

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 23

C Code Visualizer

Dr. Hemanth S, Mr Chetan Ghatage, Alan George Jimcy, Harsh R G, Anish R Bhat

Submitted:07/01/2025 Revised:18/02/2025 Accepted:25/02/2025

Abstract: C Code Visualizer is a project to interpret and visualize the execution of simple source code written in

C language. This project visualizes variables and common data structures like Strings, Arrays, Stacks, Queues,

Linked List and Trees. It shows the visualization of the data structures in both the intuitive and the in-memory

representations. A purpose-built interpreter is used to execute the C source code. The entire project is built as a

client side web app. It is designed to run on any browser supporting ECMAScript5(ES5).The Interpreter runs

line-by-line and with intended delays between every line’s execution

Keywords: C, Interpreter, Data Structure, Visualization, Lexical Analysis, Shunting Yard Algorithm

I. INTRODUCTION

Data Structures and Algorithms (DSA) is a

subject that is mandatorily taught to all computer

branch Students as per Visvesvaraya Technological

University(VTU, Karnataka, India), syllabus.

However, while students may be able to learn the

theory, many tend to have difficulty

understanding the core concepts and design of

the data structures. According to 2021 batch

VTU syllabus, 3rd semester students had Data

Structures in C. Here, structures like stacks,

queues, linked lists, trees and hash-tables were to

be implemented in C, without aid of library-

provided structures. The students often had a hard

time understanding algorithms, pointer arithmetic

and memory management to which they were

freshly introduced. Teaching this also required the

Students to understand the concept of variable

scope and trace long programs. This project aims at

being a tool to bridge this gap in understanding in

a time effective manner.

II. PROBLEM STATEMENT

Students and beginner programmers face

significant challenges in understanding the

execution and memory management of C code,

especially when dealing with data structures.

Traditional methods, such as debugging tools,

online compilers, and static textbook diagrams, fail

to offer an interactive, detailed, and clear

representation of how C code operates. These

methods do not effectively illustrate line-by-line

execution or memory allocation, resulting in a gap

in understanding fundamental concepts like

dynamic memory management, variable states, and

algorithm implementation.

A dedicated tool is needed that allows students

and programmers to visualize C code execution,

memory allocation, and data structure operations

in real-time. This tool should provide an improved

learning experience and enhanced debugging

capabilities, addressing the shortcomings of current

solutions.

III. OBJECTIVES

The primary objectives of this are as follows:

• Line-by-Line Execution: Provide a mechanism to

execute C code line by line with adjustable delay,

ensuring clarity in understanding the flow of

execution.

• Accurate Visualization: Represent variable states

and memory allocation dynamically as the program

executes.Visualize operations on data structures

such as arrays, stacks, queues, singly and doubly

linked lists, and trees.

• Interactive Features: Include execution control

options such as pause, play, speed adjustment, and

step-through. Offer a code editor with basic

Professor Dept. of CSE

RNSIT-Bangalore

 Asst. Prof

Dept. of CSE RNSIT, Bangalore

 1RN21CS018

Dept. of CSE RNSIT-Bangalore

 1RN21CS062

Dept. of CSE RNSIT-Bangalore

 1RN21CS024

Dept. of CSE RNSIT-Bangalore

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 24

functionalities like code snippet expansion,

Indentation Control and commenting with

hotkeys.

• Cross-Platform Compatibility: Develop as a

single-page web application compatible with

modern browsers and capable of offline execution.

• Educational Support: Provide a user-friendly

interface suitable for both beginners and

advanced learners. Visualize critical aspects of C

programming, such as memory leaks, scope of

variables, and pointer usage.

• Performance Optimization: Ensure efficient

memory and resource usage to allow smooth

execution even on low-power devices.

• Customization and Flexibility: Allow users to

visualize customized C programs with support

for dynamic memory allocation (malloc, calloc,

realloc, free) and inbuilt functions like printf and

scanf.

IV. REFERENCED WORKS

Some books were referenced in developing the

Context Free Grammar(CFG) [1] and

Deterministic Finite Automata(DFA)

[2] for the project’s lexer and where a helpful

reference to solve some issues and find

workarounds. The DFA structure implementation

and CFG rules helped refine the lexical analyzer

and the token interpreter.

There also are projects like ”write-a-C-

interpreter” by Jinzhou Zhang [3] that implement C

interpreters and websites like Python Tutor [4]

implements interpreters and visualizes variables.

