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Abstract: This paper presents novel approaches to solving general and special cases of heat-like equations across one and two dimensions,
incorporating both initial and non-local boundary conditions. Utilizing the Homotopy Perturbation Method (HPM), we demonstrate the
efficacy of this technique in tackling these complex problem sets. Our results show high accuracy, with HPM offering a continuous solution-
unlike the discrete approximations provided by finite difference methods. Our findings underscore HPM's potency as a versatile
mathematical tool applicable to a wide array of linear and nonlinear problems spanning various scientific and technological domains.
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1. Introduction

In recent years, several promising analytic methods have
emerged for addressing initial boundary value problems.
Notable among these are series solution techniques,
including the Adomain decomposition method [8],
Homotopy Analysis Method [9], Variation Iteration Method
[7], and Homotopy Perturbation Method [6]. These methods
have garnered significant attention for their ability to
provide approximate and analytical solutions to partial
differential equations, driven by demands across various
industrial and scientific applications. Extensive research has
been devoted to both the theoretical underpinnings and
numerical methodologies for solving initial boundary value
problems, as evidenced by numerous studies (see, for
instance, [1-4] and references therein). Perturbation
methods represent one widely applied technique in this
domain.He [6] introduced a new perturbation technique, the
Homotopy Perturbation Method (HPM), which combines
traditional perturbation methods with the homotopy
technique. Unlike conventional perturbation methods, HPM
constructs a homotopy with an embedding parameter p c [o,1]

, treated as a small parameter.

This method has attracted considerable attention in recent
years, with many researchers incorporating it into their
investigations involving differential equations. He [5], for
instance, successfully applied HPM to solve initial
boundary value problems governed by nonlinear differential
equations, demonstrating its efficiency and simplicity.

The primary objective of this study is to leverage the
Homotopy Perturbation Method (HPM) to solve heat-like
equations in both general and special forms, featuring
variable coefficients and subject to non-local boundary
conditions across one-dimensionaland two-dimensional
scenarios.

2. Analysis of the method

To illustrate the basic ideas, let X and beY two topological
spaces.

If f and g are continuous maps of X intoY , it is said that

f is homotopic to g if there is continuous map

F: X x[01] - Y such that F(x,0) = f (x)and

F(x,1) = g(x) for eachx e X , then the map is called
homotopy between f and g .

We consider the following nonlinear partial differential
equation
Aw) — f(r)=10,in N
@
Subject to the boundary conditions
ou) _
B (u, a) = 0,onl’
)
Where Ais a general differential operator,f is a known
analytic function, T'is the boundary of the domain Qand%

denotes directional derivative in outward normal direction
to Q. The operator 4, is generally divided into two
parts,Land N, where Lis linear, while Nis nonlinear.
Using A = L + N; (1) canbe rewritten as follows:

Lw)+Nw)—f(r)=0
A3)

By the homotopy technique, we construct a homotopy
defined as:

H(v,p):Qx[0,1] - R
(4)

This satisfies
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H(v,p) = (1 —p)(L(v) — L(uy)) +

p(Aw) - f(M)=0,pe[01]r€Q (5)
Or

H(v,p) = L(v) — L(uo) + pL(uo) +

p(Nw) - f(1), pel01]reQ (6)

Wherep € [0,1]is an embedding parameter,u,is an initial
approximation of equation (1), which satisfies the
boundary conditions. It follows from equation(6) that:

H(,0) =L(w)—L(uy) =0 (7
Hv,1)=AWw)—f(r)=0
)

The changing process of p from 0 to 1 monotonically is a
trivial problem.

H(v,0) = L(v) — L(uy) = 0 is continuously transformed to
the original problem

Hw,1) =A@) - f(r) =0 )

In topology, this process is known as continuous
deformation. L(v) — L(uy) = 0and A(v) — f(r)are called
homotopic. We use the embedding parameter pas a small
parameter, and assume that the solution of equation (6)can
be written as power series of p :

v =p%y + plvy + p?v, + piuz + -+ pyy, +-+(10)

Settingp = 1, we obtained the approximate solution of
equation (11) as:

u=lirqv=v0+v1+v2+v3+---+vn+"' (11)
p—)

The series of equation (1) is convergent for most of the
cases, but the rate of theconvergence depends on the
nonlinear operator N(v). He (1999) has suggested that the
second derivative of N (v)with respect to vshould be small

because the parameter may be relatively large i.ep — 1and

the norm of L1 (‘;—:) must be smaller than one in order the

series to converge.

