of the traditional
Homotopy technique, which Liao devised.

1-pL[eW,t;p) — Ho(Q 1)] 9)
=pAN[pQ, t;p)]

Where L acts as an auxiliary linear operator,
@(Q,t;p) indicates an unknown function,
Ho(Q, t) is the starting guess for H(Q, t), A
serves as a nonzero auxiliary parameter, and
p € [0,1]represents the embedding parameter.
It is applicable if p = 0 andp = 1.

p(Q,t;0) = Ho(Q, 1),
and

e(Q,t;1) = H(Q, 1),
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Thus, solution @( £, t;p) deviates from the
original guess $y(Q,t) to solution $H(LQ,t) as
p approaches from 0 to 1. When we extend the
Taylor series ¢@(£,t;p) concerningp, we
obtain

(p( .Q, t; p) = 50 (Q'ci)

(10)
+ z Hm (@, Op™
m=1

Where,

1 0Me(Q,t;p)
Wi (Q,t) = m T opm

The sequence (/0) convergence occurs at p =
1 whenever the auxiliary linear operator,
auxiliary parameter 4, initial guess, and
auxiliary function have all been chosen
correctly.

55(.0, t) = bo(ﬂ, t) -
+) 5n @0,

The original nonlinear equation ought to have a
legitimate solution in this instance. According
to expression (//), the governing equation
might be obtained from the 0-order deformation
equation (9) as well. Describe the function of
the vector.

(11)

Sn

=n{‘50 (.Q, t)! 51 (.Q, t)' 52('0! t) rrr e Sjn (.Q, t)}

The m-times concerning the embedding
parameter p, differentiating the zero-ordered
deformation equation (9). Once p = 0 has been
entered and divided by m! the mth-order
deformation equation is as follows:

L[$m(Q, 1)
— Xm Hm-1 (Q, )] (12)
=h Ry [55m—1 «Q, t)]

[g)m (-Q' t) —Xm S:)m—l (-Q: t)]
= LA Rn[9m-1 (O, O]}

The implies

Hm(Q,t) 13
= Yom Sm1 (Q,0) (13)
+ LA Ry [Hm-1 (Q, )]
Where
R (Hm-1)
1 0™ N[e(Qt;p) (14)
T m-1 opm-1 p=0
and
0, m<1 (15)

Xm={1, m>1

4 Test Examples:

In this section, we shall employ the Rangaig
transform and the standard Homotopy analysis
method (HAM) to obtain the semi analytical
solutions of the (2+1)-D and (3+1)-D models of
the nonlinear PDE.

Example 1: Examine the following set of
partial differential equations that are nonlinear.

1
Uy —Ev(ug +u?) =0,

(16)
1
vy —Eu(vx + vy ) =0,

Depending on the initial condition.
/u’() (x' I)I 0) = eI‘Hﬁ) (17)
vo(2,9,0) = e (18)

Assuming Exact Function

u(xl I)l t) = e$+I)—t’ (19)
v(x, D, t) — e—x—t)—t’ (20)

Substituting equation (/6) into the Rangaig
transform both sides of the equation, we get.

Rlu ] =R [%v(uf + utz))]

Rlv,] = SR[ w(v? + vy )]
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1 1
(—Dw R[u] + —u xn0) =R [Ev(uf + ug)]
1 1
(Do R[v] + Zu (x,9,0) =R [Eu(vf + vnz)]
wRlu ]——u(x 1,0) — iR[ v(ux+un)]
w R[v ]——/U(xn,O) iR[Eu(/er +”n)

Rlu] = wifu (x,1,0) — —ER [—4’(’“3 + ug)

Rlv] = iv (x,9,0) ——%[Eu(vx +’lft))

We get once basic conditions are applied

1 1 1
Rl zﬁem_zm[i”(% J”"I’)] 21
1 1
R[v] =2¢ 0 —ziﬁ[ w(v? + v )]
The nonlinear element is characterized as:
1 1 1

N, lg, G tip)] = [v]—ie-f ”——%[zu(vx +od)]

Here, we express the equation for zero-order deformation as follows:

