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Abstract: In this paper, a limited capacity queueing system incorporating the effects of feedback,
randomly changing states and catastrophes is studied. The effect of two randomly changing states are
taken to be a function of the number of customers present in the system. We undertake the transient
analysis of a limited capacity queueing system with two randomly changing states in the presence of
feedback and catastrophes. Transient solution of the queueing model is obtained by using the
probability generating function technique. Some interesting particular cases of the queueing model
with (without) feedback and catastrophes are obtained. Measures of effectiveness and steady state

solutions of the model are also discussed.
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1. Introduction:

In queueing theory, the M/M/1 queueing
system has been the object of systematic and
through investigations by many authors. In recent
years, the attention has been focused to study the
queueing systems on certain extensions that
include the effect of feedback and catastrophes.
These two factors consists of adding to the
standard assumptions of the existing models. The
catastrophes occur at the service- facility as a
Poisson process with rate &. Whenever a
catastrophe occurs at the system, all the
customers there are destroyed immediately, the
server gets inactivated momentarily, and the
server is ready for service when a new arrival
occurs. The concept of catastrophe played a very
important role in many areas of science,
technology and management.

The feedback in queueing literature represents
customer dissatisfaction because of inappropriate
quality of service. In case of feedback, after
getting partial or incomplete service, the
customer retries for service. This usually happens
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because of non-satisfactory quality of service.
Also, the another factor of randomly changing
states, i.e. the change in the two randomly states
affects the state of the queueing system. In other
words, the state of the queueing system is a
function of randomly changing factors. This
paper is the generalization of our previous work
[Kumar, D. (9)] in which we do not consider the
concept of customers feedback.

Kumar and Arivudainambi [3] obtained the
transient solution of M/M/1 queueing
model with the possibility of catastrophes
at the service station. Jain and Kanethia
[10], Goel [8]
analysis of a queue with environmental
and catastrophic effects. Several authors
have investigated queueing systems
subject to feedback. Takacs [14], in his
interesting paper has introduced a queue
with feedback. D’Avignon and Disney [4]
studied single server queues with state
dependent feedback. Thangaraj and
Vanitha [15], obtained transient solution of
M/M/1 feedback queue with catastrophes
using continued fractions and the steady-

studied the transient

state solution. Kumar and Sharma [13]
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(i)

studied a M/M/1 Feedback queuing model
with retention of reneged customers and
Balking.

In this paper, we undertake the transient analysis of a
queueing system incorporating the effects of
feedback, catastrophes and randomly changing states
in order to obtain some analytical results. In section 2,
we have made the assumptions and definitions of the
model. The detailed analysis of the main model is
done in section 3 and some particular cases are
obtained in section 4. In section 5 & 6, we have
obtained the steady-state result and mean queue
length. Also, the application of the model is discussed.

2. Assumptions and Definitions:

The customers arrive in the system one
by one in accordance with a Poisson process at a
single service station. The arrival pattern is non-
homogeneous, i.e. there may exists two arrival
rates, namely %, and 0 of which only one is

operative at any instant.

The customers are served one by one at

the single channel. The service time is

(iii)

(iv)

exponentially distributed. Further, corresponding
to arrival rate A, the Poisson service rate is p,

and the service rate corresponding to the arrival
rate 0 is p,. The state of the system when

operating with arrival rate &, and service rate p,

is designated as E whereas the other with arrival
rate 0 and service rate p, is designated as F.

In state E after obtaining a service, an
unsatisfied customer may rejoin the queue for
receiving another service with probability 1-p
(=q), referred to as “feedback” or they can
choose to leave the system permanently with
probability p, p+g=1. There is no feedback in
state F of the system.