Some other mentioned papers [5]–[9] helped in

the design of the expression evaluation module

.The evaluation was designed based on Shunting

Yard Algorithm by Edsger W. Dijkstra [5], [6].

The Precedence of Operators and Identifiers were

based on C and C++ operator precedence as

mentioned in the Open source Articles on this topic

[7], [8]. By Analyzing recursive descent,we could

design the Execution Order and Priority of the

Token Interpreter [9].

V. EXISTING SYSTEMS AND THEIR LIMITATIONS

Currently, various visualization tools and

platforms are available to aid users in

understanding programming concepts and

algorithms. These include tools like VisualAlgo

[10], Algorithm-Visualizer.org [11],

pythontutor.com [4], and libraries like Anime.js.

These systems are often algorithm-focused or

provide generic visualizations of programming

concepts, offering some level of interactivity and

educational support. Limitations of the Existing

System are:

• Lack of Line-by-Line Execution: Most existing

tools fail to provide visualization of code execution

at a granular level, such as interpreting each line of

code sequentially.

• Algorithm or Data Structure Specificity: They

are predominantly designed to visualize predefined

algorithms or specific data structures, limiting

customization for general C programming tasks.

• Dependency on Internet: Many platforms

require a stable internet connection, restricting

their usability in offline environments.

• Dependency on Environments: Some tools

require an additional compiler or runtime to

run. Beginners will face difficulties to set them up

• Inadequate Memory Representation: Memory

allocation and de-allocation are not accurately

depicted, failing to capture C’s memory

management.

• Customization Constraints: Users cannot easily

visualize customized algorithms or code snippets

outside the predefined scope.

• Cross-Platform Compatibility Issues: Many

tools do not ensure seamless functionality across

various devices and browsers.

• Complex UI: The complexity and non-intuitive

design of some tools make them less accessible to

beginners.

• Performance Bottlenecks: Resource-intensive

tools may exhibit latency, especially on low-power

devices or with larger programs.

Our project, C Code Visualizer, seeks to overcome

these limitations by providing an interactive and

offline-capable tool. It supports real-time, step-by-

step execution of C code, complete with detailed

memory allocation visualizations and compatibility

across multiple platforms and devices.

VI. ARCHITECTURE DESIGN

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 25

Fig. 1. Component Diagram

The diagram outlines the structure of a C

Code Visualizer with DSA Implementation. This

interactive tool helps users visualize the execution

of C code and data structure operations.

• Code Editor:Users input C code for visualization.

• C Interpreter:Compiles and interprets the code,

providing real-time data to visualizers.

• Execution Control:Allows users to adjust the

speed of execution or pause it.

• Variable Visualizer:Shows real-time updates to

variables.

• Allocated Memory Visualizer:Displays how

memory is allocated and freed.

• Output Screen:Shows the program’s output and

the visualized results.

• Save & Download Output:Enables users to save

execution and visual results.

A. Functional Requirements

This Project requires the following specifications

TABLE I

FUNCTIONAL REQUIREMENTS

Component Minimum Requirement

Browser Chrome v49 , Firefox v43

ECMAScript Version 5

RAM 1.5 GB RAM

Network 50 Kbps (to fetch webpage)

B. Non-Functional Requirements

• Performance:Real-time updates with minimal

latency during execution.Efficient memory and

resource usage for smooth operation on low-power

devices.

• Accuracy:Precise visualization of variable states

and memory allocation, reflecting the C program’s

actual behavior.

• Usability:An intuitive and beginner-friendly

interface.Clean and organized layout to simplify

navigation and operation.

• Portability:Operates seamlessly across all modern

browsers supporting ECMAScript 6 .Fully

functional without requiring an internet connection.

• Scalability:Capable of handling complex C

programs with dynamic memory allocation and

nested loops.

C. User Requirements

• Knowledge of Basic C Syntax: Requires ”C”

language compliant code to execute.

• Single Statement Lines: Every line can contain

utmost one Statement. However, this rule is slightly

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 26

different for the ”FOR” loop, where the

initialization expression, test expression and update

expression in the loop syntax can have utmost one

statement each.