{(1 —p)R{p, (%1, t) —ue(x,t)} = phH,(x,9, )N, [@,(x, 9, t; )]
(1 =p)R{p,(x 1, t) —vo(x,9,t)} = phH, (%, 9, )N, [@, (3,9, t; p)]

Whenp =0 & p =1, we have

{%(x, n,t;0) = uo(x,1,0) {% (x1,t;,0) = v9(x9,0)
0., 61) =ulxyt) (@,(xyt1)=v(yt)

Thus, the equation for mth-order deformation

{iﬁ{um(x, 9, t) = XmUm-1(& D, 0)} = hH, (£ 9, DRy (U= (%9, 1)) (23)
sﬁ{/v/m(xr D, t) — XmUm-1 (x' D, t)} = th (x' D, t):Rm (vm—l (x' D, t))

The given assumption H,, (x,1,t) = H,(x,1,t) = 1, in equ. (23). We have

{‘ﬁ{um (&0, 8) = XmUm-1(x D, )} = ARy (U1 (%9, 1))
SR{/v/m (X, D, t) — XmUm-1 (x' D, t)} = h:Rm (Um—l (x' D, t))

By inverse Rangaig transform both sides, we obtain

{um (xr D, t) — XmUm-1 (x' D, t) = m_l{hRm (/u’m—l (x' D, t))}
Vm (&9, 1) = YmUm-1(69,t) = RHRy (012 9, 1))}

The implies

{um (x' I), t) = Xm/u’m—l(x' I)' t) + s‘R_l{hjem (m(}:' I)' t))} (24)
Um (%, D, t) = XmVUm-1 (%, D, t) + 9:{_:l{l’lslem (’lrm—l (%, D, t))}
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Find the value for (1, ©1, %, 15 ...)
From Equation (24) (Taking h = —1,m = 0,1,2,3 ...,). We obtain
o (%1, 1) = Ug (%1, 1)
(59, 8) = —R7HRy (% (9, 0))}
(5,9, 8) = 1 (5,9,8) = RHR, (%] (x v, 0))}
us (5,9, t) = uy(x,9,t) — R™H{R3 (%5 (x, 9, 1))}

Where
—— 1 0™ 'N,e,(0t;p)]
p=0
Using equation (25), putm = 1,2,3 ..., we obtain
— 1 i+y
E)({1(’“0(35, D, t)) = 56 )
., 1 1
R, (/M’l (%, D, t)) = (— ? — ?) e*ty
SR3(’TLZ(X, D, t)) = <_ m - E) ex"'U’
Therefore
uo(x,p,t) = e*,
uy(x,9,t) = t. e,
£2
u,(x,9,t) = Z.e”",
3
Us (X, D, t) = ? e>2+1),
The solution is:
w(®xy,t) =ug+uy +uy + -
Or
The final approximate solution for .
t? 3
u(x,,t) ={1+t+§+ §+} e*th = et ¥t (26)
u(x, v, t) = e*tott (27)
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Figure 1 shows the physical behaviour of solutions « at t = 0.5 for different ranges of x and 1,
respectively.

The Function u =¥ at t=0.5

Figure 1: The physical behaviour of the solution “u” of Example 1 at t = 0.5 on surface.

Table 1: Comparison of “exact solution and approximate solution” form get the function w(x,1,t))
with the help of RT-HAM at different ranges of xandp at t = 1.

. » Exact Solution (zc) Approximate Solution Absolute Er:‘or (n)=
() |u-u” |
0.1 0.1 3.320114243 3.320112740 1.51 x10°
0.2 0.2 4.055196148 4.055194313 1.83 x10°
0.3 0.3 4.953027094 4.953024852 2.24 x10°
0.4 0.4 6.049640140 6.049637402 2.74x10°¢
0.5 0.5 7.389046158 7.389042814 3.34 x10°°
0.6 0.6 9.025000144 9.024996060 4.08 x10¢
0.7 0.7 11.023158585 11.023153597 4.99 x10°
0.8 0.8 13.463714488 13.463708395 6.09 x10°

Table 1 Shows “the comparison of the exact and approximate solutions” of example 1 at different
ranges of x and y at t = 1. The solutions obtained via “RT-HAM” are very close to the exact solutions.