3. Convergence analysis
Lemma

Suppose that L™ exist then the exact solution satisfy

u=L"(f() - T LT IN WD) (12)
Proof

Rewriting equation (6), in the following from

L(v) = L(uo) + plf(r) = N(v) — L(uo)] (13)

Applying the inverse operatorL-to both sides of(13), we
had:

v=u, +p[L7(f() = L' (V) — u) (14)

We write (10) in compact form as, follows
v =35 (15)

Substituting into the right hand side of (14), we got:

L (F) - L7 (N (Z p%)) - uol

vV=uUygtp

=0

From (11), we obtained the exact solution

u= Li_rgv =L Y(f(r) -L'(W (Z vi>

i=0
+o0
= () - ) LN wD)
i=0
In order to study the convergence of the method, we present
the sufficient condition of the convergence in the following.

Theorem

Supposing that XandYare Banach spaces and N: X — Yis a
contraction non linear mapping, that is

Vu,v EX: INw) —N@)|| < Lllu—v|,0<L<1 (16)

Then, according to Banach's theoremN has a unique fixed
pointw, that is N(w) = w. Supposing that the sequence
generated by homotopy perturbation method can be written
as:

Vo= NWVpy), Vg = Ei5g'vi, n=1,2,3 (17)
AndV, = vy € B.(V)
Where B.w)={ueX|lv-ul <7}
Then we have (i)Y, = B, (v)
(i) nl_i)rpwvn =v
Proof
(i By induction, for n=1, we had
IV — vl = IN(Vo) = NI < Lilvo — vlI
Assume that
IVq = VIl < L Hlve — vl
Then
IV = vl < IN(V—y) = NWI|
< Lllvyp—y = vIIL|lvo — vl
Using (i), we obtained:

V2 = vil < L*llvo = vl <L'r =V,
€ By(v)

(i) Because |[|[V,—; — V|| < LP7Ylvy — V]|

And
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lim L™ =0, 11m IV, —vll=0

no-+oo
That is nl_i>r+r10O V,=v

4. General and special examples
4.1. Example 01

We consider the problem

u_ « 1 262_u . . *
5 = X +a(a_1)x axz,OSxSl,t>0,0¢E]RJr (18)

With the initial condition
u(x,0) =0

And the boundary conditions

1
u(0,t) = f u(x, t)dx + g, = T (et—1),9,=0
0

u(l,t) = fol u(x, t)dx + g, = ﬁet,g2 = ﬁ (19)

For solving this problem, we constructed the HPM as
follows:

_ v dug v 1 20%
H(U p) - (1 P) ( ot ) + p (Bt a(a—l)x 0x2
x€) =0 (20)
The componentsv;of (11) are obtained as follows:
a a
%—%zo,vozuozu(x,o)zo 21
vy 1 290 _ _
5t wan® o =0,v,(x,0)=0 (22)
2
a Yo = = % = &
dx? at

Hence v, = x%t

Then, we obtained:

6& —_ 1 2 02171 _ _

ot a(a—1)X 9x2 0,v,(x,0) =0 (23)
t2

Uy = x* E

For the next component:

ovs 1 2 9? 172

X
at a(a—1) ox

=0,v3(x,0) =0=>v;=x —(24)

And so on, we obtained the approximate solution as follows:

u—llmv—v0+v1+v2+v3+ v, + -
p—)

And this leads to the following solution

u(x,t) = x%et - 1) (25)

We can, immediately observe that this solution is exact.
4.2. Example 02
We consider this special problem

ou o2 4 1 azu
ot 132" 520

Subject to the initial condition

<x<1;t>0

u(x,0) =0

And the boundary conditions

1

1
u(0,t) = f u(x, t)dx + g, = 1—3(et —-1),9,=0
0
1 1
u(l,t) = f u(x, t)dx + g, =—et, g, =
0

13 13

We constructed the HPM, so the componentsv;of (11) are
obtained as follows:

dvy, OJuy
W—E— 0,170 = Uy = u(x,O)
dv, 1 0%v,

12 _ (2

9t Y T132Y o2

Y—=0,v,(x,0) =0

v, = x%t
%—m(z ) 0,v,(x,0) =0
t2
v, = x1 5
d
%‘ﬁ(z =0
vy =x12;—3!

