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Abstract: This paper presents novel approaches to solving general and special cases of heat-like equations across one and two dimensions, 

incorporating both initial and non-local boundary conditions. Utilizing the Homotopy Perturbation Method (HPM), we demonstrate the 

efficacy of this technique in tackling these complex problem sets. Our results show high accuracy, with HPM offering a continuous solution-

unlike the discrete approximations provided by finite difference methods. Our findings underscore HPM's potency as a versatile 

mathematical tool applicable to a wide array of linear and nonlinear problems spanning various scientific and technological domains. 
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1. Introduction 

In recent years, several promising analytic methods have 

emerged for addressing initial boundary value problems. 

Notable among these are series solution techniques, 

including the Adomain decomposition method [8], 

Homotopy Analysis Method [9], Variation Iteration Method 

[7], and Homotopy Perturbation Method [6]. These methods 

have garnered significant attention for their ability to 

provide approximate and analytical solutions to partial 

differential equations, driven by demands across various 

industrial and scientific applications. Extensive research has 

been devoted to both the theoretical underpinnings and 

numerical methodologies for solving initial boundary value 

problems, as evidenced by numerous studies (see, for 

instance, [1-4] and references therein). Perturbation 

methods represent one widely applied technique in this 

domain.He [6] introduced a new perturbation technique, the 

Homotopy Perturbation Method (HPM), which combines 

traditional perturbation methods with the homotopy 

technique. Unlike conventional perturbation methods, HPM 

constructs a homotopy with an embedding parameter  1,0p  

, treated as a small parameter. 

This method has attracted considerable attention in recent 

years, with many researchers incorporating it into their 

investigations involving differential equations. He [5], for 

instance, successfully applied HPM to solve initial 

boundary value problems governed by nonlinear differential 

equations, demonstrating its efficiency and simplicity. 

The primary objective of this study is to leverage the 

Homotopy Perturbation Method (HPM) to solve heat-like 

equations in both general and special forms, featuring 

variable coefficients and subject to non-local boundary 

conditions across one-dimensionaland two-dimensional 

scenarios. 

2. Analysis of the method 

To illustrate the basic ideas, let X and beY two topological 

spaces.  

If f and g are continuous maps of X intoY , it is said that 

f is homotopic to g if there is continuous map

  YXF → 1,0:  such that )()0,( xfxF = and 

)()1,( xgxF =  for each Xx , then the map is called 

homotopy between f and g . 

 We consider the following nonlinear partial differential 

equation 

𝐴(𝑢) − 𝑓(𝑟) = 0, 𝑖𝑛 𝛺                                                       

(1) 

Subject to the boundary conditions 

𝐵 (𝑢,
∂u

∂η
) = 0, onΓ                                                              

(2) 

Where 𝐴is a general differential operator,f is a known 

analytic function, Γis the boundary of the domain Ωand



denotes directional derivative in outward normal direction 

to Ω. The operator 𝐴, is generally divided into two 

parts,𝐿and 𝑁, where 𝐿is linear, while 𝑁is nonlinear. 

Using 𝐴 = 𝐿 + 𝑁; (1) canbe rewritten as follows: 

𝐿(𝑣) + 𝑁(𝑣) − 𝑓(𝑟) = 0                                                         

(3) 

By the homotopy technique, we construct a homotopy 

defined as: 

𝐻(𝑣, 𝑝): Ω × [0,1] ⟶ ℝ                                                           

(4) 

This satisfies 
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𝐻(𝑣, 𝑝) = (1 − 𝑝)(𝐿(𝑣) − 𝐿(𝑢0)) + 

𝑝(𝐴(𝑣) − 𝑓(𝑟)) = 0, 𝑝 ∈ [0,1], 𝑟 ∈ Ω (5) 

Or 

𝐻(𝑣, 𝑝) = 𝐿(𝑣) − 𝐿(𝑢0) + 𝑝𝐿(𝑢0) + 

𝑝(𝑁(𝑣) − 𝑓(𝑟)), 𝑝 ∈ [0,1], 𝑟 ∈ Ω (6) 

Where𝑝 ∈ [0,1]is an embedding parameter,𝑢0is an initial 

approximation of equation (1), which satisfies the 

boundary conditions. It follows from equation(6) that: 

𝐻(𝑣, 0) = 𝐿(𝑣) − 𝐿(𝑢0) = 0 (7) 

𝐻(𝑣, 1) = 𝐴(𝑣) − 𝑓(𝑟) = 0                                                    

(8) 

The changing process of  𝑝 from 0 to 1 monotonically is a 

trivial problem. 

