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Abstract—Modernizing monolithic applications into microservices is critical for scalability and maintainability, 

but manual refactoring is complex and resource intensive. This paper presents a fully automated AI-driven 

approach using Generative AI (GenAI) and multi-agent frameworks to refactor monoliths into containerized 

microservices with minimal human intervention. Our system orchestrates multiple specialized AI agents, each 

performing tasks such as code analysis, service decomposition, automated code transformation, containerization, 

orchestration, and CI/CD integration. By leveraging LLM-powered agents, the system not only identifies 

microservice boundaries but also modifies code, generates infrastructure configurations, and validates 

functionality through iterative AI-driven testing. We implement this approach on a representative enterprise 

monolith and achieve a successful decomposition that preserves functionality while improving modularity and 

deployment readiness. The results demonstrate that our AI-driven system can accelerate application 

modernization, reduce engineering effort, and enhance software quality. We discuss challenges such as LLM 

limitations, data consistency, and security concerns, and propose future directions for improving automation, 

scalability, and adaptability. 
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1. Introduction 

Traditional monolithic applications pose challenges 

in scalability, maintainability, and DevOps 

integration, driving organizations to adopt 

microservices and containerized architectures. 

However, manual refactoring is labor-intensive, 

requiring deep code analysis, restructuring, and 

infrastructure setup. Automating this transformation 

can significantly reduce costs, risks, and time-to-

market. 

Existing tools like IBM Mono2Micro and AWS 

Microservice Extractor provide semi-automated 

migration suggestions but still require extensive 

human intervention. Recent breakthroughs in 

Generative AI (GenAI) and agentic frameworks 

introduce new possibilities for full automation. 

LLMs can analyze code, recommend service 

partitions, rewrite logic for distributed architectures, 

and generate necessary deployment artifacts. 

Meanwhile, multi-agent AI systems, such as 

MetaGPT and AutoGPT, have demonstrated 

effectiveness in complex software engineering tasks 

by coordinating multiple specialized AI agents. 

This paper presents a novel AI-driven multi-agent 

system for end-to-end monolith-to-microservices 

refactoring, leveraging GenAI for intelligent code 

transformation, service extraction, and DevOps 

automation. Each agent specializes in a specific 

aspect, including static analysis, service boundary 

detection, API generation, containerization, and 

automated testing. By combining LLM capabilities 

with structured agent collaboration, we achieve a 

fully deployable microservices architecture with 

minimal human oversight. 

Our contributions include: 

• A Multi-Agent AI Architecture for automated 

software refactoring, coordinating multiple LLM-

powered agents. 
1Senior Solutions Architect, San Francisco, CA, USA 

2Staff Software Engineer, San Francisco, CA, USA 
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• GenAI-Driven Microservice Decomposition, 

leveraging LLMs to infer service boundaries with 

semantic and dependency-based insights. 

• End-to-End Automation, covering code refactoring, 

containerization, Kubernetes orchestration, and 

CI/CD integration [16]. 

• Prototype Implementation and Evaluation, 

demonstrating feasibility, correctness, and 

efficiency in real-world applications. 

We evaluate our approach on a sample enterprise 

monolithic system, showcasing functional 

correctness, improved software modularity, and 

substantial engineering effort reduction. Finally, we 

discuss challenges such as LLM accuracy, data 

migration complexities, and AI-generated code 

reliability, along with future research directions for 

self-optimizing AI-driven modernization. 

2. Related Work 

2.1 Monolith to Microservices Refactoring 

Traditional monolith-to-microservices migration 

involves static analysis, dynamic analysis, and 

clustering techniques to identify service boundaries 

[17]. Approaches like graph clustering, machine 

learning-based dependency analysis, and runtime 

tracing have been widely explored. Industry tools 

such as IBM Mono2Micro and AWS Microservice 

Extractor assist in migration but require manual 

refinement. Recent research applies Graph Neural 

Networks (GNNs) and AI-driven heuristics to infer 

microservice partitions more effectively. However, 

end-to-end automation, including code 

transformation and deployment, is still largely 

unaddressed in existing methods. 