The Poisson rate d at which the system

goes from environmental state E to F tends to
decrease or increase whereas at the same time the
Poisson rate b _at which the system moves from

environmental state F to E tends to increase or
decrease according as the numbers in the queue
(say n) increase or decrease from some fixed
number (say N). We therefore define,

=B[L+¢'(N-n)] with n SN+1'
€

1
and 0 gngN+—'sM

&

Also

=afl+e(n—N)] withn> N-1

€

and 0 < N—lgn <M

Where M denotes the size of the waiting
space and &, &' are positive  numbers  such
1
M-N
on M also are necessary to avoid the negative
values of d and b . When n=N or &£=0, b,

that € > l and &' > . These restrictions

gives the normal rate as o and when n=N or

£=¢'=0, d and b _gives the normal rates
as B and a.

(iv) When the system is not empty,
catastrophes occur according to a
process with rate & The effect of each
catastrophe is to make the queue instantly

€

empty. Simultaneously,
ready

the system becomes
to accept the new customers.

(v) The queue discipline is first- come-first-
served.

(vi) The capacity of the system is limited to M.
i.e., if at any instant there are M units in
the queue then the units arriving at that instant
will not be permitted to join the queue, it will
be considered lost for the system.

Define,

POISSOB (1) = Joint probability that at time t the system is in state

E and n units are in the queue, including the one
in service.
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Q,(t) = Joint probability that at time t the system including the one in service.

is in state F and n units are in the queue,
R, (t) = The probability that at time t there are n units in the queue, including the one in service.

Obviously,
R.() =P () +Q (1)
Let us reckon time t from an instant when there conditions associated with P (t) and Q (t)
are zero customers in the queue and the system is becomes,
in the environmental state E so that the initial
1 ; n=0
P(0) = .
0 , otherwise

Q,(0)=0; foralln.
3. Formulation of Model and Analysis (Time Dependent Solution):

The differential-difference equations governing the system are:

& R)=—(1 0 +)R0)+1P0) 5, QLD+ ED R0 020 . )

d
a I:)n (t): _(}‘1 P+ dn +§)Pn (t)+ ulppn+1(t)+}‘l Pn—l(t)+ ann (t) ;
O<n<M . (2)

d

5 P (0=~up+dy + )P (1421, Py s(0)+0yQu(t) ;- n=m E)

d M

aQo(t): _(bo +SE)Qo(t)"'ﬂle(t)"‘doPo(t)"' g ZQn(t) ;n=0 e (4)
n=0

d

aQn(t): _(HZ + bn + a) Qn(t)+“2 Qn+l(t)+dnpn(t) ; 0<n<M (5)

d

EQM(t): _(“’2+bM+§)QM(t)+dMPM(t); n=M ... (6)

Define, the Laplace Transform as

L.T. [f (0] = je‘St f(tyad=fc) L. ©)

0
Now, taking the Laplace transforms of equations (1)—(6) and using the initial conditions, we get
p— p— —_— M —

(S+?\‘l +d, +§) Po(S)—1=u1IO P1(S)+ by Q0(5)+§an (S) - (8)
n=0

(S + )"1 + Mlp + dn + &)ﬁn (S)zulpﬁnﬂ(s)—'_ 7\‘1 ﬁn—l(s)—i_ bn 6n (t) (9)

(S"'Hlp"'dm +é)ﬁm (S):}‘l EM—1(S)"'b|v| GM (S) ... (10)
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(5-+ b, +E)Qu(s)=11, Q(s)+ 50(S)+§Z“_A(;6n (s) (1)

(s+u, +b, +&)Q,(s)=n, Q,.1(s)+d, P,(5) .. (12)
(S"'Hz"'b +§)QM( ) 5 ( ) ... (13)

Define, the probability generating functions

M

P(z,5)=> P, (s)z" . (14)
n=0
M E—

Q(z,5)=>.Qp (s)2" ... (15)
n=0
M

R(z,5)= Y Rp(s)z" ... (16)
n=0

where

En (S) = ﬁn (S) + Qn (S)

Multiplying equations (8)—(10) by the suitable powers of z, summing over all n and using equations (14)—
(16), we have.