H(v, 0) = L(v) − L(u0) = 0 is continuously transformed to 

the original problem 

𝐻(𝑣, 1) = 𝐴(𝑣) − 𝑓(𝑟) = 0                 (9) 

In topology, this process is known as continuous 

deformation. L(v) − L(u0) = 0and A(v) − f(r)are called 

homotopic. We use the embedding parameter 𝑝as a small 

parameter, and assume that the solution of equation (6)can 

be written as power series of 𝑝 : 

𝑣 = 𝑝0𝑣0 + 𝑝1𝑣1 + 𝑝2𝑣2 + 𝑝3𝑣3 + ⋯ + 𝑝𝑛𝑣𝑛 + ⋯(10) 

Setting 𝑝 = 1, we obtained the approximate solution of 

equation (11) as: 

𝑢 = lim
𝑝→1

𝑣 = 𝑣0 + 𝑣1 + 𝑣2 + 𝑣3 + ⋯ + 𝑣𝑛 + ⋯ (11) 

The series of equation (1) is convergent for most of the 

cases, but the rate of theconvergence depends on the 

nonlinear operator 𝑁(𝑣). He (1999) has suggested that the 

second derivative of 𝑁(𝑣)with respect to 𝑣should be small 

because the parameter may be relatively large i.e𝑝 → 1and 

the norm of L−1 (
∂N

∂η
)  must be smaller than one in order the 

series to converge. 

3. Convergence analysis 

Lemma 

Suppose that L−1 exist then the exact solution satisfy 

𝑢 = 𝐿−1(𝑓(𝑟)) − ∑ 𝐿−1(𝑁(𝑣𝑖))+∞
𝑖=0  (12) 

Proof 

Rewriting equation (6), in the following from  

𝐿(𝑣) = 𝐿(𝑢0) + 𝑝[𝑓(𝑟) − 𝑁(𝑣) − 𝐿(𝑢0)] (13) 

Applying the inverse operatorL−1to both sides of(13), we 

had: 

𝑣 = 𝑢0 + 𝑝[L−1(𝑓(𝑟)) − L−1(𝑁(𝑣)) − 𝑢0] (14) 

We write (10) in compact form as, follows 

𝑣 = ∑ 𝑝𝑖𝑣𝑖
+∞
𝑖=0  (15) 

Substituting into the right hand side of (14), we got: 

𝑣 = 𝑢0 + 𝑝 [L−1(𝑓(𝑟)) − L−1(𝑁 (∑ 𝑝𝑖𝑣𝑖

+∞

𝑖=0

)) − 𝑢0] 

 

From (11), we obtained the exact solution 

𝑢 = lim
𝑝→1

𝑣 = L−1(𝑓(𝑟)) − L−1(𝑁 (∑ 𝑣𝑖

+∞

𝑖=0

)

= L−1(𝑓(𝑟)) − ∑ L−1(𝑁(𝑣𝑖)

+∞

𝑖=0

) 

In order to study the convergence of the method, we present 

the sufficient condition of the convergence in the following. 