• Syntax of ”if” condition: When the user writes

code, the if conditions in the code must follow the

following syntax:

1

2

3

4

5

6

The if conditions in this compiler do not support containerless format, ie, the below is not supported

1

2

3

4

The if conditions in this compiler also requires

the opening container bracket { in the same line

as if condition and closing container bracket }

on a different line without any preceding or

succeeding statements in the same line

1

2

3

4

• Syntax of ”for” condition: When the user writes code, the for loops in the code must follow the following

syntax:

The for loops in this compiler do not support containerless format, ie, the below is not supported

1 for (<statement 1>; <condition> ; <statement 2>)<statement 3>;

The for loops in this compiler also requires the

initialization statements, test expression , update

expression and opening container bracket { in the

same line as if condition and closing container

bracket } on a different line without any preceding

or succeeding statements in the same line

if (<condition>)

{ //not allowed to have { in seperate line

<statement 1>;

<statement 2>;}// } must be in a separate line

if (<condition>)

<statement 1>;//unsupported

//Or

if (<condition>)<statement 1>;//unsupported

if (<condition>){

<statement 1>;

<statement 2>;

......

<statement n>;

}

for (<statement 1>; <condition> ; <statement 2>){

<statement 3>;

<statement 4>;

......

<statement n>;

}

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 27

1

2

3

4

5

• Syntax of ”while” loop: When the user writes code, the while loops in the code must follow the following

syntax:

1

2

3

•

• Syntax of ”do while” loop: When the user writes code, the do-while loops in the code must follow the

following syntax:

2

3

• Program Execution Control: User must control

the execution speed (pause, run, modify execution

speed) to view the visualization at their intended

rate.

VII. IMPLEMENTATION

A. Data Explanation:

The data used in the C Code Visualizer project is

combination of hardcoded data and dynamically

generated data, consisting of the C code provided

by the user for execution and and data generated

for visualization. This includes:

1) User-Provided C Code: Input code with

constructs like variable declarations, expressions,

loops, and functions. It is internally stored as a

string.

2) Data Structures(Hardcoded): Includes strings,

arrays, stacks, queues, linked lists, and trees.

Visualizes operations like insertion, deletion, and

traversal in real-time for the inbuilt datatypes.

3) Inbuilt Functions(Hardcoded): Includes dynamic

memory allocation (malloc(), calloc(),free(), etc.)

and standard functions like printf() and scanf(). It

also includes the functions to dynamically create

the above mentioned structures

4) Symbol Table: Stores the identifiers usable during

the execution of the program, this includes variable

and function names and their locations, datatypes

and type-definitions.

5) Memory Segment: Provides 24KB memory for

running the program where stack and heap exists.

Addresses 0x0000 to 0x07CF are inaccessible,

mimicking the Code section in a C process.

Addresses 0x07D0 to 0x176F is the stack memory

and Addresses 0x1770 to 0x658F are for heap

memory.

The data evolves during execution, with real-time

updates to both the Symbol table(partially shown)

and the Memory Segment as shown in the

visualizer. Libraries like html2canvas.js are used

to capture visual outputs for saving or sharing.

B. Flowchart:

do (<condition>){

<statement 1>;

<statement 2>;

......

<statement n>;

}while(<condition>);

while (<condition>){

<statement 1>;

<statement 2>;

......

<statement n>;

}

for (<statement 1>;

<condition>;<statement 2>)// init, test & update must be in same line

{ //not allowed to have { in seperate line

<statement 1>;

<statement 2>;}// } must be in a separate line

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 28

The Flowchart is explained below:

Fig. 2. Flowchart

• Code Editor: The user inputs C code into an

editor designed for intuitive interaction.

• C Interpreter: This JavaScript-based interpreter

compiles and runs the code in real-time,

translating the C syntax into line-by-line,

interpretable chunks.

• Execution Control: Users can adjust execution

speed, enabling line-by-line or faster code

execution for enhanced comprehension.

• Memory & Variable Visualizer:Each variable’s

memory state and value changes are visually

updated during execution.

• Output Screen: Displays real-time results of code

execution, such as print statements or final

variable states.

• Save & Download Output: Allows users to

download their visual results for study or

educational sharing during the execution or after

it.

A. Libraries Used:

html2canvas.js: It is a JavaScript library that

captures a screenshot of a specific HTML element

or the entire webpage and renders it as an image. It

works by parsing the DOM and styles to generate a

pixel-perfect representation of the content.In the C

Code Visualizer project, this library is used to

enable the ”Save and Download Output”

functionality. It allows users to save the visualized

results of C code execution, including variable

states and memory allocation graphics, as

downloadable images. This feature is particularly

useful for sharing, educational purposes, and

offline analysis.