Be'z22P'(z,5)+0e 22 Q'(z,8)+[h 22—z {s+ A, +pp+ E+BL+eN) }+p,p]P (2 3)

+a(l—cN)2Q(2,5)=A, 2" (2=1)B, (5)+ wp—2)P,(s)—2—E2 i )
Similarly, from equations (11)—(13) and using (14)—(16), we have
Be' z2P(z,5)+ 0e22 Q' (z,5)- B+ N)zP(z,5) [{s+u2+§+a(l aN} pZ]Q(z,s)
1,(z-1)Q,(s +§zZQ ... (18)
Subtracting equation (18) from (17), we have.
2~ 2(s+ 2+ pp+ &)+ wp Pz ) [uz—Z(S+u2+§)]Q(Z,S)=7~12M”(Z—1)5M(S)
+1,PL-2)Py(5) -1 (2-1) Q)2 - &zZP znZﬁn(S) . (19)
Differentiating equation (19) with respect to z, we have
22 -z(s+1 +pp+8)+uplP'(zs)+[2% z—(s+4, +1,p+E)P(zs)
-2+, +9) Q2 5)-(+1, +£)Q(z 5)=1, 2" [M + 2)2 - (M +1) P, )
PP )1, Q(0)-1-2D PE)-£20,(9) e (20)

Eliminating Q'(z,s) and Q(z,s) from equations (18), (19) and (20), we arrive at a computationally
convenient equation.
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Pk MEPas) 1 220,60+ 286126 23 02,306
. (21)
where
n(2)=a,z* +a,2° +a,2* +a,z +a,
nz(z) =7’ [}12 - Z(S +H, + &)][aGZZ +a;Z+ as]
n(z) A 1 D(2a,z+a,)
1,(2) -2+, +§)+(B+C/Z)Z ’ ag (a622 +a7z+as)
. (E-a7D/2a)
2 2
arg 1 ag
ol (g {3 (2]
c=_%
W, 8

B:{a4 —a—;{uz% —(s+u, +§)as}}

29 K,ag
(ag—byB=byc) 0 uy

1
A=|(ag-bgB-bgc) py by N

(al—b3B) b4 0
ag pg (ag—byB-DbyC)
D=|a: by, (az—b2B—bgC)i
ag 0 (a1 ~b3 B)

ag 0 (ag—b;B-DbyC)
E=la7 pg (az—sz—b‘sC)i
ag by (a1 —b3 B)
ag 0 u,
A=|a; p, b,
ag b, O
b, = n, a,-a, (stu,+&)
b, = p, a--a, (s+u,+&)
b, =—a (stp,*+&)
b, =—(s+u,*+&)

a, = Xl(s+u2 +§)[a8+{s+uz +§+a(1—8N)}]
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8, =—| (5+1, +E)BL+e N) (S +1, +)+hpt, }+ 51, +E+al—eN)
{7‘1112+(S+M2+§)(S+7‘1+u1p+‘i)}+27‘18 W, & ]

a, =[5+ 1, +&){2Bn, (L+&'N) —oeppl+p, (s+2, +pp+8)
{oe +(s+p, +&) J+{s+u, +E+all-eN)}
P+, +8)+i, (542, +pp+8) b, 2 4 |

ay =12 B+eN)+(s+2, +1,p+E) +upi,
{s+p2+é+a(1—sN)+(s+p2+§)} ]

a5 = 1P ;

a, = -0l

a, =0& (S+A +pp+E)— P&’ (s+p, +&)

a,=(B &' 1, —a & p,p)

2, =2 s+, +&)uc+fs+p, +E+all-N))]

+2%u, [2(s+p, +E)+al-eN)+ as |-zl
2,=2(z-1)| p, 20+, +&)+all—aN) = z(s+p, +&)-
by + 4 all-eN)} i 2 -2)[E — fu, ~2ls +u, +8)
+1, 8 02 i, —2(s+p, +8)]

2, =|ppu, 205+, +€)+all-2N)}z(z—1)+p, pls-+u, +£)2* A-2).
{s+p, +&+all—eN)+(1-2)upp; +1pzas
fu,—(+n, +8)2} |

2, =" (2=, (5 +p, +E)is+1, +E+a(l—N)}

22 (z2-Dhpy 2(s+p, +E)+al—eN) j+

2 (2=l — 0z 2224, Z(M +2)-(M+2)} f, — 2(s+ 1, +£)