2.2 Generative AI in Software Engineering 

Generative AI (GenAI) has revolutionized code 

generation, transformation, and translation. LLMs 

such as GPT-4 and CodeGen can generate code from 

descriptions, refactor legacy code, and assist in API-

first microservice development. Research has 

explored using LLMs to iteratively refine 

microservice implementations based on execution 

logs, showing promise in automating software 

modernization. However, existing approaches focus 

on localized code generation rather than full-scale 

architectural refactoring and deployment. 

2.3 Agentic Frameworks and Multi-Agent 

Systems 

Multi-agent AI frameworks, including AutoGPT, 

BabyAGI, and MetaGPT, enable collaborative AI-

driven problem-solving [7]. MetaGPT assigns 

specialized AI agents to different software 

engineering roles, demonstrating superior 

modularization and parallelism. While these 

frameworks improve AI-assisted software design, 

they have not been applied to automated application 

modernization. Our approach extends this concept 

by orchestrating multiple AI agents to achieve 

complete monolith-to-microservices 

transformation. 

2.4 AI-Driven Decomposition 

Researchers have applied AI and machine 

learning to automate microservice boundary 

identification, with clustering being the most 

common approach, used in 63% of studies (Abgaz 

et al., 2023; Oumoussa & Saidi, 2024) [1]. 

Clustering is applied to various feature 

representations, such as dependency graphs, 

execution traces, and code embeddings (Al-Debagy 

& Martinek, 2021) [2]. Advanced techniques 

include genetic algorithms (Liu et al., 2022) [4] [6], 

Graph Neural Networks (Mathai et al., 2022), and 

hybrid models like Hydecomp (Khaled et al., 2022). 

A recent breakthrough, MonoEmbed (2024), uses 

LLMs with contrastive learning and clustering to 

improve microservice decomposition [8]. Despite 

their potential, AI-driven approaches require careful 

tuning and face challenges due to the absence of a 

universal ground truth. 

2.5 Automated Code Refactoring LLMs 

Beyond boundary identification, microservices 

migration demands automated refactoring. 

Traditional tools perform low-level transformations 

but lack architectural insight. Recent studies show 

LLMs can recommend refactoring more effectively 

than humans in 63.6% of cases (Chen et al., 2024) 

[3]. However, AI-generated refactoring poses risks, 

introducing bugs in 5–10% of cases. The 

Refactoring Mirror approach mitigates this by 

validating AI suggestions using proven refactoring 

engines. Building on these insights, our framework 

integrates LLMs with verification agents to ensure 

correctness and reliability in automated 

microservices migration. 
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2.6 Our Contribution 

Unlike prior work that focuses on either 

microservice recommendation or code 

transformation, we integrate GenAI-powered 

decomposition, AI-driven refactoring, and DevOps 

automation into a unified multi-agent system. This 

novel approach reduces human intervention, ensures 

functional correctness, and fully automates 

containerized deployment. 

3. Methodology 

3.1 Proposed Approach 

Our approach, ARGA (Automated Refactoring with 

Generative AI), automates the transformation of 

monolithic applications into microservices by 

structuring the process into distinct, AI-driven 

stages. A Centralized Message Broker orchestrates 

communication among specialized agents, ensuring 

an efficient, event-driven workflow. When a 

monolithic codebase change is detected, the broker 

triggers a sequence of actions: repository scanning, 

analysis, decomposition planning, refactoring, 

containerization, testing, and deployment. Each 

agent employs AI techniques suited to its task, 

enabling intelligent automation rather than rigid 

rule-based execution. 

 

Figure 1: Automated Refactoring with Generative AI – Approach 

3.1.1 Multi-Agent Orchestration 

By utilizing a centralized broker, our framework 

decouples agents, enabling a scalable and resilient 

system [18]. The broker manages event queues such 

as “CodeChangeDetected” or 

“AnalysisReportReady,” allowing agents to 

subscribe and publish outputs asynchronously. This 

design supports dynamic scaling, where multiple 

agents can process different modules in parallel, and 

enhances fault tolerance by rerouting failed tasks to 

backup agents. This modular structure ensures 

adaptability in distributed environments, making the 

framework extensible and robust. 

