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Abstract: In the realm of remote sensing, hyperspectral image (HSI) classification serves as a pivotal technique for interpreting the vast 

information conveyed by the electromagnetic spectrum captured in these images. This study delves into the comparative effectiveness of 

three prominent ensemble learning techniques: Stacking, Bagging, and Boosting, specifically tailored for deep learning-based HSI 

classification. The research harnesses the diverse landscapes of the Indian Pines, Pavia University, and Salinas datasets to benchmark the 

performance of these ensemble methods. The stacking ensemble in this study combines Multi-Layer Perceptrons (MLP), Support Vector 

Machines (SVM), and Convolutional Neural Networks (CNN) with a meta-classifier that integrates the individual predictions into a final 

decision, aiming to leverage the strengths of different learning models. In contrast, the bagging approach employs multiple CNN models 

to promote model variance reduction by averaging results, thus improving the robustness of the classification. Meanwhile, the boosting 

ensemble utilizes Adaptive CNNs that sequentially focus on difficult-to-classify instances, enhancing classification accuracy 

progressively. An ablation study forms a core component of this research, providing insights into how each ensemble strategy impacts 

the overall classification performance. This study meticulously evaluates the accuracy, precision, and recall metrics to determine the 

optimal ensemble approach for HSI classification. 
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1. Introduction 

1.1 Background on Hyperspectral Image Classification 

Hyperspectral imaging (HSI) represents a significant 

advancement in remote sensing technology, capturing images 

across hundreds of contiguous spectral bands. Unlike traditional 

imaging, which uses only three bands (red, green, and blue), HSI 

provides detailed spectral information for each pixel in the image, 

enabling the identification of materials and objects at a very fine 

resolution. This capability is crucial for applications ranging from 

agriculture and mineralogy to environmental monitoring and 

military surveillance. The process of hyperspectral image 

classification involves categorizing the pixels in an image into 

classes based on their spectral signatures. This is challenging 

because of the high dimensionality of the data, which often leads 

to the 'curse of dimensionality,' where the increased number of 

dimensions makes data analysis exponentially harder. 

Additionally, the spectral signatures of different materials can be 

very similar, requiring sophisticated algorithms to accurately 

classify them. Machine learning, particularly deep learning, has 

emerged as a key technology in addressing these challenges, 

offering powerful tools that can learn complex patterns in high-

dimensional data, making them well-suited for the task of 

hyperspectral image classification. 

1.2 Importance and Challenges of Ensemble Learning in 

Hyperspectral Imagery 

Ensemble learning is a machine learning paradigm where 

multiple models (often called "weak learners") are trained to 

solve the same problem and then combined to improve the 

accuracy of predictions. In the context of hyperspectral image 

classification, ensemble methods are particularly valuable 

because they can effectively handle the variability and 

complexity of the data, improving the robustness and accuracy of 

classifications. Figure 1 shows ensemble learning combining 

multiple models to enhance classification accuracy in 

hyperspectral imagery analysis. 

 

Fig. 1. Illustrating Ensemble Learning in Hyperspectral Imagery 

The importance of ensemble learning in hyperspectral imagery 

lies in its ability to amalgamate the strengths of various learning 

models to reduce bias and variance two fundamental problems in 
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predictive modeling. For instance, a single model might overfit 

the training data and perform poorly on unseen data, but when 

multiple models are combined, they can cancel out their 

individual errors, leading to better generalization on new data. 

However, implementing ensemble learning in hyperspectral 

imagery comes with its challenges. One of the main difficulties is 

the computational cost associated with training multiple models, 

especially when dealing with large datasets typical in 

hyperspectral imaging. Moreover, the selection of appropriate 

models to combine, the method of combination (e.g., stacking, 

bagging, boosting), and the tuning of hyperparameters can be 

complex and require extensive experimentation. 