C. Code Editor

The code editor is a crucial component of the C

Code Visualizer project. It provides an interactive

interface for users to write, modify, and visualize

C code. The editor supports dynamic features such

as line numbering, indentation control, and

commenting/uncommenting of code lines. This

section details the implementation steps and the

functionality incorporated into the code editor.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 29

1) HTML and CSS Structure The code editor interface

is built using HTML and CSS. The editor is

designed as a collection of elements,

each representing a line of code. These elements

are dynamically generated and manipulated to

handle user inputs and editing operations. The main

components include:

• A div container (#Cin) to hold individual lines

of code.

• CSS styles for visual consistency, including

background color, font settings, and line

highlighting during editing.

• Responsive design ensuring compatibility across

different screen sizes.

2) Javascript Functionality: JavaScript is the backbone

of the code editor’s interactivity. The following

functionalities have been implemented:

i. Line Management Functions such as

createEditorLine() and

addLineToEditor() dynamically generate

and append new lines to the editor. These functions

ensure proper formatting and validation, such as

prohibiting newline characters within a single line.

ii. Indentation Control Indentation is managed

through functions like

prependSingleLineTab() and

prependTabToSelectedLines(), which

handle single-line and multi-line indentation

respectively.

The singleLineShiftTab() and

multiLineShiftTab() functions reverse the

indentation process.

iii. Commenting Functionality The editor supports

single-line and multi-line comments. The

singleLineComment() function toggles

comments on a single line, while

multiLineComment() processes selected lines

to add or remove comments dynamically.

iv. Keyboard Event Handling Key events are captured

and processed to enhance user experience:

• Ctrl + /: Toggles comments for selected lines.

• Tab and Shift + Tab: Adds or removes

indents for selected lines.

• containsNonEditable()This function

prevents modifications to non-editable lines to

maintain structural integrity.It does not allow you

to delete the non-editable lines,If we try to

delete these lines then an alert pops up saying

”You cannot delete Non-editable lines”.

v. Line Numbering A recent addition to the editor is

line numbering. Each editor_line is paired

with a corresponding line number displayed in a

separate column. Line numbers are dynamically

updated during operations such as adding or

removing lines. The updateLineNumbers()

function dynamically manages the line numbers

displayed alongside the code editor. It retrieves all

elements representing code lines (using the

.editor_line class) and creates corresponding

line numbers. Each line number is displayed as an

individual div element, positioned absolutely to

align with the respective code line. The function

ensures that line numbers adjust dynamically based

on the number of lines in the editor. It also

accounts for scrolling, updating the position of the

line numbers relative to the editor’s visible area.

The width of the line numbers container is

calculated dynamically to accommodate varying

digit lengths, ensuring proper alignment. This

ensures seamless synchronization between the

editor’s content and its line numbering system.

3) Error Handling Functionality: The editor includes

only certain error-handling mechanisms to prevent

invalid operations:

• Prohibition of newlines within a single line of

code using containsNonEditable()

function.

• This function also Alerts to notify users

attempting to modify non-editable lines.

Thus, the implemented code editor provides a

robust foundation for the C Code Visualizer

project, supporting interactive and dynamic code

manipulation. It is a user-friendly and scalable

component, designed to handle the needs of C code

visualization efficiently.

D. C Interpreter:

The C interpreter used in this project is a purpose

built interpreter, capable of running single threaded

C code. It contains many modules with loosely

coupled functionality. The details on each module

are given below:

1) Lexical Analyzer:

This module, also known as a lexer, converts the C

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 30

Program into a token stream. A general C program

could be represented as a single large string, but

this string contains letters, white-spaces, numbers

and symbols. Every character in the program by

itself will not give much meaning rather, a group

of characters together give meaning.

The Lexer recognizes all the groups of characters

in the program and splits them. The split groups

will now be identified and classified as either a

keyword, operator, identifier, integer, real number,

character, string or container.

Additional meta data will be attached to integers,

real numbers, characters and string to simplify later

processes. During the splitting, all whitespace not

inside string-types will be removed. After splitting,

The lexer checks through the existing type

definitions and converts the matching strings into

the respective defined strings. Next, typecasts are

identified based on sequential occurrences of a

certain group of strings and operators which will be

combined together into one standardized string.