Theorem 

Supposing that 𝑋and𝑌are Banach spaces and 𝑁: 𝑋 → 𝑌is a 

contraction non linear mapping, that is  

∀𝑢, 𝑣 ∈ 𝑋: ‖N(𝑢) − 𝑁(𝑣)‖ ≤ 𝐿‖𝑢 − 𝑣‖, 0 < 𝐿 < 1 (16) 

Then, according to Banach's theorem𝑁 has a unique fixed 

point𝑤, that is 𝑁(𝑤) = 𝑤. Supposing that the sequence 

generated by homotopy perturbation method can be written 

as: 

𝑉n = 𝑁(𝑉𝑛−1), V𝑛−1 = ∑ vi, n = 1, 2, 3n−1
i=0  (17) 

And𝑉0 = v0 ∈ 𝐵𝑟(v) 

Where          𝐵𝑟(v) = {𝑢 ∈ 𝑋, ‖v − 𝑢‖ < 𝑟} 

Then we have   (i)𝑉𝑛 = 𝐵𝑟(v) 

(ii)  lim
𝑛→+∞

v𝑛 = v 

Proof 

(i) By induction, for n=1, we had 

‖𝑉1 − v‖ = ‖𝑁(𝑉0) − 𝑁(v)‖ ≤ L‖v0 − v‖ 

Assume that  

‖𝑉𝑛−1 − v‖ ≤ Ln−1‖v0 − v‖ 

Then  

‖𝑉𝑛 − v‖ ≤ ‖𝑁(𝑉𝑛−1) − 𝑁(v)‖ 

≤ L‖vn−1 − v‖Ln‖v0 − v‖ 

Using (i), we obtained: 

‖𝑉𝑛 − v‖ ≤ Ln‖v0 − v‖  ≤ Lnr ⇒ Vn

∈ Bn(v) 

(ii) Because  ‖𝑉𝑛−1 − v‖ ≤ Ln−1‖v0 − v‖ 

And  
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lim
𝑛→+∞

𝐿𝑛 = 0, lim
𝑛→+∞

‖𝑉𝑛 − v‖ = 0 

That is lim
𝑛→+∞

𝑉𝑛 = v 

4. General and special examples 

4.1. Example 01 

We consider the problem 

∂u

∂t
= 𝑥α +

1

α(α−1)
𝑥2 𝜕2𝑢

𝜕𝑥2 , 0 ≤ 𝑥 ≤ 1;  𝑡 > 0;  𝛼 ∈ ℝ+
∗  (18) 

With the initial condition 

𝑢(𝑥, 0) = 0 

 

And the boundary conditions 

 

𝑢(0, 𝑡) = ∫ u(𝑥, 𝑡)𝑑𝑥 + 𝑔1 =
1

𝛼 + 1
(𝑒𝑡 − 1), 𝑔1 = 0

1

0

 

𝑢(1, 𝑡) = ∫ u(𝑥, 𝑡)𝑑𝑥 + 𝑔2 =
1

𝛼+1
𝑒𝑡 , 𝑔2 =

1

𝛼+1

1

0
 (19) 

For solving this problem, we constructed the HPM as 

follows: 

 

𝐻(𝑣, 𝑝) = (1 − 𝑝) (
∂𝑣

∂t
−

∂u0

∂t
) + 𝑝 (

𝜕𝑣

𝜕𝑡
−

1

𝛼(𝛼−1)
𝑥2 𝜕2𝑣

𝜕𝑥2 −

𝑥𝛼)                = 0 (20) 

The components𝑣𝑖of (11) are obtained as follows: 

𝜕𝑣0

𝜕𝑡
−

𝜕𝑢0

𝜕𝑡
= 0, 𝑣0 = 𝑢0 = 𝑢(𝑥, 0) = 0 (21) 

𝜕𝑣1

𝜕𝑡
−

1

𝛼(𝛼−1)
x2 ∂2𝑣0

𝜕𝑥2 − 𝑥α = 0, 𝑣1(𝑥, 0) = 0 (22) 

∂2𝑣0

𝜕𝑥2
= 0 ⇒

𝜕𝑣1

𝜕𝑡
= 𝑥α 

Hence    𝑣1 = 𝑥α𝑡 

Then, we obtained: 

𝜕𝑣2

𝜕𝑡
−

1

𝛼(𝛼−1)
x2 ∂2𝑣1

𝜕𝑥2 = 0, 𝑣2(𝑥, 0) = 0 (23) 

𝑣2 = 𝑥α
𝑡2

2!
 