Repeating the above process gives the remainder

components as:
v, = xlzi—t
Using equations in the above, we got:
u(x, t) = x12(et — 1)

By induction, for n=1-3 we had

lvi = vl = lIN(vo) — N(@)|

< lIN[Hlvo = vll
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1 0.2 1.6417e-011 1.6417e-011
< fxlzdx [lve — vII
0

0.0000
L1 0.3 2.1300e-009 2.1300e-009
0
. 0.4 6.7243e-008 6.7243¢-008
<73 lvo—vl 0.0000
0.5 9.7852¢-007 9.7852e-007
vz = vil = IN oo + v3) = N@)| 0.0000
< _
< [INIHlvy = v 06 8.7246e-006 8.7246¢-006
1 1 0.0000
< ( | ledx) (g3lvo—v1)
0 0.7 5.5476e-005 5.5476e-005
2 0.0000
<(55) Ivo-vl
13 0.8 2.7543e-004 2.7543e-004
lvs = vl = [IN(wo + v, + v2) = N@)|| 0.0000
< [INJlllvy, = vl 0.9 0.0011 0.0011
0.0000
1 1 2
< ( f x“dx) ((E) [lvo — vll) 1.0 0.0040 0.0040
0 0.0000
1 3
<(5) Ivo-vl
Tha‘n 2.2307

lva = vl = IN(o + v1 + v, + -+ v31) = NW)| o

2.2307

< [INIHlvp-1 — vl > 22307
1 2.2307
1 1 n- 2.2307
12 _ — )
< ( jo X dx) (( - 3) v, v||>
1 n
<(35) Mvo=vl
So
- 14\" Fig.1.Example 2.Variation of u = x'2(et — 1) for
Ve = vl < (1_3) lIvo — vl different values ofxand t
And 4.3. Example 3
. 1\" ) Consider the following two dimensional heat-like
lim (—) =0, lim |lv,—v||=0 .
n-+oo \13 n-+0o equations:
Thatis lim v, =v a 1 82 82
n—+oo n a—tzx“y3+m(x2£+yza—;),ogx,yg
Tablel. Example 2 1 t>0; a B €ER] (26)
h, =0.1,h, = 0.004,3 — Iterates Subject to the initial condition:
X, U, Unom u(x,y,t) =0 27
And the boundary conditions:
Ugy — uhpm‘
1 1
0.0 0.0000 0.0000 u(0,y,t) = IJ u(x,y, t)dxdy + g,
0.0000 0 0
0.1 4.0080e-015 4.0080e-015 _ 1 (' — 1) ~0
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1
u(l,y,t) = ff u(x,y, t)dxdy + g,
0
0

1

¢ 1 _1
zm(e —1)+Et,g2— t

2

1
u(x,0,t) = ff u(x,y, t)dxdy + g5
0
0

—_ 1 t — 1
T+ DB+D BT T DB+

1
u(x,1,t) = ff u(x,y, t)dxdy + g,
0
0

4

€ +3).9: = T DE T D

1
T @+ DB+
According to the HPM, we had

dv 6u0)

HEp) =1 -p) (5 - 52+

ov 1 262v+ 26217
P ot " @+ -+ P\~ axz "7 3y

— xayﬁ) =0

Solving the equation (26) with the initial condition (27),
yields:

dv, Jdu,

FTERFTS 0,v9 =uy =u(x,y,0) =0

vy o 1 62170 N 0%y,

at Y T @) —@+p\’ Y ay2
=0,

v;(x,y,0) =0

v, = x%yPt (28)