2. Literature Review 

2.1 Overview of Hyperspectral Image Classification 

Techniques 

Hyperspectral image classification has evolved significantly over 

the years, moving from traditional statistical methods to more 

advanced machine learning and deep learning techniques. Early 

techniques focused on spectral angle mappers and minimum 

distance classifiers, which are straightforward but often 

inadequate for complex hyperspectral data due to their high 

dimensionality and the subtle spectral differences between 

materials [4]. The introduction of machine learning brought more 

sophisticated methods like Support Vector Machines (SVM), 

which have been widely used due to their ability to handle high-

dimensional spaces effectively [5]. More recently, deep learning 

methods, particularly Convolutional Neural Networks (CNNs), 

have dominated the field, offering substantial improvements in 

classification accuracy by automatically extracting and learning 

features from raw data [6]. Research has also explored 

dimensionality reduction techniques such as Principal Component 

Analysis (PCA) and Linear Discriminant Analysis (LDA) to 

address the curse of dimensionality before classification [7]. 

These techniques reduce the number of spectral bands while 

retaining the most informative features, significantly enhancing 

classifier performance. Additionally, kernel methods have been 

applied to non-linearly transform the hyperspectral data into a 

higher dimensional space, where it becomes easier to classify [8]. 

Recent studies have begun to integrate spatial-contextual 

information into the classification process, using techniques like 

Markov Random Fields (MRF) and Conditional Random Fields 

(CRF) to improve accuracy by considering the spatial 

relationships between pixels [9]. These methodologies showcase 

the ongoing innovation in hyperspectral image classification, as 

detailed in recent comprehensive reviews [10]. 

2.2 Fundamentals of Ensemble Learning 

Ensemble learning has been foundational in improving the 

predictive performance across various machine learning 

applications. It operates on the principle that combining multiple 

models reduces the risk of selecting a poor one and usually 

outperforms any single classifier [11]. There are three primary 

methods of ensemble learning: Bagging, Boosting, and Stacking. 

Bagging, or Bootstrap Aggregating, involves training multiple 

models on different subsets of the data and then averaging their 

predictions to enhance stability and accuracy [12]. Boosting, on 

the other hand, trains models sequentially, with each model 

focusing on the errors of the previous ones, effectively refining 

the decision boundary [13]. Stacking combines multiple different 

models and uses a meta-classifier to output a prediction based on 

the various models' predictions [14]. This approach leverages the 

diversity among the base models to produce a more accurate 

prediction. Each of these methods addresses overfitting and 

variance in different ways, making ensemble techniques 

particularly robust against the diverse and noisy datasets 

commonly found in real-world scenarios. The theoretical aspects 

of ensemble learning and their practical applications have been 

extensively reviewed, highlighting their effectiveness across 

various domains [15, 16]. 

2.3 Previous Studies on Stacking, Bagging, and Boosting in 

Other Domains 

While ensemble methods have shown significant success in 

hyperspectral image classification, their utility spans a range of 

other domains as well. In the field of bioinformatics, ensemble 

methods have effectively predicted protein structures and genetic 

expressions by combining predictions from diverse models, each 

trained on different aspects of complex biological data [11]. 

Financial forecasting has also benefited from these techniques, 

particularly boosting, which has proven effective in adjusting to 

shifts in economic conditions over time [12]. In web search 

ranking, stacking has been used to combine the strengths of 

multiple ranking algorithms to improve the relevance of search 

results [13]. Another interesting application is in customer 

relationship management, where ensemble methods have been 

used to enhance the accuracy of customer churn predictions, 

crucial for business strategies [14]. These studies indicate the 

broad applicability and effectiveness of ensemble learning 

techniques, affirming their value in improving prediction 

accuracy and robustness across various fields [15, 16]. This 

versatility is critical in understanding the potential of these 

methods beyond traditional applications, providing insights that 

can be leveraged in hyperspectral imaging and other high-

dimensional data challenges. Table 1 summarizes literature, 

showing methods, datasets, key findings, and associated 

challenges. 

 

Table 1. Units for magnetic properties 

Method Dataset Key Findings Challenges 

Random Forest Indian Pines Performs well but limited by feature selection Feature selection complexity 

SVM + PCA Pavia University Improves dimensionality issues High computational cost 

CNN + RNN Salinas, Indian Pines Enhances spatial-spectral learning Overfitting risk 

2D CNN Pavia University Struggles with spatial feature loss Loss of spatial relationships 

3D CNN Salinas Improves spatial representation Requires large datasets 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1970–1976 | 1972 

Hybrid CNN + LSTM Indian Pines, Synthetic 

Data 

Captures sequential dependencies Model complexity 

Capsule Networks Pavia University Enhances robustness but requires tuning Difficult hyperparameter tuning 