This lexer is built based on the concept of DFA

(Deterministic Finite Automata) and LR(0) lexers.

DFAs can be roughly described as a set of states

and rules attached to each state that specifies the

next state to go to on receiving a particular input.

The input in the lexer is the next character in the

string. There exists multiple states to categorize

every different operators, keyword, and literals.

Ending states also exists that decides that the

identification has terminated and the string can be

correctly classified. The ending state, same as in

a LR(0) lexer, has 3 types:

• A register-rollback state: creates the token from

previous characters and re-reads the current

character for the next token

• A register-continue state: creates the token from

the previous characters and current characters.

The identification of the next token starts from the

next character only An exit state: Marks the end

of the token generation and all the tokens

generated are returned as a list of tokens

generated in chronological order.

2) Syntax Verifier:

This module checks the syntax of container-like

tokens such as String quotes, bracket balancing,

checking for semicolons, etc. This is a simple

pattern matching and stack based verifier. It checks

parenthesis (), Square braces [], curly braces

{ }, single quotes ’ ’, double quotes " ",

escape sequences in strings \n \t. It also checks

for the presence of the

main() function using Regex.

3) Token Interpreter:

This module gets the token stream of the entire

program and partitions it into multiple lines. The

parser and interpreter are combined unlike that of a

typical compiler to prevent the need for generating

an Abstract Syntax Tree(AST). Instead,

compromising on the grammar by adding

additional restrictions, allows us to use simple

pattern matching, container identification and an

Evaluator module to execute each line. The

pattern matching results are used to identify the

types of statements amongst the one of following:

• Variable Declaration

• Closing Container }

• If Condition

• else Condition

• For Loop

• While Loop

• Do-While Loop

• Break Statement

• Continue Statement

• Return Statement

• Valid Expression

• Invalid statement or expression

The Variable Declaration statements modify the

symbol table while other statements do not. All

other non-invalid statements can modify the Branch

Stack. Branch Stack here refers to a combination of

the call stack in processes and conditional

branching effects made because we do not generate

assembly code.

When a non-inbuilt function is called the token

interpreter’s execution control jumps to the first

line of the called function.

4) Evaluator:

This module evaluates expressions. The input be a

token stream or string. In case a string is given as

input, the lexer is called to tokenize the string. This

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 31

module is developed based on the Shunting Yard

Algorithm with some modifications. The supported

operations along with precedence and associativity

are as such:

TABLE II

 PRECEDENCE AND ASSOCIATIVITY

The Shunting Yard Algorithm is a infix to

postfix(Reverse Polish Notation) expression

conversion algorithm. This algorithm is used to

evaluate the various operators in an expression

based on precedence and associativity using stacks.

It was developed by Edsger Dijkstra [5]. In this

project, this algorithm has been used to evaluate

arithmetic, logical, relational and assignment

operators. The Precedence and Associativity used

here is based on C++ standards [7]. In addition to

the above Shunting Yard algorithm, modifications

have been done to support function calls

5) Inbuilt functions:

This Module implements the following functions

Unlike normal C code where sizeof is compiled directly into an integer, here sizeof exists as a special

function that runs in native code(refers to JavaScript) rather than as a C function, as the program executes

the line where it exists.

All the other functions are implemented in native code too since they involve memory management or console

I/O which has to be handled in native code due to DOM manipulation

E. Variable and Memory Visualizer:

The Variable Visualizer and Memory

Visualizer modules are key components of the C-

Code Visualizer, providing detailed insights into

variable states and memory usage during program

execution. These modules are designed to enhance

debugging and learning by offering an interactive

and visual representation of the program’s

underlying data and memory.

1) Variable Visualizer:

The Variable Visualizer focuses on displaying

variables and their relationships in real time. It

supports various data types and structures,

providing an intuitive view of the program’s state.

• Key Features

– Support for Diverse Data Types:

∗ Visualizes primitive data types such as integers,

floats, and characters.

∗ Handles complex data structures including arrays,

pointers, stacks, queues, singly and doubly linked

Operator Precedence Associativity

] ,) 0 Left

= , += , -= , *= , /= , %= 1 Right

 2 Left

&& 3 Left

== , != 4 Left

> , < , >= , <= 5 Left

+ , - 6 Left

* , / , % 7 Left

addressing(&) , dereference (*) 8 Right

unary plus , unary minus 8 Right

pre-increment , pre-decrement 8 Right

type cast 8 Right

! 8 Right

Variables and literals 9 Left

post increment , post decrement 10 Left

— > 10 Left

. 10 Left

[, (11 Left

printf(<format string>,<arguments>);

scanf(<format string>, <arguments>);

malloc(<size>);

calloc(<number>,<element size>);

realloc(<pointer>,<size>);

free(<pointer>);

exit(<exit code>);

sizeof

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 32

lists, and binary trees.