Find the value for (v, v1, v, v3 ...)
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From Equation (24), (Taking h = —1,m = 0,1,2,3 ..., ). We obtain
v (%9, 1) = 7o(x D, 1),
v1(xn,t) = =R YR, (%o (6,0, 1))},
v (1Y, t) = v1(59,t) = RHR, (7 (x v, 0))},
v3(x9,t) = v2(x9,6) - RH{Rs (0269, 0))},

Where
—— 1 0™ 'N,e,G0t;p)]
R (1) = m— 11 apm_l (28)
p=0
Using equation (28), putm = 1,2,3 ..., we obtain
ml(’lro(x,lj,t)) =E€ )
R (—’( t)) — i — i ]
21 X, 1)’ - (l)3 (l)4 e )
. 1 1 -
5}{3("’2(3&1),@) = (F_E)e ,
Therefore,
o (x' D, t) = e_x_l)’
v1(xy,t) = —t.e ¥,
£2
v, (%, t) = 5T e ™,
3
v3(x%,p,t) = —3 e 7Y,
The solution is:
vy t)=vy+vy vy + -
The final approximate solution for v.
t2 3
v(x,3t) = {1 -t +§ 31 + } e ¥V =¢7te*D (29)
vy, t) = e 30)

Figure 2 shows the physical behaviour of solutions v at t = 0.5 for different ranges of ¥ and ,
respectively.
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The Function v =e * ¥ ! att=0.5

Figure 2: The physical behaviour of the solution “v” of Example 1 at t = 0.5 on surface.

Table 2: Comparison of “‘exact solution and approximate solution” form get the function (x,1v,t) )

with the help of “RT-HAM” at different ranges of x and v at t = 1.

. Y Exact Solution (v) Approximate Solution Absolute Er:‘or (v)=
(v | v-v" |
0.1 0.1 0.301194455 0.301196302 1.84 x10°¢
0.2 0.2 0.246597196 0.246598708 1.51 x10°
0.3 0.3 0.201896735 0.201897973 1.24 x10°¢
0.4 0.4 0.165299088 0.165300102 1.01 x10°
0.5 0.5 0.135335465 0.135336295 8.30 X107
0.6 0.6 0.110803322 0.110804002 6.79 x107
0.7 0.7 0.090718100 0.090718656 5.56 x107
0.8 0.8 0.074273708 0.074274164 4.55 x107

Table 2 Shows “the comparison of the exact and approximate solutions” of example 1 at different
ranges of x and y at t = 1. The solutions obtained via “RT-HAM” are very close to the exact solutions.

Example 2: Consider the following system of nonlinear partial differential equations,

Depending on the initial condition.

U — VW, =1,
U — Welhy =5,
Wy — Uty =5

uo(%,1,0) =x+ 2y

Vo(x1,0) =x—2p

(€1))

(32)
(33)
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wo(x,1,0) = —x+ 2y (34)

Assuming Exact Function

w(xy,t) =x+ 2y + 3¢, (33)

v(x,y,t) =x— 2p + 3t, (36)

w(xy,t) = —x+ 2y + 3¢, (37

Substituting equation (37), into the Rangaig transform both sides of the equation,

Rlw,] = R[1 + vy |
Rlve] = R[5 + wyn, |
Riw,] = R[5 + w0y ]

The implies

(—Dw R[u] + %u (x,9,0) = SR[ 1+ van]
(-Dw R[v]+ %u (x,9,0) = SR[ 5+ Wx’%]

((~1)0 Rlw] + — (9,0) = R[5 + 0]

1

o R[u] = Zu (x,9,0) — 9‘{[1 + van]
1

w Rlv] = P (x,9,0) — SR[ 5+ Wx’“n]

| @ Rlw] = %u (£1,0) — R[5+ w0,

1 1

lfiR[u] =—u (x,1,0) — Z‘R[l + oWy |
1 1

{‘R[v] = v (x,19,0) — Z‘R[ 5 + wetsy |
1 1

l‘ﬁ[w] =5 (x,9,0) — ZSR[ 5+ uxvn]

We get once basic conditions are applied

1 1
l( Rlu] = m(x + 2p) — ZiR[l + oWy |

1 1
{ Rl = — (= 29) =~ R 5+ wyawy %)