For the next component: 

𝜕𝑣3

𝜕𝑡
−

1

𝛼(𝛼−1)
x2 ∂2𝑣2

𝜕𝑥2 = 0, 𝑣3(𝑥, 0) = 0 ⇒ 𝑣3 = 𝑥α 𝑡3

3!
(24) 

And so on, we obtained the approximate solution as follows: 

𝑢 = lim
𝑝→1

𝑣 = 𝑣0 + 𝑣1 + 𝑣2 + 𝑣3 + ⋯ + 𝑣𝑛 + ⋯ 

And this leads to the following solution  

𝑢(𝑥, 𝑡) = 𝑥α(𝑒𝑡 − 1)                                        (25) 

We can, immediately observe that this solution is exact. 

4.2. Example 02 

We consider this special problem 

∂u

∂t
= 𝑥12 +

1

132
𝑥2

𝜕2𝑢

𝜕𝑥2
, 0 ≤ 𝑥 ≤ 1;  𝑡 > 0 

Subject to the initial condition 

𝑢(𝑥, 0) = 0 

 

And the boundary conditions 

𝑢(0, 𝑡) = ∫ u(𝑥, 𝑡)𝑑𝑥 + 𝑔1 =
1

13
(𝑒𝑡 − 1), 𝑔1 = 0

1

0

 

𝑢(1, 𝑡) = ∫ u(𝑥, 𝑡)𝑑𝑥 + 𝑔2 =
1

13
𝑒𝑡 , 𝑔2 =

1

13

1

0

 

We constructed the HPM, so the components𝑣𝑖of (11) are 

obtained as follows: 

 

𝜕𝑣0

𝜕𝑡
−

𝜕𝑢0

𝜕𝑡
= 0, 𝑣0 = 𝑢0 = 𝑢(𝑥, 0) 

 

𝜕𝑣1

𝜕𝑡
− 𝑥12 −

1

132
(x2

∂2𝑣0

𝜕𝑥2
)−= 0, 𝑣1(𝑥, 0) = 0 

 

𝑣1 = 𝑥12𝑡 

𝜕𝑣2

𝜕𝑡
−

1

132
(x2

∂2𝑣1

𝜕𝑥2
) = 0, 𝑣2(𝑥, 0) = 0 

 

𝑣2 = 𝑥12
𝑡2

2!
 

𝜕𝑣3

𝜕𝑡
−

1

132
(x2

∂2𝑣2

𝜕𝑥2
) = 0, 𝑣3(𝑥, 0) = 0 

𝑣3 = 𝑥12
𝑡3

3!
 

Repeating the above process gives the remainder 

components as: 

𝑣𝑛 = 𝑥12
𝑡𝑛

𝑛!
 

Using equations in the above, we got: 

𝑢(𝑥, 𝑡) = 𝑥12(𝑒𝑡 − 1) 

By induction, for n=1-3 we had 

‖v1 − v‖ = ‖𝑁(𝑣0) − 𝑁(𝑣)‖ 

                     ≤ ‖N‖‖v0 − v‖ 
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                     ≤ (∫ 𝑥12𝑑𝑥
1

0

) ‖v0 − v‖ 

                     ≤ [
𝑥13

13
]

0

1

‖v0 − v‖ 

                     ≤
1

13
‖v0 − v‖ 

‖v2 − v‖ = ‖𝑁(𝑣0 + 𝑣1) − 𝑁(𝑣)‖ 

                     ≤ ‖N‖‖v1 − v‖ 

                     ≤ (∫ 𝑥12𝑑𝑥
1

0

) (
1

13
‖v0 − v‖) 

                     ≤ (
1

13
)

2

‖v0 − v‖ 

‖v3 − v‖ = ‖𝑁(𝑣0 + 𝑣1 + 𝑣2) − 𝑁(𝑣)‖ 

                     ≤ ‖N‖‖v2 − v‖ 

                     ≤ (∫ 𝑥12𝑑𝑥
1

0

) ((
1

13
)