2y =2°(s+p, +&) [(s+p, +&)—{s+p, +E+all-eN) ]+
2’1, & [oe +{s+p, +E+a(l-eN) = (s+p, +E)]

2y =—2%(s+p, +E) s+, +E+a(l—eN)}+

21,8 [ag+(s+p, +&)+ {5+, +E+all—eN) - zp,’&

On solving equation (21), we have
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L,(2)+ L, (2)Q, (6)+ Ls ()R (6)+ L(2)Pu(s)+ Li @2 P (5)+ Le (@2.Q4 )

n=0 ..(22)

P(z,5)= - (Z)M

where

L(Z):[Hz - Z(s o, + é)]—A/(sJruz +§)[$T

D’ _
z® -(51622 +a,z +a8) exp(~?)

j=1,2,3,4,5,6.

Now, from equations (19) and (22), we have

Qlzs)=

L, (Z)+ 60 (5) L (Z)+ E0 (S)Lg (Z)+ EM (S)Llo (Z) + ipn (s (2)+ i@ (s (2)

- ..(23)

where

g (Z): [Z (S+7»1+H1IO+§)—M1D—7»122 ]

B(z) =[n, —z(s+p, +&)]
Adding equations (22) and (23), we have
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C.(2)+ C,(2)0y(6)+ Cy(2Ps) + C. (2)Po(s) + C. @D P (5)+ Co (D). By 5)
R(z,s)= n=0 n=0 ... (24)

Bz) L(2)

where
C.(@=B@)L (2)+L, ,(2); i=1,23,4,5,6.
Since,
M _ 1
= == .. (25
R(1,s) IlZ:%)Rn(S) . (25)
Thus equation (24) for z=1, gives
R(L,s)= l=1im1 R(z,s) . (26)
S z—>
P(0,s)=Py(s)= hII(l) P(z,s) ... (27)
And  Q(0,5)=Qq(s)= lir% Q(z,s) ... (28)

M M
The equations (26), (27) and (28) on solution gives the values of 50(5), 60(3), P, (S)'Zﬁn (s)and Zén (s)-
n=0 n=0

Again, we have from equations (22) and (23) on setting z=1 and Py(s) = P, Qo(s) =Q, , Py(s) = P,,

DR )=P and >:Q,(5)=Q,

L,(1)+L,1)Q, + L,@Q)P, +L,1Q)P, + |_5(1)§“ P+ L6(1)§:Qn

P(L,s)= 0 o (29)
L)+ Ly (1)Q, + Ly, + Lo@P,, + Lu(1)> Py + Ly ()3Q,
QlL.s)= B(1)L(1) = = - (30)

These on inversions give the respective probabilities for the system to be in the randomly changing states E
and F.

4. Particular Cases:

Case | Setting n=N or & =0 in equations (22) and (23), (i.e., when the rate of change of randomly changing
state from F to E is constant), we have

LM L) LR LR+ LD P+ LY 0,0

X0 E = ..(31)
L 2)+ Ly(2)Q0(6)+ Ly(@)P6)+ Liy(2)Pu) + Lu@ 3P, (5)+ Ly @30, )
Q(z.s)= SORE) n= n=0 .(32)

where

P(z,5)=
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0 ;1=1,2,3,....12.

Li(2)=Li(2)
L' (2)=L)]
B'(2)=B(z)] ,

On adding equations (31) and (32), we have.

C}(2)+C5(2)Qo(s)+ C4(2)Ry () + Ci (z)Py (s) + C:. (z)ZP (s)+C. (z)zQ (s)
R(z,s)= n=0 . (33)

B(z)L'(2)

where
Cl(z)=B'(z)Li(z)+ L. ((2); i=1,2,3,4,5,6.
M

—_ —_— M —_—
The unknown quantities Q0 P P Z s)andZ:Qn (s)can be evaluated as before.
n=0 n=0

Case Il Setting €=&'=00r n=N in equation (17) and (18), (i.e. when the rates of interchange of randomly
changing states from E to F and F to E is constant), we have