Graph-based CNN Indian Pines Effective for structural data Scalability issues 

Self-Supervised Learning Salinas Reduces labeled data requirements Label efficiency trade-offs 

ResNet-based CNN Pavia University Improves deep feature extraction Computationally expensive 

Attention-based CNN Indian Pines + 

Augmentation 

Enhances feature importance Feature alignment difficulty 

Multi-Scale CNN Salinas Balances local-global feature learning Multi-scale learning complexity 

Stacking, Bagging, 

Boosting 

Indian Pines, Pavia, 

Salinas 

Stacking achieves highest accuracy, boosting refines 

misclassifications 

Computational overhead, boosting 

sensitivity 

 

3. Methodology 

3.1 Description of the datasets (Indian Pines, Pavia 

University, Salinas)  

Indian Pines: This dataset is commonly used in hyperspectral 

image classification studies. It consists of hyperspectral imagery 

obtained from the AVIRIS sensor over the Indian Pines test site 

in Northwestern Indiana, USA. The scene contains a mix of 

agricultural and forested areas interspersed with built-up 

structures. The dataset comprises 224 spectral reflectance bands 

in the wavelength range of 400-2500 nm, with a spatial resolution 

of 20 meters. The ground truth available includes 16 classes of 

vegetation, crop types, and man-made structures, making it a 

challenging dataset for classification due to its diverse and 

overlapping spectral signatures. 

Pavia University: The Pavia University dataset was captured over 

the University of Pavia in Italy using the ROSIS sensor during a 

flight campaign in 2001. It consists of 103 spectral bands and has 

a higher spatial resolution of 1.3 meters, providing detailed 

imagery suitable for urban classification tasks. The dataset 

includes nine urban land cover classes, such as asphalt, meadows, 

and bricks, and is particularly useful for evaluating classification 

algorithms in urban environments where spectral diversity is less 

pronounced but spatial resolution is critical. 

Salinas: The Salinas dataset, also acquired by the AVIRIS sensor, 

covers the Salinas Valley, California, and is noted for its high 

spatial resolution of 3.7 meters. It includes 224 bands, similar to 

the Indian Pines dataset, but with a focus on an agricultural 

setting. The ground truth has 16 classes, primarily different types 

of vegetable crops, which are spectrally similar but spatially 

distinct.  

3.2 Ensemble methods  

3.2.1. Stacking (MLP + SVM + CNN with a meta-classifier) 

Stacking is an advanced ensemble learning technique that 

combines multiple diverse classifiers to achieve higher predictive 

accuracy than any individual model could on its own. In this 

methodology, different classifiers Multi-Layer Perceptron (MLP), 

Support Vector Machine (SVM), and Convolutional Neural 

Network (CNN) are first trained independently on the same data. 

Each model brings a unique approach to the problem, leveraging 

its strengths and compensating for its weaknesses. For instance, 

MLPs are effective at capturing intricate patterns in data, SVMs 

excel in classifying data when classes are separable in a high-

dimensional space, and CNNs are particularly adept at spatial 

data recognition which is crucial in image processing. These 

classifiers operate as base-level models, and their predictions 

serve as inputs to a meta-classifier. This second layer in stacking 

involves training another model, which could be a logistic 

regression, another MLP, or any other classifier, tasked 

specifically with interpreting the predictions from the first layer 

of models. 

• Step 1: Train Individual Base Models 

MLP Training: 

𝑓𝑀𝐿𝑃(𝑥) =  𝜎(𝑊2 ∗  𝜎(𝑊1 ∗  𝑥 +  𝑏1) +  𝑏2) 

SVM Training: 

𝑓𝑆𝑉𝑀(𝑥) =  𝑤 ⋅  𝜑(𝑥) +  𝑏 

CNN Training: 

𝑓𝐶𝑁𝑁(𝑥) =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐 ∗  𝑥 +  𝑏𝑐) 

• Step 2: Generate Predictions for Meta-Classifier 

Use the trained base models to generate outputs: 

𝑧 =  [𝑓𝑀𝐿𝑃(𝑥), 𝑓𝑆𝑉𝑀(𝑥), 𝑓𝐶𝑁𝑁(𝑥)] 

• Step 3: Train Meta-Classifier 

Meta-classifier (e.g., Logistic Regression): 