2

‖v0 − v‖) 

                     ≤ (
1

13
)

3

‖v0 − v‖ 

Than 

‖vn − v‖ = ‖𝑁(𝑣0 + 𝑣1 + 𝑣2 + ⋯ + 𝑣𝑛−1) − 𝑁(𝑣)‖ 

                     ≤ ‖N‖‖v𝑛−1 − v‖ 

                     ≤ (∫ 𝑥12𝑑𝑥
1

0

) ((
1

13
)

n−1

‖v1 − v‖) 

                     ≤ (
1

13
)

𝑛

‖v0 − v‖ 

So   

‖vn − v‖  ≤ (
1

13
)

𝑛

‖v0 − v‖ 

And 

lim
𝑛→+∞

(
1

13
)

𝑛

= 0, lim
𝑛→+∞

‖vn − v‖ = 0 

That is lim
𝑛→+∞

v𝑛 = 𝑣 

Table1. Example 2 

ℎ𝑥 = 0.1, ℎ𝑡 = 0.004, 3 − 𝐼𝑡𝑒𝑟𝑎𝑡𝑒𝑠 

ix
               exu

                         hpmu
                   

hpmex uu −
 

0.0                0.0000                      0.0000                             

0.0000 

0.1               4.0080e-015              4.0080e-015                    

0.0000 

0.2               1.6417e-011              1.6417e-011                    

0.0000 

0.3               2.1300e-009               2.1300e-009                   

0.0000 

0.4               6.7243e-008              6.7243e-008                    

0.0000 

0.5               9.7852e-007              9.7852e-007                    

0.0000 

0.6               8.7246e-006              8.7246e-006                    

0.0000 

0.7               5.5476e-005              5.5476e-005                    

0.0000 

0.8               2.7543e-004              2.7543e-004                    

0.0000 

0.9               0.0011                        0.0011                            

0.0000 

1.0               0.0040                         0.0040                           

0.0000 

 

Fig.1.Example 2.Variation of 𝑢 = 𝑥12(𝑒𝑡 − 1)  for 

different values of𝑥and 𝑡 

4.3. Example 3 

Consider the following two dimensional heat-like 

equations: 

∂u

∂t
= 𝑥α𝑦β +

1

(α2+β2)−(α+β)
(𝑥2 𝜕2𝑢

𝜕𝑥2 + 𝑦2 𝜕2𝑢

𝜕𝑦2) , 0 ≤ 𝑥, 𝑦 ≤

1    𝑡 > 0;  𝛼, 𝛽 ∈ ℝ+
∗                                                       (26) 

Subject to the initial condition: 

𝑢(𝑥, 𝑦, 𝑡) = 0                                   (27) 

And the boundary conditions: 

𝑢(0, 𝑦, 𝑡) = ∫ ∫ u(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 + 𝑔1

1

0

1

0

 

=
1

(𝛼 + 1)(𝛽 + 1)
(𝑒𝑡 − 1) , 𝑔1 = 0 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
2.2307

2.2307

2.2307

2.2307

2.2307

2.2307

2.2307

xt

u
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𝑢(1, 𝑦, 𝑡) = ∫ ∫ u(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 + 𝑔2

1

0

1

0

 

=
1

(𝛼 + 1)(𝛽 + 1)
(𝑒𝑡 − 1)+

1

2
𝑡 , 𝑔2 =

1

2
t 

𝑢(𝑥, 0, 𝑡) = ∫ ∫ u(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 + 𝑔3

1

0

1

0

 

=
1

(𝛼 + 1)(𝛽 + 1)
et , 𝑔3 =

1

(𝛼 + 1)(𝛽 + 1)
 

𝑢(𝑥, 1, 𝑡) = ∫ ∫ u(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 + 𝑔4

1

0

1

0

 

=
1

(𝛼 + 1)(𝛽 + 1)
(𝑒𝑡 + 3) , 𝑔4 =

4

(α + 1)(β + 1)
 