X4 (2)P(z,8)+ X5 (2)Q(z,8)+ X5 (z) = 0 ... (34)
X4 (2)P(z,8)+ X5 (2)Q(z,5)+ Xg (z) = 0 ... (35)

where
Xl(z): _[7‘1 2’ -z (S+)\‘1 +H1D+B+§)+M1p]
Xy (z)= —az

x3(2)={ulp(2—1) » ()12 1-2)P, *”éi }

X4 (z)=pz

X5 (z)=[ug —z(s+pg +a+8)]

Xg (Z){uz(z ~1)Qq(s)+&2 %@(S)}
n=0

From equations (34) and (35), we have

Xy (2)Xg (z)- X3 (2)X5 (2)
PR @)y )X, (K, ) -9
Xy (2)X3(z)- X (2)Xg (2)
Ues) =% X5 ()X (X4 @) @D

Thus, we have
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)X, @)]+up-2)

1 20X, (2)- X, ()]0, (6)+£2 20, 6) X
[X,(2)-X,(z )]5 (s )+% ZM”[X (2)-X,(z )]( ) w(S)+
z[X,(2)- ZZP 5(2)-X, ()]

Rizs)= 2% +sx7() (1 %, ()2 Ela+p+0) - (39

where
X, (Z):>‘123 -7° (7‘1+u1p+}12 +G+B+2§)+Z(M1P+uz)

Xq (Z):_Zz 7“1((“'“2 +§)+Z [Otulp+uz (7‘1 +H1p+B+§)]_u1pH2-

And P(Ls)=Y B (s) = STOrE
~ s(s+a+p+&)
5 B
Q(1:5)=§Qn(3)=m
Relation (38) is a polynomial in z and exists for zero and substituting the three zeros, o, o, and

all values of z, including the three zeros of the
denominator. Hence Py(s), Qq(s)and Py, (s)

are obtained by setting the numerator equal to
Now letting a—o0, B—0 and setting p = p,= p (say) in relation (38), we have

a, (say) of the denominator (at each of which the
numerator must vanish).

D M+l p
r(Z’S)z(l—z)MRO(SZ)—(l—z)klz P, (s)-z-¢&zls - 9)
MZ2-Z(s+ A +p+E)+u
where
Ro(s)=Po(s)+ Qo s)
r(z,s)=lim [ lim R(z,s)}
B—0La—mo
Relation (39) is a polynomial in z and exists for denominator. Hence, Rg(s) and Py(s) can be

all values of z, including the two zeros of the evaluated as before.

Case 11 Putting £=¢&'=1, N=1 in equation (24), (i.e. when d =Bnand b _=an), we have.

Cl(2)+ Qu(s)C5(2) + Py (s)C3(2) + Py (s)Ci (2) + iﬁn (sXCs(2) + i@ (s)Cs(2)

R(z,s) = n=0 n=0 ... (40)
B(z)L'(2)

where

L”(Z) = L(Z) e=¢'=1,N=1

C?(Z) =G, (Z)

Case IV: In relation (38), if p=1, i.e. when there
are no feedback customers. The model reduces to
one which is studied by Kumar, D. [9].

EZS':l,N:]_; i:l’ 2' 3! 4, 5, 6
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5. Steady State Results:

This can at once be obtained by the well-known property of the Laplace transform given below:

limf(t) = lim s f(s),  If the limit on the left hand side exists.
t—0 s—0
Thus if
M
R(z)=>.R, 2"
n=0
Then

R(z)=lim s R (z,s)
s—0
By using this property, we have from equation (24) for the steady state

N,(z)Q, + N, (z)P, + N, (2)P,, + N4(Z)i|’n + Ns(z)iQn +N

e L)

... (41)

R, = Lim s Rj(s)

N(D)-BEIL @)+, @) 23,45
B*(z)zB(z)|S:O

L*(z)zL(z)‘

s=0

* *

Lll(z): L5 (z) g (z)— &z L(z)
U@ @ak)-eL@)
and N = The constant of integration.