– Dynamic Representation:

∗ Automatically arranges variables to avoid

overlapping and ensure clear visibility.

∗ Highlights structural relationships such as pointers,

connections in linked lists, and parent-child

relationships in trees.

– Interactive Exploration:

∗ Allows users to expand or collapse data

structures like trees and linked lists for focused

inspection.

∗ Uses color-coding to differentiate data types and

special states, such as uninitialized memory or null

references.

• Visualization Techniques

– Nodes are rendered dynamically based on the data

type and structure, using a table-based approach

for clarity.

– Relationships are represented with arrows,

allowing users to trace pointers and connections

visually.

– Cycles in data structures, such as linked lists, are

detected and highlighted.

2) Memory Visualizer:

The Memory Visualizer provides a comprehensive

view of the memory layout during program

execution. It emphasizes the organization of

memory blocks, showing the relationships between

variables and their allocated memory.

• Key Features

– Memory Map Representation:

∗ Displays memory regions with detailed

information on allocated values and addresses.

∗ Supports visualization of nested structures and

multi-dimensional arrays.

– Dynamic Memory Handling:

∗ Unwraps nested memory blocks for detailed

inspection.

∗ Highlights unallocated and inaccessible memory

regions.

– Scalable Display:

∗ Adjusts the representation dynamically to

accommodate large memory regions.

∗ Uses hierarchical table structures to ensure

clarity and scalability.

• Visualization Techniques

– Memory blocks are represented as tables, with

rows and columns showing detailed information.

– Interactive nodes allow users to drill down into

nested objects and arrays for a more in-depth

view.

– Color-coding differentiates between active,

inactive, and unallocated memory.

3) Implementation Details:

Both the Variable Visualizer and Memory

Visualizer are implemented using JavaScript, with

HTML and CSS for rendering. The key methods

and algorithms include:

• Dynamic Node Rendering: Nodes are created

based on the variable type and memory state,

ensuring an accurate and visually appealing

representation.

• Relationship Mapping: Arrows and connections

are dynamically drawn to represent pointers and

structural relation- ships.

• Cycle Detection: Efficient algorithms are used to

identify cycles in data structures like singly and

doubly linked lists.

• Memory Unwrapping: A recursive approach

is employed to decompose nested memory

structures into their components.

4) Conclusion:

The Variable Visualizer and Memory Visualizer

modules provide a powerful interface for

understanding the behavior of variables and

memory during program execution. These tools are

invaluable for debugging, learning, and teaching

programming concepts, offering a clear and

interactive way to explore the program’s internal

state.

F. Execution Control

The Execution Control module is a key

component of the C-Code Visualizer project. It

provides users with fine-grained control over the

execution of their code, allowing them to adjust the

speed dynamically, pause or resume execution, and

visualize changes in real-time.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 33

1) Features:

The Execution Control module includes the

following functionalities:

a) Dynamic Speed Control: Users can adjust the

execution speed using a slider. The slider maps the

speed to a logarithmic scale, providing finer control

at lower speeds and faster execution at higher

values.

b) Pause/Resume Execution: A toggle button allows

users to pause and resume code execution

seamlessly. This feature is particularly useful for

debugging and understanding the flow of code

execution.

c) Real-Time Feedback: The execution speed is

displayed in real-time, and the slider’s background

changes dynamically to indicate the current

execution speed setting.

2) Implementation Details:

The Execution Control module is implemented

using a combination of HTML, CSS, and JavaScript

to provide an intuitive and interactive interface.

• Dynamic Speed Control

– The speed slider is implemented using an

<input type="range"> element.

– The speed is calculated using the formula:

speed = Antilog10(value)

where value lies in (-1, 2). The input tag range is

mapped from (0,1000) to (-1,2) to achieve this

– The delay in execution (sleepTime) is

dynamically updated as:

sleepTime =
1000

speed

– The speed is displayed in real-time using the

ExecutionSpeedValue element:

∗ Speeds below 10 are displayed with one decimal

place (e.g., 1.5x).