%_ ayB — 1 x2 62171 +y2 azvl

Jat (a2 +B%)—(a+B) d0x? dy?
=0,

v,(x,y,0) =0

v, = xyPL (29)

%—x“yﬁ 3 1 xzazvz +y? 9%v,

Jat (@2 +B%) —(a+B) 0x? dy?
=0,

v3(x,y,0) =0

vy = xyPL (30)

Repeating the above process gives the remainder

components as:

vy = xayﬁ ;_r: (3 1)

And so on, we obtained the approximate solution
ay,B t  t? 3 tn

Form this result we deduce that the series solution
converge to the exact one:

u(x, y,t) = x%yP(e’ - 1) (32)
4.4. Example 4

Consider the following two dimensional heat-like equations

du 1
A T TR
TR T, (x

>0

0%u

2
—_— + yz a_
0x? dy?

>,0§x,ys 1,t

With the initial condition
u(x,y,t) =0

And the boundary conditions

1
u(0,y,t) = ff u(x,y, t)dxdy + g,
0
0

1
=_(e 1)'g1=0

169

1
u(l,y,t)zfj u(x,y, t)dxdy + g,
0 0
1 1
169(6 —1)+ t, gz—z

1
u(x,0,t) = ff u(x,y, t)dxdy + g;
0
0

1 1

— .t -
~169° '3 T 169

1
u(x, 1,t) =ff u(x,y, t)dxdy + g,
s Jo
4
169

According to the HPM, so the componentsv;of (11) are
obtained as follows:

169 (e +3),9. =

dvy 0duy,

ot ot

ov, ., 1 (0%, 0%,
ot VY g\ M e v gz ) =0

v;(x,y,0) =0

=0,vp =uy =u(x,y,0) =0

v, = x12y12t
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2 1512
ot
v,(x,y,0) =0
2
12,12

v2=x y E

0vs 12,12
ot y

v3(x,y,0) =0

3

12 12t_

vs =Xy o

Repeating the
components as:

n

t
— 412,12
U, =X —
n Yo

1

264

1

_<x

264

(+

2
, 0%V,
0x2

2
, 01y
0x2

0%v
2 1)
+y ayz) 0,
0%v,
2 _
y ayz) - 0;

above process gives the

Using equations in the above, we got:

ulx, y, t) = x12y2(et — 1)

Table 2.Example 4

h, = 0.1, h; = 0.004, 3 — Iterates

Xi u ex

Uy, —u hpm ‘
0.0 0.0000
0.0000
0.1 4.0080e-027
0.0000
0.2 6.7243e-020
0.0000
0.3 1.1320e-015
0.0000
0.4 1.1282e-012
0.0000
0.5 2.3890e-010
0.0000
0.6 1.8991e-008
0.0000
0.7 7.6786e-007
0.0000
0.8 1.8927e-005
0.0000
0.9 3.1970e-004
0.0000
1.0 0.0040
0.0000

u hpm

0.0000
4.0080e-027
6.7243e-020
1.1320e-0
1.1282e-012
2.3890e-010
1.8991e-008
7.6786e-007

1.8927e-005
3. 1970e-004

0.0040

Fig.2.Example 4.Variation of u = x12y2(ef — 1) for
different values of x,y and t

5. Conclusion

This study introduces novel types of heat-like equations
featuring non-local conditions, with solutions tackled using
the Homotopy Perturbation Method (HPM). Our method
yields a rapidly converging series solution, requiring only a
few terms for accurate results. Comparative analyses with
recent findings employing finite difference schemes
demonstrate the effectiveness of HPM, with our case studies
showing strong agreements with exact solutions.

Notably, our iterative approach eliminates the need for
linearization, discretization, transformation, or restrictive
assumptions, highlighting the method's versatility and ease
of implementation. Unlike traditional techniques, HPM
does not rely on Adomian's polynomials for solving
nonlinear problems, presenting a distinct advantage. The
stability and convergence of the method are evident from
our results, reaffirming its efficacy in addressing a broad
spectrum of linear and nonlinear problems across various
domains.

In summary, the Homotopy Perturbation Method emerges
as a powerful tool for tackling complex mathematical
problems, offering efficient solutions with broad
applicability and simplified implementation.
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