1 1
l‘ﬁ[w] = E(—x + 2p) — ZSR[ 5+ w,vy |

The nonlinear element is characterized as:
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1 1

(
| 1 1

(39)
1 1
Nw[(pw(x' y,t; p)] = ER[W] - F (_x + 21)) - ZER[ 5+ ’”’x”n]
Here, we express the equation for zero-order deformation as follows:
(1= p)R{@u(xv,8) —uo(xv,8)} = phH,(x, 9, OON,[9, (% v, t; )]
(1 - P)R{(Pv (X, D, t) — Yo (X, D, t)} = th/zr (X, D, t)N/zr [(Pv(x; D, t; P)]
(1 = p)R{gpw(x,9,t) — wo(x,,8)} = phHy, (9, )Ny [0y (x 1, t; )]
Whenp =0 & p = 1, we have
{fpu(x, 9,t;0) = 10(x,,0) {(pv(x. 9,t;0) = vy (%1, 0) {(pw(x. 9,t;0) = wo(x,1,0)
(pu(x’ I)’ t; 1) = u(x’ r)’ t) ’ (l)v (x’ I)’ t; 1) = v(x’ I)’ t) ’ (pW (x’ I)’ t; 1) = W(x’ I), t)
Thus, the equation for mth-order deformation
SR{/u’m (xr D, t) — XmUm-1 (x' D, t)} = hHu (x' Dy, t):Rm (um—l (x' D, t))
R0 (59, 8) = XmOm-1(6 9,00} = A, (5,9, O Rom (T3 (5,9, 1) (40)
R{Wm (5,9, 8) = XmWm-1(& 1, )} = hH,, (5,9, )Ry (W —1 (5,9, 1))
The given assumption H,,(x,9,t) = H,(x,9,t) = H,(3,9,t) = 1, in equ.(40). We have
R{um (£,9,t) = XmUm-1E9,6)} = hRp (U1 (x,9, 1))
R{vm (39, 0) — XmUm-1E 9, )} = hRp, (’Vm—l (x, t))
R{wn (3,9,8) — YmWm-1(x9,0)} = hRp (Wm—l (= v, t))
We get what we need by inverting the Rangaig transform on both sides.
Um (X, D, t) — XmUm-1 (%, D, t) = 9{_:l{h:Rm (/M’m—l (%, D, t))}
Um (%, D, t) — XmVm-1 (%, D, t) = 9{_:l{}'l:Rm (Um—l (X, D, t))}
Win (5,1) = XmWm-1(%1,t) = R™H{ARy, W1 (x,v,£))}
The implies
Um (%, D, t) = Xmum—l(xJ Dy, t) + 9{_:l{flgzm (um—l (%, D, t))} (41)

Um (X, Dy, t) = vam—l(xJ Dy, t) + 9{_:l{h:Rm (’Um—l(xJ D, t))}
Wn(%9,t) = YmWm-1(x9,t) + sﬁ_l{h:’em Wn—1(x,9,0))}

Find the value for (ug, %4, 1,, 13 ...) from equation (41), (Taking, m = 0,1,2,3 ..,,).
o (%9, 1) = g (x, 9, 1),
uy(x,9,t) = —92_1{721(%—0’(:{, D, t))}
U (59,8) = uy (x,9,8) = RH{Ry (@, (3,9, 1))}
us(19,t) = up(x,9,t) — RH{Rs (w3(x, 9, 1))}

Where
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1 0™ IN,[e,(xv t;p)]
- 1! opm-1

R (1) = m

Using equation (42), (Putm = 1,2,3 ...), we obtain

. 3
Ry (o (x, 0, 1)) = L

. 3h
mz (/u’l (xr D, t)) = E:

. 3h(1 +h)
Rz (w0, (0, 0)) = w3

Therefore

’l/l«o(x, D, t) =x+ ZI);
uq(x,p,t) = —3h.t,
u,(x,9,t) = —3h(1 + h).t,

us(x,1,t) = —3h(1 + h)%.¢,

The solution is:

w(®xy,t) =ug+uy +uy + -

Or

The final approximate solution for .

u(xy,t) ={x+2y+ (=3h.t) + (-3h(1 + h).t) + (-3R(1 + h)%.t) +---}

From equation (43), (Taking, h = —1). Find the value of the exact solution.

w(x,yt) =x+2p+3t

Figure 3 shows the physical behaviour of solutions « at t = 0.5 for different ranges of xand vy ,

respectively.