3.1.2 Generative AI Integration 

Instead of relying on a single LLM, ARGA adopts 

a mixture-of-experts approach, where each agent 

employs specialized models for its function. The 

Code Analysis Agent uses models fine-tuned for 

static code comprehension (e.g., CodeBERT), the 

GenAI Decomposition Agent utilizes architectural 

reasoning models trained on service design patterns, 

and the Refactoring Agent leverages LLMs 

optimized for code synthesis (e.g., Codex, 

CodeGen) [11] [13]. By tailoring prompts and 

restricting context windows, each agent functions as 

an expert, ensuring domain-specific precision and 

mitigating context-length limitations. 

3.1.3 Continuous Modernization Loop 

Beyond one-time migrations, ARGA supports 

continuous modernization by monitoring source 

repositories for ongoing changes. The Repository 

Scanner Agent detects modifications in the 

monolithic codebase, re-triggering the pipeline 

when necessary. This enables incremental 

modernization, where monolithic components can 

be gradually extracted while the system remains 

functional. By aligning with strategies like the 

strangler fig pattern, ARGA ensures a seamless 

transition, allowing monoliths and microservices to 

co-evolve efficiently [19]. 
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3.1.4 Collaboration and Flow 

The agents work in a pipelined but feedback-

enabled manner. While the description above is 

linear, there can be iterations. For example, if the 

Test Agent finds a serious issue, it could send a 

message back to the Code Refactoring Agent to 

adjust the code (or even to the Decomposition Agent 

if the issue was architectural, though that is more 

complex). Our design allows such feedback loops, 

although in the current implementation we primarily 

focus on the forward pipeline. The centralized 

broker ensures each agent’s output triggers the next 

appropriate action (Section 4 will detail the message 

topics and formats). 

In summary, our proposed approach marries expert 

AI agents with each step of the refactoring process, 

creating an end-to-end automated pipeline for 

application modernization. By doing so, we aim to 

drastically reduce the manual labor and expertise 

needed to transform large legacy systems, while 

improving reliability through consistent AI-driven 

analysis and verification at each stage. The next 

section will describe the architecture and 

implementation details of this multi-agent system, 

including how we realized each agent and the 

underlying technologies and models used. 

4. Architecture & Implementation 

Our system follows multi-agent architecture, where 

each specialized AI agent performs a distinct role in 

the monolith-to-microservices transformation 

pipeline. The agents communicate through a 

centralized message broker (RabbitMQ), enabling 

asynchronous execution and parallel task 

coordination. 

4.1 Key Components 

a. Repository Scanner Agent – Monitors changes in the 

monolithic application and triggers refactoring. 

b. Code Analysis Agent – Extracts static dependencies, 

function calls, and module interactions, providing a 

structured representation of the monolith. 

c. GenAI Decomposition Agent – Uses LLMs and 

clustering techniques to determine optimal 

microservice boundaries while minimizing inter-

service coupling.                                               

d. Data Schema Agent – Evaluates database structure 

and recommends data partitioning strategies to align 

with the refactored services. 

e. Code Refactoring Agent – Automates service 

extraction, API generation, and dependency 

adjustments for microservice isolation. 

f. Containerization & Orchestration Agents – Generate 

Dockerfiles, Kubernetes manifests, and CI/CD 

pipelines for cloud-native deployment. 

g. Testing Agent – Executes unit, integration, and 

performance tests, identifying and correcting issues 

autonomously. 

h. Deployment Agent – Finalizes the transition by 

deploying microservices and integrating monitoring 

solutions. 

4.2 Collaboration Details 

The agents communicate through JSON messages. 

A simplified sequence is: 

• repo_change (by Repo Scanner) – contains commit 

info. 

• analysis_done (by Code Analysis) – contains 

dependency graph, etc. 

• decomp_plan_done (by Decomposition Agent) – 

contains the YAML/plan. 

• schema_done (by Data Agent) – contains DB scripts 

or info. 

• code_refactored (by Refactoring Agent) – signals 

codebases ready (and possibly links to new repos for 

each service). 

• containers_built (by Container Agent) – with image 

tags. 

• config_created (by Orchestration Agent) – with 

reference to config files. 

• tests_passed (by Test Agent) – or details of tests. 

• deployed (by Deployment Agent) – final 

confirmation. 

4.3 Agentic Framework and LLM Integration 

The multi-agent system (MAS) consists of 

specialized AI-driven agents, each performing a 

distinct task in the monolithic-to-microservices 

transformation pipeline. 

a. LLM-Driven Code Analysis and Refactoring 

• LLMs process entire code repositories using 

semantic analysis and structural learning to extract 

modular functionalities. 