∗ Speeds of 10 and above are displayed as integers

(e.g., 100x).

• Pause/Resume Execution

– The Pause/Resume button toggles the

execution state based on the value of the global

variable PAUSE_EXEC.

– The button text changes dynamically to indicate

the current state (“Pause” or “Resume”).

• Responsive Slider

– The slider’s background dynamically changes to

reflect the current speed setting.

– The percentage of the slider value relative to its

maximum is calculated as:

percentage =
 slider value

× 100

max slider value

– A linear gradient is applied to the slider

background using the css:

linear-gradient(90deg, red

{percentage}%, white {percentage}%)

– Due to this the part left to the slider is red and to

the right is white

The Execution Control module significantly

enhances the functionality of the C-Code Visualizer

by allowing users to customize execution behavior.

This feature not only aids in debugging but also

provides an educational tool for learning code

execution step-by-step.

G. Console:

The Console refers to a div tag used to mimic the

functionality of a command-prompt/terminal based

console to give text input and print text output.

The console is used to display the output of

”printf” and get the input for ”scanf” methods.

Internally, the console is implemented as a

collection of Span tags and an input tag. The

span tags represent the non- editable characters

while the input tag represent the newline based

buffered input to STDIN. The console, similar to

the terminal consoles, combine STDIN and

STDOUT, but unlike terminal consoles, do not

also combine STDERR since we do not generate

messages to be shown on console.

The Output pushed into the STDOUT buffer is

appended to the console within span tags. The

Input to the STDIN file buffer is is also a buffered

input, collecting keyhits until ’Enter’ is pressed, at

which point, the text inside the input tag is

converted into span tags on the console,

characters in the buffer are then appended to the

STDIN buffer. Then the input tag is cleared and

has 0 characters.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 34

Both printf and scanf methods have been

implemented as a blocking type method, with scanf

only proceeding with the execution when the

required input has been inserted into the STDIN

buffer

H. Screenshot Functionality

The screenshot functionality is designed to

capture the content of two distinct sections of the

webpage, identified as

#variableVisualization and

#memoryVisualization. These sections are

merged into a single image that includes their full

content, even if it extends beyond the current

viewport, both vertically and horizontally. The

implementation of this feature ensures that both

sections are displayed side by side in the

resulting image.

1) Implementation Details:

The key steps involved in implementing the

screenshot functionality are as follows:

a) Save Original Dimensions: The current height and

width of the #variableVisualization and

#memoryVisualization divs are saved. This

ensures that their original state can be restored

after the screenshot is captured.

b) Expand Div Dimensions: Both divs are

temporarily expanded to their full scrollable

dimensions using the

scrollHeight and scrollWidth properties.

This allows all content, including off-screen

content, to be captured.

c) Create a Wrapper Container: A temporary

wrapper div is created to hold the clones of

#variableVisualization and

#memoryVisualization. The wrapper is

styled to align the two sections side by side,

with a width equal to the sum of the widths of

both divs and a height equal to the taller div.

d) Clone Div Content: Clones of

#variableVisualization and

#memoryVisualization are appended to the

wrapper. This avoids modifying the original

elements on the webpage.

e) Capture the Screenshot: The html2canvas

library is used to generate a canvas element that

captures the content of the wrapper. The

useCORS option ensures compatibility with cross-

origin images, if any.

f) Download the Screenshot: The canvas is converted

into a PNG image using the toDataURL method.

A download link is dynamically created, allowing

the user to save the merged image as a file named

variable-and-memory.png.

g) Cleanup and Restore: After capturing the

screenshot, the wrapper container is removed from

the DOM, and the original dimensions of the divs

are restored to maintain the original layout of the

webpage.

2) Advantages:

This approach ensures that:

• All content, even off-screen content, is captured

without any loss.

• Both sections are displayed side by side in a

single image, providing a comprehensive view of

the visualization and memory outputs.

• The original webpage layout remains unaffected

after the screenshot is captured.

3) Challenges Addressed:

The implementation addresses challenges such as

handling dynamically scrollable content, combining

outputs from multiple sections, and ensuring cross-

browser compatibility using the html2canvas

library.

VIII. RESULTS

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 35

Fig. 3. Initial screen executing empty main function

The above image shows the output on trying to execute a main function without any variable initialized in

it. There are 3 sections on the page: Code Editor(grey,left), Variable Representation(white-blue, middle),

Memory View(green-white, right).