(42)

(43)

(44)
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The Function u

Figure 3: The physical behaviour of the solution “u” of Example 2 at t = 1 on surface.

Table 3: Comparison of “exact solution and approximate solution” form get th
with the help of RT-HAM at different ranges of ¥ and y at t =

e function u(x, v, t)
1.

. y Exact Solution (1) Approximaze Solution Absolute Erfor (w)=
(u) | u-u” |
0.1 0.1 3.300000000 3.300000000 0
0.2 0.2 3.600000000 3.600000000 0
0.3 0.3 3.900000000 3.900000000 0
0.4 0.4 4.200000000 4.200000000 0
0.5 0.5 4.500000000 4.500000000 0
0.6 0.6 4.800000000 4.800000000 0
0.7 0.7 5.100000000 5.100000000 0
0.8 0.8 5.400000000 5.400000000 0

Table 3 Shows “the comparison of the exact and approximate solutions” of example 2 at different
ranges of x and y at t = 1. The solutions obtained via “RT-HAM?” are very close to the exact solutions.

Find the value of (v, 1, v, 13 ... ) from equation (41), (Takingm = 0,1,2,3 ..,,).
o (x' D, t) = F())(x: D, t);
v1(%9,t) = —RHR, (To(x v, 1))},
vy (59,t) = v1(1p,t) - RHR, (71, 1)},
v3(5,9,t) = v, (11, t) - RH{R3(v2(x v, 1))},
International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2399-2423 | 2412



Where

1 0™ N, [e.(x,t;p)]

Rn(Um-1) = m—11 apm-1

Using equation (28), (Putm = 1,2,3 ...), we obtain

- 3
Ry (’Vo(f; Y, t)) =%

. 3h
SRZ (01 (x' D, t)) = E;

. 3h(1+ h)
R3 (720, 0)) = B

Therefore,

UO(x'I)' t) = xX— 21),
(%, 9,t) = —h.3t,
v,(x,y,t) = -3h(1+ h).t,

v3(x,,t) = =3h(1 + h)?.t,

The solution is:

vy t)=vy+vy+uvy+ -

The final approximate solution for ¢.

v(x,3t) =&—2p+ (=3h.t) + (-3h(1 + h).t) + (-3h(1 + h)2%.t) + -}

From equation (46), (Taking, h = —1). Find the value of the exact solution.

v(x,yt)=x—2p+3t

(45)

(46)

(47)

Figure 4 shows the physical behaviour of solutions v at t = 0.5 for different ranges of ¥ and ,

respectively.
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The Function v

Figure 4: The physical behaviour of the solution “v” of Example 2 at t = 1 on surface.

Table 4: Comparison of “exact solution and approximate solution” form get the function (x,1v,t) )
with the help of “RT-HAM” at different ranges of x andy att = 1.

. » Exact Solution (¢) Approxin(l,;tt)e Solution Absolult; E;:‘Tr (v)=
0.1 0.1 2.900000000 2.900000000 0
0.2 0.2 2.800000000 2.800000000 0
0.3 0.3 2.700000000 2.700000000 0
0.4 0.4 2.600000000 2.600000000 0
0.5 0.5 2.500000000 2.500000000 0
0.6 0.6 2.400000000 2.400000000 0
0.7 0.7 2.300000000 2.300000000 0
0.8 0.8 2.200000000 2.200000000 0

Table 4 Shows “the comparison of the exact and approximate solutions” of example 2 at different
ranges of x and v at t = 1. The solutions obtained via “RT-HAM” are very close to the exact solutions.