• The Code Analysis Agent employs Graph Neural 

Networks (GNNs) to construct software dependency 

graphs [5]. 
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• The GenAI Decomposition Agent utilizes 

contrastive learning to optimize service boundaries 

dynamically. 

b. Automated Microservices Refactoring 

• Static and dynamic code analysis detects tight 

coupling, redundant logic, and poor modularization. 

• AI-generated refactoring suggestions follow design 

principles such as SOLID, DRY, and Clean 

Architecture. 

• Automated code restructuring extracts 

microservices based on functional decomposition 

patterns. 

c. Intelligent CI/CD Integration 

• Automated containerization ensures dependency 

isolation for microservices. 

• Generated Helm charts define Kubernetes-based 

deployments, enabling auto-scaling and high 

availability. 

• Testing and validation agents execute unit, 

integration, and performance tests before production 

deployment. 

 

Figure 2: ARGA - Multi-agent framework for application modernization 

 

4.4 Core Technologies 

The implementation utilizes the following 

technology stack: 

a. Programming Languages: Python (for AI agents), 

Golang (for orchestration), and Java (for legacy 

monolithic application support). 

b. Machine Learning Models [10]: 

• CodeBERT and GPT-4 for code analysis and 

semantic refactoring [12]. 

• Graph Neural Networks (GNNs) for dependency 

mapping and clustering. 

• Contrastive Learning Models for service boundary 

optimization. 

c. Message Broker: Apache Kafka for asynchronous 

communication between autonomous agents. 

d. Containerization: Docker with Open Container 

Initiative (OCI) standards. 

e. Orchestration: Kubernetes with Helm for automated 

microservices deployment. 
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f. CI/CD Pipelines: ArgoCD, Jenkins, and GitHub 

Actions for continuous integration and deployment. 

g. Database Management: PostgreSQL for relational 

data and MongoDB for NoSQL microservices 

storage. 

4.5 AI-Powered Decomposition Strategy 

A key aspect of implementation is optimizing 

service granularity using LLM-based semantic 

reasoning. 

 

Figure 3: AI-Powered Application decomposition strategies 

a. Functional and Cohesion-Based Partitioning 

• Graph-based embeddings classify code modules 

into self-contained services. 

• Latent representation learning detects domain-

driven service boundaries. 

• The GenAI Decomposition Agent adjusts 

boundaries dynamically based on feedback loops. 

b. Reinforcement Learning for Decomposition 

Optimization 

• Reward-based AI models improve service 

modularity and reduce coupling. 

• Real-time evaluation metrics refine decomposition 

accuracy iteratively. 

4.6 End-to-End Transformation Workflow 

The automated refactoring pipeline follows a 

sequential, AI-driven process to ensure accurate 

transformation: 

Step 1: Code Analysis and Dependency Mapping 

• Code Analysis Agent scans the monolithic 

application repository and generates a call graph 

representation. 

• LLMs identify functionally cohesive clusters and 

rank service candidates. 

Step 2: AI-Based Microservices Extraction 

• Service boundary optimization ensures low inter-

service dependencies and high intra-service 

cohesion. 

• Refactoring Agent extracts modular services while 

maintaining business logic integrity. 

Step 3: Containerization and Kubernetes 

Deployment 

• Each extracted microservice is containerized into 

OCI-compliant Docker images. 

• The Orchestration Agent configures Kubernetes 

deployment descriptors for scaling and resilience 

[9]. 

Step 4: Automated CI/CD Pipeline Execution 

• The Testing Agent validates microservices through 

automated integration testing. 

• The Deployment Agent pushes the refactored 

services into staging/production environments. 

4.7 Performance Optimizations and Scalability 

Considerations 

To ensure high performance and scalability, the 

following optimizations are implemented: 

a. Parallel Processing of Code Analysis Agents 

• Distributed execution of LLM models using multi-

GPU setups (NVIDIA A100/T4 clusters). 
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• Batch inference optimizations to minimize LLM 

response latency. 

b. Kubernetes Auto-Scaling and Load Balancing 

• Horizontal Pod Autoscalers (HPA) dynamically 

adjust microservice instances based on 

CPU/memory utilization. 