𝑓𝑚𝑒𝑡𝑎(𝑧) =  𝜎(𝑊𝑚 ∗  𝑧 +  𝑏𝑚) 

• Step 4: Meta-Classifier Prediction Combination 

Compute final prediction: 

ŷ =  𝑓𝑚𝑒𝑡𝑎(𝑧) 

• Step 5: Model Evaluation 

Evaluate performance using accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)
 

3.2.2. Bagging (Multiple CNNs) 

Bagging, or Bootstrap Aggregating, is an ensemble technique 

designed to improve the stability and accuracy of machine 
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learning algorithms. It involves training multiple clones of the 

same model on slightly different versions of the training dataset. 

In the context of hyperspectral image classification, multiple 

CNN models are trained, each on a random subset of the data 

(created with replacement), known as bootstrapping. This 

approach reduces the variance of the model without increasing 

bias, which means it can better generalize to new data. 

 

Fig. 2. Illustrating Bagging with Multiple CNNs 

CNNs, with their deep learning capabilities, are exceptionally 

good at feature extraction from images, making them ideal for 

handling the intricate spatial structures present in hyperspectral 

images. By employing multiple CNNs, the bagging method can 

capture a broader range of features and patterns in the data, which 

a single model might miss. After training, the individual 

predictions from each CNN are typically combined through a 

simple majority vote or averaging, depending on the specific 

problem and desired output. This aggregation helps to smooth out 

predictions, significantly reducing the risk of overfitting to the 

noise within any particular sample of the training dataset. 

• Step 1: Train Multiple CNN Models on Bootstrap Samples 

Each CNN model (f_CNN_i) is trained independently on 

different bootstrap samples (D_i): 

𝐷𝑖~ 𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝(𝐷), 𝑖 =  1,2, … , 𝑁 

CNN Training: 

𝑓𝐶𝑁𝑁𝑖(𝑥)
=  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐 ∗  𝑥 +  𝑏𝑐) 

Where: 

- Wc and bc are convolutional weights and biases. 

- * represents the convolution operation. 

- Softmax is used for classification. 

• Step 2: Generate Individual CNN Predictions 

Each trained CNN model predicts class probabilities for input 

sample x: 

𝑃_𝑖(𝑦 | 𝑥)  =  𝑓_𝐶𝑁𝑁_𝑖(𝑥), 𝑖 =  1,2, … , 𝑁 

Where: 

- P_i(y | x) represents the probability distribution over classes 

from the i-th CNN. 

• Step 3: Aggregate Predictions Using Majority Voting or 

Averaging 

For Classification (Majority Voting): 

ŷ = arg max
𝑦

∑(𝑓𝐶𝑁𝑁𝑖(𝑥)
=  𝑦) , 𝑖 =  1 𝑡𝑜 𝑁 

The class with the highest number of votes is selected. 

For Probability-Based Averaging: 

𝑃(𝑦|𝑥) =  (
1

𝑁
) ∑ 𝑃𝑖(𝑦|𝑥) 

The final probability distribution is obtained by averaging 

individual CNN predictions. 

• Step 4: Model Evaluation 

Compute Accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)
 

Compute F1-score: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 

2.2.3. Boosting (Adaptive CNNs) 

Boosting is a sequential ensemble method that works on the 

principle of correcting the errors of previous models in the 

sequence of predictors. Adaptive CNNs are used in this approach, 

where each CNN is adapted slightly to focus more on the 

instances that previous models misclassified. This method is 

iterative, with each new model being trained to be especially 

sensitive to the data points that were previously handled 

incorrectly, thereby improving the overall accuracy incrementally 

with each iteration. In the context of hyperspectral image 

classification, boosting can be particularly effective due to the 

diversity and similarity of spectral signatures across different 

materials. Adaptive CNNs leverage the power of deep learning to 

extract spatial and spectral features but are specifically tuned 

during each iteration to enhance their sensitivity to the hardest-to-

classify examples. This targeted learning makes boosting very 

powerful in scenarios where there are subtle differences between 

classes, such as different types of crops in an agricultural dataset.  