Find the value of (wy, wy, w,, w; ...) from equation (47), (Takingm = 0,1,2,3 ..,,).
wo(%,9,t) = Wo(z,1,t)
wi(xn,t) = =R HR; (Wo (x, v, 1))}
wo (x50, t) = wi(xn,t) — RHR, (Wi (5,9, 1))}

W3 (x' D, t) =Ww; (x' 9, t) - 9%_1{‘733 (_VT/;(%, D, t))}
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Where

1 ™ IN, [, ;)]

Rin(Win-1) = m— 1! apm1 ) (48)
p=0
Using equation (25), Putm = 1,2,3 ..., we obtain
. 3
9:{1 (WO (%, D, t)) ="
W
. 3h
9{2 (Wl (x' D, t)) ==
)
. 3h(1+h)
Rs(W2 (1, 1)) = ——5—,
1)
Therefore
wo(x 1, t) = —x+ 2,
w;(xp,t) = —3h.t,
wy(x,9,t) = —3h(1 + h).t,
ws(x,1,t) = —3h(1 + h)?.t,
The solution is:
w(xn,t) =wy+wy +w, + -
Or
The final approximate solution for w.
w(xn,t) = {—x+ 29 + (=3h.t) + (=3R(1 + h).t) + (=3h(1 + R)2.t) + -} (49)
From equation(49) (Taking, h = —1). Find the value of the exact solution.
(50)

w(xy,t) = —x+2p+ 3t
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Figure S shows the physical behaviour of solutions w at t = 0.5 for different ranges of x and v,

respectively.

The Function w

Figure 5: The physical behaviour of the solution “w” of Example 2 at t = 1 on surface.

Table 5: Comparison of “exact solution and approximate solution” form get the function w(x,9,t))

with the help of RT-HAM at different ranges of ¥ andp att = 1.

Exact Solution (w)

Approximate Solution (w*)

Absolute Error (w)=
| w-w’|

x P/
0.1 0.1
0.2 0.2
0.3 0.3
0.4 0.4
0.5 0.5
0.6 0.6
0.7 0.7
0.8 0.8

3.100000000
3.200000000
3.300000000
3.400000000
3.500000000
3.600000000
3.700000000
3.800000000

3.100000000
3.200000000
3.300000000
3.400000000
3.500000000
3.600000000
3.700000000
3.800000000

0

S O OO O oo

Table 5 Shows “the comparison of the exact and approximate solutions” of example 2 at different
ranges of x and y at t = 1. The solutions obtained via “RT-HAM?” are very close to the exact solutions.

Example 3: consider the following system of nonlinear partial differential equations,

L
Ut 3

N
Ut 3

Depending on the initial condition.

vl +ud+ul)+u=1,

w?(v? + vl + v?)—v =1,

€3]
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uo(%,,3,0) = e+ (52)

Vo(%,1,3,0) = e 07 (53)
Assuming Exact Function

u(x’ 1), 3, t) — ex+t)+3—t, (54)

v(x, D, 3 t) — e—x—l)—3+t’ (55)

Substituting equation (57), into the Rangaig transform both sides of the equation
1
Rlu,] =R [ 1—u— §vz(u§ +ub + u?)]
1
Rlv] =R [ 14+v— §u2 (v + v + 032)]

(56)

The implies
1 1 2 2 2 2
(—Dw R[u] +Zu (%,9,3,0) = ‘ﬁ[l —u-gv (u? + u; +u5)]
1 1
(—Dw R[v] +5u (x,1,30) =R [ 1+ —§’bL2(’lfx2 + 2 +4rsz)]

w R[u] = !

1
=—u (x,n,a,O)—iR[l—u——vz(uf +ub +u§)]

3
1 1
w R[v] = v (x,9,30) — R [ 1+ —guz(/zrxz + 2 + 032)]

1 1 1
Rlu] = —u (%130 —Z‘ﬁ[l —u =g (ug +ug +u§)]

1 1 1
Rlv] = v (x,9,3,0) —55}{ [ 1+v— §u2(4rx2 +f + 032)]

We get once basic conditions are applied

1 1 1

R[u] =ﬁe‘+°+3—5%[1—u—§vz(u§+u§+u§)]
N | 1

R[v] =—5e D 3—59?[1 +v—§u2(4rx2+vnz+4raz)]

(57

The nonlinear element is characterized as:

1 1 1
Nolpu (03 6] = Rlu] = e b1 u -zt +ad +ad)| o

1 1 1
Nolpo(x9,3, 6:p)] = Rlv] ——Ze™ 7 +~R [ T+ —zu?(vf + o + 032)]

Here, we express the equation for zero-order deformation as follows:

{(1 - P)m{(l’u(x; 0,3, t) — Uy (%, 0,3 t)} = thu(xJ 0,3 t)Nu [(pu(x' 0,3 t; P)]
(1 - p)m{(pv (x' 0,3 t) — Vo (x' 0,3 t)} = th/v' (x' 0,3 t)N/v' [(pv (x: 9,3t p)]

Whenp =0 & p = 1, we have

{(pu (x1,3,t0) =u(x1,30) {(pv (x,1,3,t;0) = v4(x,9,3,0)
0, (x0,361) =u(x93t) (@,(31,3t1)=v(k0n31)

Thus, the equation for mth-order deformation
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{‘R{um (£9,3t) = YmUm-1(®9,3, 1)} = hH, (£ 9,3, Ry (U1 (£ 9,3, 1)) (59)
9%{/U’m (X, 0,3 t) — XmVm-1 (X, 0,3 t)} = hH/lr (X, 0,3 t):Rm (’lrm—l (%, 0,3 t))

The given assumption H,,(%,9,3,t) = H,(%,9,3,t) = 1, in equ.(59), we have

{m{’um x1,3,t) — YmUm-1( 1,3, )} = hRp (p—1(x,0,3, t))
9{{’vlm (X, 0,3 t) — XmVm-1 (X, 0,3 t)} = h:Rm (’Um—l (%, 0,3 t))

We get what we need by inverting the Rangaig transform on both sides.

{um (£9,3,t) — Xmtm—1®D,3,t) = R YRy (U1 (2 0,3,0)}
V(69,3 8) = XmUm-1(%1,3,t) = RTHAR (7 —1 (1,3, 8))}

The implies
{um (x, D, 3 t) = Xm/u’m—l(x' 0,3 t) + m_l{thm (um—l (x' 0,3 t))} (60)
Um(@0,3,8) = XmVm-10,3,1) + RTH{AR, (07,77 (% 0,3, 1))}

Find the value for (1, 11, %, 15 ...)
From Equation (60), (Takingh = —1,m = 0,1,2,3 ...,). We obtain

uo(x,1,3,t) = uo(x,9,3,t)
uy(%,9,3,0) = —R YR, (4o (x,9,3,1))}
uy(%,9,3,8) = w1 (0,3, 0) — R R, (w7 (x.9,3,0))}
u3(%,9,3,8) = uy (1,3, 1) — R HR3 (w7 (x,v,3,0))}

Where

1 0™ 'N,[p,(xvtp)]
—1! opm-1

(61)

:Rm(um—l) = m

Using equation (67), putm = 1,2,3 ..., we obtain

1
9{1 (u—)O(x; 9,3 t)) = — E ex+t)+3,

e 1 1

9‘{2 (’bLl (x, D3 t)) = (E — w4) ex+n+3’
0, 1 1

R3 (uz xv,3 t)) = (F _ ws) R

Therefore,

U (x' 0,3 t) = ex“'l)“'?s’

u,(x,9,3t) = —Zt. e*tots,
t
u,(x,9,3,t) = o e*tyts
1'53
U3 (x' D3 t) = - ? e%+1)+3’

The solution is:
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w(xn,3,t) =ug+ 1y +uy + -
Or

The final approximate solution for .

t2 3
_ )1 _ _ 0+3 _ -t xtp+ (62)
u(x,l),s,t)—{l t+2! 3!+ }e"“—e .eXtots
u(xv,3,t) = (63)

Figure 6 shows the physical behaviour of solutions « at t = 0.5 for different ranges of %1 and 3,
respectively.

The Function u

Figure 6: The physical behaviour of the solution “u” of Example 3 at 3 = 1 and t = 0.5 on surface

Table 6: Comparison of “exact solution and approximate solution” form get the functionu(,v,3,t)
with the help of “RT-HAM” at different ranges of ,y and 3 at t = 1.