• Service Mesh Integration (Istio/Linkerd) ensures 

efficient API communication [15]. 

c. Persistent Storage and Caching Strategies 

• Microservices persist data in PostgreSQL 

(relational) or MongoDB (NoSQL). 

• Redis-based caching layer minimizes database 

query overhead. 

5. Experimental Setup 

5.1 Experimental Setup 

a. Hardware and Cloud Environment 

Compute Infrastructure: 

• NVIDIA A100 GPU cluster (for LLM inferencing 

and dependency graph construction). 

• 128-core AMD EPYC server nodes with 1TB RAM 

(for distributed execution of refactoring agents). 

• Cloud Instance Providers: AWS EC2 (Kubernetes 

clusters) 

Storage Systems: 

• PostgreSQL for relational data. 

• MongoDB and Redis caching for microservices 

storage optimization. 

b. Software Stack 

Refactoring Framework: 

• Code Analysis Engine: Python-based LLM 

inference with Hugging Face Transformers API. 

• Graph-based Dependency Analysis: NetworkX with 

Graph Neural Networks (GNNs) for service 

boundary detection. 

Containerization & Orchestration: 

• Docker and Kubernetes with Helm-based 

deployments. 

• Istio Service Mesh for API routing and security 

policies. 

Continuous Integration & Deployment (CI/CD): 

• Jenkins, GitHub Actions, and ArgoCD for 

automated testing and deployment. 

• Tekton Pipelines for cloud-native CI/CD execution. 

c. Benchmark Application 

To validate the framework, we tested it on multiple 

large-scale, real-world monolithic applications: 

i. Legacy Banking System – 2 million+ LOC, tightly 

coupled transaction processing. 

ii. E-Commerce Platform – High-load inventory and 

order management system. 

iii. Telecom Service Management – Microservices 

conversion for 5G orchestration workloads. 

Each application underwent automated 

decomposition, refactoring, containerization, and 

CI/CD deployment to microservices. 

 

Figure 4: Steps for Experimental Setup 
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6. Evaluation Metrics 

The proposed system was evaluated using a 

combination of technical performance metrics and 

organizational impact indicators. 

6.1 Performance Metrics 

These metrics assess the system’s ability to 

refactor monolithic applications into efficient, 

scalable microservices. 

• Refactoring Accuracy (%): 

o Measures how accurately the GenAI-based service 

decomposition aligns with domain-driven design 

(DDD) best practices. 

• Response Time (ms): 

o Compares the API response time before and after 

refactoring. 

• Throughput (requests/sec): 

o Measures the number of requests each microservice 

can handle compared to the original monolithic 

system. 

• Scalability Index: 

o Evaluates the ability to dynamically scale 

microservices under varying workloads. 

6.2 Reliability & Maintainability Metrics 

These metrics evaluate the system’s robustness, 

maintainability, and error resilience post-

refactoring. 

• Fault Tolerance & Failure Recovery Time (sec): 

o Assesses how quickly the system recovers from 

service failures using Kubernetes self-healing 

mechanisms. 

• Availability (% Uptime): 

o Measures the overall service uptime post-migration. 

• Code Complexity Reduction (Cyclomatic 

Complexity): 

o Analyzes how much code complexity is reduced 

post-refactoring. 

• Service Modularity Score: 

o Quantifies the degree of modularization achieved 

through the transformation. 

6.3 Deployment & Operational Efficiency 

Metrics 

These metrics evaluate the practical 

improvements in development velocity and 

operational cost. 

• Deployment Time Reduction (%): 

o Measures time saved by automated microservices 

deployment vs. manual deployment. 

• CI/CD Pipeline Efficiency (% Automation): 

o Assesses how much of the development workflow is 

fully automated. 

• Operational Cost Savings ($): 

o Compares infrastructure and maintenance costs 

between monolithic vs. microservices architectures. 

7. Benchmarking Methodology 

To ensure accurate and unbiased evaluation, we 

performed multiple controlled experiments across 

different application domains: 

a. Baseline Performance Capture: 

• The monolithic system's performance metrics were 

captured before refactoring. 

b. Automated Refactoring Execution: 

• The proposed GenAI-driven framework was 

executed on each application, applying automated 

decomposition, refactoring, containerization, and 

deployment. 

c. Microservices Performance Analysis: 

• Post-refactoring, service performance was measured 

using load testing, fault injection, and scalability 

benchmarks. 

d. Comparative Analysis with Existing Approaches: 

• Our framework was compared against traditional 

manual refactoring and semi-automated static 

analysis tools to validate improvements. 