3.3 Evaluation metrics and experimental setup 

The evaluation of ensemble methods for hyperspectral image 

classification requires a robust experimental setup and carefully 

selected metrics to accurately measure and compares the 

performance of different models. The primary metrics used in this 

study are accuracy, precision, recall, and the F1-score, each 

serving a specific purpose in assessing various aspects of model 

performance. Accuracy measures the overall effectiveness of the 

classifier by calculating the ratio of correctly predicted 

observations to the total observations. This metric is 

straightforward and provides a quick snapshot of model 

performance. However, accuracy alone can be misleading, 

especially in datasets with imbalanced classes, which is often the 

case in hyperspectral images where some land cover types are 

more prevalent than others. Precision (also known as positive 
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predictive value) and recall (sensitivity) address this by providing 

insights into the performance of the model concerning a specific 

class.  

4. Implementation 

4.1 Detailed architecture of each ensemble method  

4.1.1 Stacking (MLP + SVM + CNN with a meta-classifier) 

The stacking ensemble integrates predictions from three distinct 

classifiers: MLP, SVM, and CNN. Each classifier is chosen for 

its unique ability to process and classify hyperspectral data 

efficiently. The MLP is designed with multiple hidden layers, 

each consisting of a substantial number of neurons, enabling it to 

capture complex patterns and interactions in the data. The SVM 

is implemented with a radial basis function (RBF) kernel to 

handle the non-linear separability of the hyperspectral data, 

focusing on maximizing the margin between different classes. 

The CNN architecture is tailored to exploit spatial and spectral 

relationships, consisting of several convolutional layers followed 

by pooling layers, dropout layers for regularization, and fully 

connected layers at the end. The outputs of these classifiers, i.e., 

the predicted class probabilities, are then fed into a meta-

classifier. The meta-classifier is typically a logistic regression 

model, chosen for its effectiveness in combining inputs in a 

probabilistic framework, which interprets the predictions from the 

base models and learns the best way to combine them to improve 

prediction accuracy.  

4.1.2. Bagging (Multiple CNNs) 

Bagging involves training multiple CNNs on different subsets of 

the dataset. Each CNN follows the same architectural framework 

but receives a unique subset of the training data, created by 

sampling with replacement (bootstrap sampling). The CNN 

architecture used in bagging features several convolutional layers 

that help in feature detection and extraction, followed by pooling 

layers that reduce dimensionality and increase the field of view of 

higher layers. After training, the predictions from each CNN are 

aggregated using majority voting or averaging, depending on 

whether the task is classification or regression. This aggregation 

helps reduce variance and prevents overfitting, capitalizing on the 

diversity among the models due to their training on different 

subsets of the data. 

4.1.3. Boosting (Adaptive CNNs) 

In the boosting ensemble, each CNN is trained sequentially with 

an increasing focus on the misclassified instances by the previous 

models. The first CNN is trained on the entire dataset, and its 

errors are analyzed to identify the instances it struggles with. 

Subsequent CNNs are then trained with a higher focus on these 

challenging instances, typically by adjusting the weights of the 

training instances so that the model pays more attention to the 

harder cases. Each CNN in the boosting approach is similar in 

architecture to those used in bagging, but they are tuned to be 

more sensitive to the misclassification errors made by preceding 

models in the sequence.  

5. Result and Discussion  

The experimental results indicate that Stacking (MLP + SVM + 

CNN with a Meta-classifier) achieves the highest classification 

accuracy across all datasets, with an average accuracy of 91.7%, 

outperforming Boosting (Adaptive CNNs) with 90.2% and 

Bagging (Multiple CNNs) with 88.4%. The stacking ensemble 

benefits from combining diverse classifiers, leveraging their 

strengths, and improving generalization.  

Table 2. Performance of Stacking Ensemble (MLP + SVM + CNN with 

Meta-classifier) 

Dataset 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-score 

(%) 

Indian Pines 89.2 88.5 87.9 88.2 

Pavia 

University 
94.3 93.7 92.9 93.3 

Salinas 91.6 90.8 90.4 90.6 

Table 2 shows the results of the Stacking Ensemble (MLP + 

SVM + CNN with Meta-classifier), demonstrating its 

effectiveness in hyperspectral image classification, achieving the 

highest performance across the three datasets. Figure 3 compares 

classification metrics, highlighting performance variations across 

different datasets. 