According to the HPM, we had 

𝐻(𝑣, 𝑝) = (1 − 𝑝) (
𝜕𝑣

𝜕𝑡
−

𝜕𝑢0

𝜕𝑡
) + 

𝑝 (
𝜕𝑣

𝜕𝑡
−

1

(α2 + β2) − (α + β)
(𝑥2

𝜕2𝑣

𝜕𝑥2
+ 𝑦2

𝜕2𝑣

𝜕𝑦2
)

− 𝑥α𝑦β) = 0 

Solving the equation (26) with the initial condition (27), 

yields: 

𝜕𝑣0

𝜕𝑡
−

𝜕𝑢0

𝜕𝑡
= 0, 𝑣0 = 𝑢0 = 𝑢(𝑥, 𝑦, 0) = 0 

𝜕𝑣1

𝜕𝑡
− 𝑥α𝑦β −

1

(α2 + β2) − (α + β)
(𝑥2

𝜕2𝑣0

𝜕𝑥2
+ 𝑦2

𝜕2𝑣0

𝜕𝑦2
)

= 0, 

𝑣1(𝑥, 𝑦, 0) = 0 

 

𝑣1 = 𝑥αyβ𝑡                                                   (28) 

 

𝜕𝑣2

𝜕𝑡
− 𝑥α𝑦β −

1

(α2 + β2) − (α + β)
(𝑥2

𝜕2𝑣1

𝜕𝑥2
+ 𝑦2

𝜕2𝑣1

𝜕𝑦2
)

= 0, 

𝑣2(𝑥, 𝑦, 0) = 0 

𝑣2 = 𝑥αyβ 𝑡2

2!
                                                           (29) 

𝜕𝑣3

𝜕𝑡
− 𝑥α𝑦β −

1

(α2 + β2) − (α + β)
(𝑥2

𝜕2𝑣2

𝜕𝑥2
+ 𝑦2

𝜕2𝑣2

𝜕𝑦2
)

= 0, 

𝑣3(𝑥, 𝑦, 0) = 0 

𝑣3 = 𝑥αyβ 𝑡3

3!
                                                          (30) 

Repeating the above process gives the remainder 

components as: 

𝑣𝑛 = 𝑥αyβ 𝑡𝑛

𝑛!
                                                           (31) 

And so on, we obtained the approximate solution 

a𝑢𝑛ℎ𝑝𝑚 = 𝑥αyβ [(1 +
𝑡

1!
+

𝑡2

2!
+

𝑡3

3!
+ ⋯ +

𝑡𝑛

𝑛!
+ ⋯ ) − 1] 

Form this result we deduce that the series solution 

converge to the exact one: 

𝑢(𝑥, 𝑦, 𝑡) = 𝑥αyβ(𝑒𝑡 − 1)                                    (32) 

4.4. Example 4 

Consider the following two dimensional heat-like equations 

∂u

∂t
= 𝑥12𝑦12 +

1

264
(𝑥2

𝜕2𝑢

𝜕𝑥2
+ 𝑦2

𝜕2𝑢

𝜕𝑦2
) , 0 ≤ 𝑥, 𝑦 ≤ 1, 𝑡

> 0 

With the initial condition 

𝑢(𝑥, 𝑦, 𝑡) = 0 

And the boundary conditions 

𝑢(0, 𝑦, 𝑡) = ∫ ∫ u(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 + 𝑔1

1

0

1

0

 

=
1

169
(𝑒𝑡 − 1) , 𝑔1 = 0 

𝑢(1, 𝑦, 𝑡) = ∫ ∫ u(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 + 𝑔2

1

0

1

0

 

=
1

169
(𝑒𝑡 − 1)+

1

2
𝑡 , 𝑔2 =

1

2
t 

𝑢(𝑥, 0, 𝑡) = ∫ ∫ u(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 + 𝑔3

1

0

1

0

 

=
1

169
et , 𝑔3 =

1

169
 

𝑢(𝑥, 1, 𝑡) = ∫ ∫ 𝑢(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 + 𝑔4

1

0

1

0

 