Approximate Solution Absolute Error (©)=

x b)) 3 Exact Solution () () | mad” |
0.1 0.1 0.1 2.013751759 2.013750848 9.11 x107
0.2 0.2 0.2 1.491824296 1.491823621 6.75 X107
0.3 0.3 0.3 1.105170844 1.105170344 5.00 X107
0.4 0.4 0.4 0.818730863 0.818730493 3.71 x107
0.5 0.5 0.5 0.606530864 0.606530589 2.74 x107
0.6 0.6 0.6 0.449329206 0.449329003 2.03 x107
0.7 0.7 0.7 0.332871330 0.332871179 1.51 x107
0.8 0.8 0.8 0.246597196 0.246597085 1.12 X107
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Table 6 Shows “the comparison of the exact and approximate solutions” of example 3 at different
ranges of x,yand 3at t = 1. The solutions obtained via “RT-HAM” are very close to the exact

solutions.
Find the value for (v, v1, v, v3 ...)

From Equation (60), (Takingh = —1,m = 0,1,2,3 ..., ). We obtain

o (X, 0,3 t) = QT)O(x: 0,3 t);

1 (x' D, 3 t) = _;‘R_l{“Rl (zf—())(x' 9,3, t))};

12 (xr 0,3 t) =1 (x' 0,3 t) - S):{_1{:722 (W(x' 0,3 t))},

v3 (xr 0,3 t) =1 (x' 0,3 t) - S)%_1{:723 (—v—Z)(x' 0,3 t))}'

Where

1 0™ N, [e.(x,t;p)]

Rm(um—l) = m—1! apm—l

Using equation (64), putm = 1,2,3 ..., we obtain

—_— 1 —x—n—
9{1(/0’0(xJI)J3't)) =me 0 3;

— 1 1N
mZ(vl(xrt)u’)'t)) = (___>e A 3;

w3 w?
1

1
R3(v2(xv,3,0)) = (— — _) et

w? w°

Therefore
o (x' 0,3 t) =e —35—1)—3'

v,(x,1,3,t) = t.e ¥07,
2

2 (x, 0,3 t) = E ' e_x_U_?)'

3

v3 (xr 0,3 t) = ; e_x_l)_?)’

The solution is:

v(x,,3t) =vy vy +vy+ -

(64)
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The final approximate solution for v.
t2 3

v(x1,3t) = {1 +t+—+ —+ } e~¥ D73 = gt o—¥V3 (65)

2! 3!

v(xy3t) =e 0 (66)

Figure 7 shows the physical behaviour of solutions ¥,y and 3 at t = 0.5, respectively.

The Function v

1 AT
T

}l —
0o |
o

Figure 7: The physical behaviour of the solution “v” of Example 3 at 3 = 1 and t = 0.50n surface

Table 7: Comparison of “exact solution and approximate solution” form get the function v (%,1),3,t)
with the help of “RT-HAM” at different ranges of x,y and 3 att = 1.

. Approximate Absolute Error (v) =
x b)) 3 Exact Solution (1) S(E’lll)l tion (v") | o-v" | )
0.1 0.1 0.1 0.496585538 0.496588583 3.04 x10°¢
0.2 0.2 0.2 0.670320226 0.670324337 4.11x10°
0.3 0.3 0.3 0.904837479 0.904843027 5.55 x10°
0.4 0.4 0.4 1.221402594 1.221410083 7.49 x10°¢
0.5 0.5 0.5 1.648720716 1.648730826 1.01 x10°
0.6 0.6 0.6 2.225539731 2.225553378 1.36 x10°
0.7 0.7 0.7 3.004163801 3.004182222 1.84 x10°
0.8 0.8 0.8 4.055196148 4.055221014 2.49 x107

Table 7 shows “the comparison of the exact and approximate solutions” of example 3 at different ranges
of %,y and 3 at t = 1. The solutions obtained via “RT-HAM?” are very close to the exact solutions.
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5 Conclusion

All things considered, the above-mentioned
visual and numerical evidence points to the
suggested scheme as a straightforward and
precise semi-analytical approach to solving
systems of nonlinear (2+1) D and (3+1) D
partial differential equations. Applications of
this method to nonlinear models of partial
differential equations include a wide range of
practical issues.
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