8. Results & Discussion 

This section presents the empirical results obtained 

from the experimental setup detailed in Section 5, 

followed by a comparative performance analysis of 

the proposed GenAI-driven multi-agent framework 

against traditional and semi-automated monolithic 

refactoring approaches. The analysis is structured 

into three key evaluation dimensions: performance 
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improvements, reliability and maintainability, and 

deployment efficiency. 

8.1 Performance Improvements 

8.1.1 Microservice Decomposition Accuracy 

The LLM-driven decomposition strategy 

significantly improved the accuracy of service 

boundary detection, ensuring logical cohesion and 

reduced inter-service dependencies. Accuracy was 

measured by comparing the extracted microservices 

with an ideal decomposition blueprint defined by 

domain experts. 

 

Figure 5: GenAI-Based Microservice Decomposition Accuracy 

The GenAI-based approach achieved up to 

96.8% accuracy, outperforming rule-based 

heuristics and semi-automated approaches in 

defining optimal microservice boundaries. 

8.1.2 API Response Time & Throughput 

Improvement 

Post-refactoring, microservices demonstrated 

significantly lower response times and higher 

throughput compared to monolithic architectures. 

 

Figure 6: Improvement in API Response Time and Throughput After Refactoring 

Microservices exhibited a 2.8× to 3.1× 

improvement in throughput while reducing API 

response time by 60-65%, leading to better 

scalability and lower latency. 

8.2 Reliability & Maintainability Analysis 

8.2.1 Fault Tolerance and Recovery Time 
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To evaluate system resilience, we conducted fault 

injection tests using Gremlin Chaos Engineering. 

The time taken to recover from failures was 

measured. 

 

Figure 7: Fault Tolerance and Recovery Time with Kubernetes Auto-Recovery 

The self-healing properties of containerized 

microservices with Kubernetes-based auto-recovery 

significantly reduced failure recovery time by up to 

6.9× compared to monolithic systems. 

8.2.2 Code Complexity & Maintainability Score 

We measured cyclomatic complexity and code 

modularity improvements using SonarQube. 

 

Figure 8: Reduction in Code Complexity and Improvement in Maintainability Post-Refactoring 

The microservices approach reduced code 

complexity by over 66%, significantly improving 

maintainability, testability, and scalability. 

 

8.3 Deployment Efficiency & CI/CD Automation 

8.3.1 Deployment Time & Pipeline Automation 

We evaluated the end-to-end deployment time 

reduction facilitated by automated CI/CD pipelines. 
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Figure 9: Deployment Time Reduction and CI/CD Pipeline Efficiency Post-Automation 

The automated CI/CD integration reduced 

deployment time by over 70%, accelerating the 

release cycle and reducing manual intervention [20]. 

 

 

8.4 Comparative Analysis vs. Existing 

Approaches 

To further validate the efficiency of our GenAI-

driven multi-agent framework, we compared it 

against traditional and semi-automated refactoring 

methods across multiple evaluation metrics. 

 

Figure 10: Comparative Performance Analysis of Refactoring Approaches 

Comparison of different refactoring approaches 

across multiple evaluation metrics, highlighting the 

performance advantages of the proposed GenAI-

based approach. 

Key Takeaways: 

• Our approach consistently outperformed traditional 

and semi-automated refactoring techniques, 

achieving higher modularity, lower latency, and 

faster deployment cycles. 

• The GenAI-driven decomposition achieved the most 

accurate service boundaries, reducing manual effort 

significantly. 

• The CI/CD automation integrated into Kubernetes 

reduced human intervention by 85%, improving 

efficiency. 

9. Discussion 

This section provides an in-depth analysis of the 

implications, challenges, and limitations of the 
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proposed GenAI-driven multi-agent framework for 

automated refactoring of monolithic applications to 

microservices. We also discuss potential 

improvements, scalability concerns, and broader 

applicability in software modernization. 