=
1

169
(𝑒𝑡 + 3) , 𝑔4 =

4

169
 

According to the HPM, so the components𝑣𝑖of (11) are 

obtained as follows: 

𝜕𝑣0

𝜕𝑡
−

𝜕𝑢0

𝜕𝑡
= 0, 𝑣0 = 𝑢0 = 𝑢(𝑥, 𝑦, 0) = 0 

𝜕𝑣1

𝜕𝑡
− 𝑥12𝑦12 −

1

264
(𝑥2

𝜕2𝑣0

𝜕𝑥2
+ 𝑦2

𝜕2𝑣0

𝜕𝑦2
) = 0, 

𝑣1(𝑥, 𝑦, 0) = 0 

𝑣1 = 𝑥12y12𝑡 
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𝜕𝑣2

𝜕𝑡
− 𝑥12𝑦12 −

1

264
(𝑥2

𝜕2𝑣1

𝜕𝑥2
+ 𝑦2

𝜕2𝑣1

𝜕𝑦2
) = 0, 

𝑣2(𝑥, 𝑦, 0) = 0 

𝑣2 = 𝑥12y12
𝑡2

2!
 

𝜕𝑣3

𝜕𝑡
− 𝑥12𝑦12 −

1

264
(𝑥2

𝜕2𝑣2

𝜕𝑥2
+ 𝑦2

𝜕2𝑣2

𝜕𝑦2
) = 0, 

𝑣3(𝑥, 𝑦, 0) = 0 

𝑣3 = 𝑥12y12
𝑡3

3!
 

Repeating the above process gives the remainder 

components as: 

𝑣𝑛 = 𝑥12y12
𝑡𝑛

𝑛!
 

Using equations in the above, we got: 

𝑢(𝑥, 𝑦, 𝑡) = 𝑥12y12(𝑒𝑡 − 1) 

Table 2.Example 4 

ℎ𝑥 = 0.1, ℎ𝑡 = 0.004, 3 − 𝐼𝑡𝑒𝑟𝑎𝑡𝑒𝑠 

ix
               exu

                         hpmu
                   

hpmex uu −
 

0.0                0.0000                     0.0000                               

0.0000 

0.1               4.0080e-027            4.0080e-027                       

0.0000 

0.2               6.7243e-020            6.7243e-020                       

0.0000 

0.3               1.1320e-015            1.1320e-0                           

0.0000 

0.4               1.1282e-012            1.1282e-012                       

0.0000 

0.5               2.3890e-010            2.3890e-010                       

0.0000 

0.6               1.8991e-008            1.8991e-008                       

0.0000 

0.7               7.6786e-007            7.6786e-007                       

0.0000 

0.8               1.8927e-005           1.8927e-005                        

0.0000 

0.9               3.1970e-004           3. 1970e-004                       

0.0000 

1.0                0.0040                    0.0040                                

0.0000 

 

Fig.2.Example 4.Variation of 𝑢 = 𝑥12𝑦12(𝑒𝑡 − 1)  for 

different values of 𝑥, 𝑦 and 𝑡 

5. Conclusion 

This study introduces novel types of heat-like equations 

featuring non-local conditions, with solutions tackled using 

the Homotopy Perturbation Method (HPM). Our method 

yields a rapidly converging series solution, requiring only a 

few terms for accurate results. Comparative analyses with 

recent findings employing finite difference schemes 

demonstrate the effectiveness of HPM, with our case studies 

showing strong agreements with exact solutions. 

  Notably, our iterative approach eliminates the need for 

linearization, discretization, transformation, or restrictive 

assumptions, highlighting the method's versatility and ease 

of implementation. Unlike traditional techniques, HPM 

does not rely on Adomian's polynomials for solving 

nonlinear problems, presenting a distinct advantage. The 

stability and convergence of the method are evident from 

our results, reaffirming its efficacy in addressing a broad 

spectrum of linear and nonlinear problems across various 

domains. 

  In summary, the Homotopy Perturbation Method emerges 

as a powerful tool for tackling complex mathematical 

problems, offering efficient solutions with broad 

applicability and simplified implementation. 
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