A Header hold the execution controls and screenshot button

Fig. 4. Declaring and initializing Primitive types and their pointers

The above image show the results after executing a program where supported primitive datatypes (int,float,char)

and their (int*, float *, char *) are declared and initialized. Primitive variables of the same scope are

represented side-by-side.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 36

Fig. 5. 2D Array Implementation

The above image show the results after executing a program where a 2D integer array is initialized.2D or higher

dimension arrays are represented as a table in Variable Representation section but represented as continuous

memory in Memory View

Fig. 6. Stack Implementation

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 37

.This part shows that stack being implemented,

with Variable visualizer on left side showing the

stack representation (blue color) and memory

visualizer part(green color) on right side showing

memory allocation, As you can see slider is

implemented where you can control the execution

speed, and a green color Pause Button to pause

the execution.

Fig. 7. Queue Implementation

The above picture shows that queue being implemented, with Variable visualizer on left side showing the queue

representation (blue color) and memory visualizer part(green color) on right side showing memory

allocation

Fig. 8. SLL Implementation

The above picture shows that SLL(singly Linked

List) being implemented, with Variable visualizer

on left side showing the SLL representation (blue

color) and memory visualizer part(green color) on

right side showing memory allocation. As you can

see ptr variable stored address of a node,a points

to b node,b points to c node,and c points to a

node.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 38

.

Fig. 9. DLL Implementation

The above picture shows that DLL(doubly Linked List) being implemented, with Variable visualizer on left side

showing the DLL representation (blue color) and memory visualizer part(green color) on right side showing

memory allocation

Fig. 10. Tree Implementation and screenshot functionality

The above picture shows the output of a

downloading a screenshot of a program with

trees being implemented. The Red nodes represent

inaccessible memory, purple node(which were

already clicked) represents that a child sub-tree

exists at that node which can be rendered by

clicking the purple node.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 23–39 | 39

CONCLUSION

The C Code Visualizer project successfully

bridges the gap between theoretical C

programming and practical understanding

by providing an interactive, web-based tool

for visualizing C code execution. It allows

users to observe the line-by-line execution

of C programs, with real-time updates of

variable states and memory allocation. The

project offers visualizations for common

data structures such as arrays, stacks,

queues, linked lists, and trees, enhancing

learners’ grasp of complex programming

concepts.By providing an intuitive, user-

friendly interface and offline functionality,

the tool empowers students and developers

to understand dynamic memory

management, algorithm behavior, and data

structure operations with greater clarity.

The project is a valuable resource for both

educational purposes and beginner

debugging needs, simplifying complex

concepts and making C programming more

accessible.

II. DECLARATION OF

GENERATIVE AI AND AI-ASSISTED

TECHNOLOGIES IN THE WRITING

PROCESS

During the preparation of this work the

authors used ChatGPT in order to improve

language and readability. After using this

tool/service, the authors reviewed and

edited the content as needed and take full

responsibility for the content of the

publication.

REFERENCES

[1] Brian W. Kernighan and Dennis M. Ritchie

(Apr 1988). The C Programming Language.

Prentice Hall Software Series (2nd ed.).

Englewood Cliffs/NJ: Prentice Hall. ISBN

0131103628.

[2] Hopcroft, John E.; Ullman, Jeffrey D. (1979).

Introduction to Automata Theory, Languages,

and Computation (1st ed.). Addison-Wesley.

ISBN 0-201- 02988-X.

[3] C Interpreter by Jinzhou Zhang,

https://github.com/lotabout/write-a-C-

interpreter

[4] Python Tutor, https://pythontutor.com/

[5] Shunting yard algorithm,

https://en.wikipedia.org/wiki/Shunting yard

algorithm

[6] Algol 60 translation : An Algol 60 translator

for the X1 and making a translator for Algol

60. Author:-Edsger W. Dijkstra

[7] C++ operator Precedence,

https://en.cppreference.com/w/cpp/language/o

perator precedence

[8] C Order of evaluation- from Community

[9] Parsing Expressions by Recursive Descent

Author:-Theodore Norvell

[10] VisualAlgo, https://visualgo.net/

[11] Algorithm Visualizer, https://algorithm-

visualizer.org/

[12] Lexical Analysis,

https://en.wikipedia.org/wiki/Lexical analy