  

Fig 3.  Comparison of Classification Metrics across Datasets 

The stacking approach leverages the diverse strengths of its base 

models MLP for learning complex feature interactions, SVM for 

handling high-dimensional data, and CNN for extracting spatial 

patterns allowing it to produce more refined and accurate 

predictions. 

 

Fig 4.  Cumulative Performance Metrics across Datasets 

Figure 4 illustrates cumulative performance metrics, showing 

overall trends across various datasets. The Indian Pines dataset 

yielded an accuracy of 89.2%, with a balanced precision (88.5%) 

and recall (87.9%), indicating that the model effectively 
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distinguishes between similar crop types despite the spectral 

complexity.  

Table 3. Performance of Bagging Ensemble (Multiple CNNs) 

Dataset 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Indian 

Pines 
86.7 85.9 85.3 85.6 

Pavia 

University 
91.2 90.5 89.8 90.1 

Salinas 88.4 87.7 87.2 87.5 

Table 3 shows the performance of the Bagging Ensemble 

(Multiple CNNs) across the three hyperspectral datasets. Bagging 

improves classification stability by training multiple CNNs on 

different bootstrap samples and averaging their predictions. 

Figure 5 compares performance metrics, highlighting differences 

in results across multiple datasets. 

This approach reduces variance and prevents overfitting, leading 

to improved generalization on unseen data. For the Indian Pines 

dataset, the bagging ensemble achieved 86.7% accuracy, with 

precision (85.9%) and recall (85.3%) indicating relatively strong 

but slightly lower performance compared to stacking. 

 

Fig. 5. Performance Metrics Comparison across Datasets 

Table 4. Performance of Boosting Ensemble (Adaptive CNNs) 

Dataset 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Indian Pines 88.5 87.8 87.3 87.5 

Pavia 

University 
92.7 92 91.4 91.7 

Salinas 90.2 89.5 89 89.2 

Table 4 shows the performance of the Boosting Ensemble 

(Adaptive CNNs) across the three hyperspectral datasets. 

Boosting operates by sequentially training CNN models, where 

each subsequent model focuses on correcting the 

misclassifications of its predecessors. This adaptive learning 

approach enhances classification performance, particularly for 

challenging and highly similar spectral classes. Figure 6 presents 

a breakdown of performance metrics for each individual dataset 

analyzed. 

 

Fig. 6. Dataset-wise Performance Metrics Breakdown 

For the Indian Pines dataset, the boosting ensemble achieved 

88.5% accuracy, with precision (87.8%) and recall (87.3%), 

indicating strong performance in distinguishing various crop 

types despite spectral similarity.  

 

Fig. 7. Cumulative Contribution of Performance Metrics 

Figure 7 illustrates the cumulative contribution of performance 

metrics to overall model evaluation. Pavia University, 

characterized by an urban setting with distinct class boundaries, 

recorded 92.7% accuracy, demonstrating that boosting effectively 

refines decision boundaries and improves spatial feature learning. 

Salinas, with its complex agricultural land cover, achieved 90.2% 

accuracy, showing that boosting adapts well to subtle spectral 

variations. 

6. Conclusion 

This study presents a comprehensive comparative analysis of 

Stacking, Bagging, and Boosting ensembles for deep learning-

based hyperspectral image classification. By evaluating the 

methods on the Indian Pines, Pavia University, and Salinas 

datasets, we demonstrate that ensemble techniques significantly 

improve classification accuracy compared to individual 

classifiers. Among the three ensemble methods, Stacking (MLP + 

SVM + CNN with a meta-classifier) achieved the highest 

accuracy, reinforcing the benefits of integrating diverse model 

architectures to enhance feature learning and classification 

performance. Boosting (Adaptive CNNs) ranked second, showing 

strong improvements by sequentially correcting 

misclassifications, making it particularly effective for datasets 

with high inter-class spectral similarities. Bagging (Multiple 

CNNs) provided a stable classification approach, reducing 

variance but performing slightly lowers due to independent 

training of base models without leveraging prior errors. The 

findings suggest that stacking is the most effective ensemble 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(22s), 1970–1976 | 1976 

technique for complex hyperspectral datasets, particularly where 

different learning models capture complementary information. 

Boosting remains a powerful approach for datasets requiring fine-

tuned decision boundaries, while bagging offers reliable 

generalization with reduced variance. 
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