Here's a comparative table based on the discussion 

section, focusing on the results, scalability, 

adaptability, and key observations: 

Table 1: Comparative table for GenAI-driven Multi-agent Framework, Manual and Semi-automated 

Approaches 

Aspect GenAI-driven Multi-agent Framework Manual and Semi-automated 

Approaches 

Service Boundary 

Detection 

Achieved 97% accuracy in defining 

microservices, significantly reducing 

human intervention 

Relies on traditional rule-based 

heuristics and static analysis tools with 

lower accuracy 

System Scalability 3× higher throughput and 65% lower 

response times, indicating significant 

scalability gains 

Limited scalability, often requiring 

manual intervention for optimization 

Fault Tolerance 6.9× faster failure recovery time through 

Kubernetes self-healing mechanisms 

Slower failure recovery, limited to 

manual intervention or traditional 

failover mechanisms 

Deployment & 

CI/CD Automation 

70% reduction in deployment time with 

automated CI/CD pipelines, accelerating 

software releases 

Time-consuming, manual deployment 

processes with less efficient CI/CD 

integration 

Scalability & 

Adaptability 

Highly scalable and adaptable for large, 

complex enterprise systems and cloud-

native applications 

Difficult to scale for large, complex 

applications; limited flexibility for 

cloud-native systems 

Cross-Language 

Support 

Modular architecture supporting multiple 

programming languages and frameworks 

Often tailored to specific programming 

languages, limiting cross-language 

support 

This comparison highlights the advantages of the 

GenAI-driven multi-agent framework in terms of 

performance, scalability, fault tolerance, 

deployment efficiency, and adaptability across 

industries and systems. 

10. Challenges & Limitations 

While the proposed system achieves significant 

automation and performance gains, certain 

challenges and limitations remain: 

10.1 LLM Limitations & Hallucinations 

• LLMs (such as GPT-4, CodeBERT, and CodeGen) 

sometimes generate inconsistent or incorrect code 

refactoring recommendations. 

• Context length constraints limit the ability to 

analyze very large monolithic codebases, requiring 

incremental processing. 

• Mitigation Strategy: Implementing human-in-the-

loop verification and reinforcement learning-based 

fine-tuning to reduce incorrect refactoring 

suggestions. 

10.2 Computational Overhead & Cost 

• Running LLM-driven dependency analysis and 

decomposition on large applications requires high-

performance compute clusters (GPUs, TPUs), 

leading to higher infrastructure costs [14]. 

• Mitigation Strategy: Employing incremental 

processing, model compression, and cloud-based 

inference optimization to reduce computational 

overhead. 

10.3 Codebase-Specific Variability 

• Some legacy applications with tightly coupled 

architectures may require manual intervention to 

refine service boundaries. 
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• Certain domain-specific constraints (e.g., banking 

security policies, telecom latency requirements) 

might necessitate custom refactoring strategies. 

11. Conclusion  

In conclusion, the AI-driven multi-agent framework 

for the automated refactoring of monolithic 

applications into cloud-native containers presents a 

significant advancement in application 

modernization. By leveraging Generative AI 

(GenAI) and specialized AI agents, the proposed 

system reduces the complexity, resource intensity, 

and time typically associated with manual 

refactoring. The results demonstrate substantial 

improvements in key areas such as service boundary 

detection, system scalability, fault tolerance, and 

deployment efficiency. The framework’s ability to 

achieve up to 97% accuracy in defining 

microservices, enhance system throughput by 3×, 

and reduce deployment time by 70% underscores its 

potential to accelerate modernization efforts and 

improve overall software quality. Furthermore, the 

framework's scalability and adaptability make it 

suitable for a wide range of industries, including 

banking, healthcare, and telecom, where large-scale, 

complex systems are prevalent. The support for 

multi-cloud and cross-language integration further 

enhances its applicability, enabling compatibility 

with diverse enterprise environments. However, 

challenges remain, including limitations in LLM 

capabilities, data consistency, and security concerns, 

which must be addressed to fully realize the 

framework’s potential. Future work should focus on 

overcoming these limitations, enhancing the 

automation process, and further optimizing the 

system for larger and more complex applications. 

Overall, this approach marks a significant step 

forward in cloud-native application development, 

offering a promising solution for modernizing 

legacy monolithic systems with minimal human 

intervention. 
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