M M
The unknown quantities P, Q; P, ZPn and ZQn can be evaluated as before.
n=0 n=0

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2589-2604 | 2599



Particular cases:

Case | Relation (33), on applying the theory of Laplace transform, we have

Q, Ni(2)+ N, (2)P, + N4 (z)P,, + N;(z)ipn + N;(z)iQn +N/

. (42)

T@)T,(@)

L, @=L, @u2)-&L@)

L,@ =L, @@ -2L@)

N' = the constant of integration.

; i=1,2,3,4,5.

M M
The unknown quantities Q,, P, P,,, an a”dZQn can be evaluated as before.
n=0 n=0

Case Il Relation (38), on applying the theory of Laplace transforms gives

R(0)= 2 BB 0.2 -2, tup o) rupie (o E)lu ~2(u +orpr )]

or, we can write

R(z)=

Where T(z), N(z) and L(z) are the co-efficient of

Q, P, and P,

equation (43) and K(z) is the denominator of

(43).

uz(l—Z){aZ-I-Z(Xl+u1p+B+§)—7»122—ulp} Qo+
ulp(l—z)[BZ—{pz —Z (lvlz "’u""ta) } ]Po +}‘le+1 (1_2){“2 —Z (|,l2 "'OH'F:)_BZ} Py +

... (43
27 (04 8)-2 P (1 + 0 E) - lamp i, (o +p+ B8+ e pre)] )

+Z[{al~11p+uz (}‘1+H1p+B+‘t:)}+U1puz]_H1pliz

T(2)Qq + N(z)Py + L(z)Py +M(2)

.. (44
K@) (44)

Equation (44) is a polynomial in z and exists for
all values of z, including three zeros of the
denominator. Hence Q, P, and P, can be

respectively in the numerator of

0
obtained by setting the numerator equal to zero.
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Substituting the three zeros b, b, and b, (say) of must vanish).

the denominator (at each of which the numerator
Three equations determining the constants Q , P, and P, are

T(by)Qq +N(by)Py +L(by)Py =—M(by) ... (45)
T(by)Qg +N(by)Py +L(by)Py =—M(by) ... (46)
T(b3)Qp + N(b3)Py + L(b3)Py =—M (b3) o (47)

After solving these equations, we have

—M(by)As; +M(by)Ay —M(b3)Az

Qo =

A
P M(by)A;; —M(by)A, + M(b3)As,
0 A
Py :_M(bl)A13 +M(by)Azs —M(b3)Ags

A

where

T(by) N(by) L(by)
A=|T(by) N(by) L(by)

T(b3) N(bz) L(bs)
Aij is the co-factor of the (i, j)lh element of A.

By putting the values of Q , P, and P, in equation (44), we have

T(Z)[_ M (bl)All + M(bz)Azl - M(b3)A31]+ N(Z)[M(bl)A12 _ M(bz )A22 + M(bs)Agz]
()= L Mo, JAy  Mib A, ~MibJA ]+ A M)

Riz ... (48)
A -K(z)
6. Mean Queue Length:
Define,
Lq: Expected number of customers in the queue including the one in service.
Then
L,= R'(z)|zz1

Therefore, from equation (48), we have

KQ)[TQ){-Mby)A, +Mlb, A, —M(by A |+ N Q) {M(b,)A, ~M(b, )A, + M(b; A}

+ L@ Mby)A, + M(b,)A — M(b;)AF+ AM )] - [T){- 'Vl( DA, +M(b, A,
—M(by)A |+ NU)M(b, )A,, — M(b,)A,, +M(by)A,, | +LI){-M(b, A, + M(b, A,
~Mb;)A,+A-ML)] K'Q)

o A-[K@F

... (49)

where dashes denotes the first derivative w. r. t. z.
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Relation (39), on applying the theory of Laplace transforms gives

JuRo —(1-2)1, 2" Py, &2
Mz2—zZ(h +p+E)+p

r(Z):(l—z

where
r(z)=limsr(z,s)
s—0

Equation (50) is a polynomial in z and exists for
all values of z, including the two zeros of the
denominator. Hence R, and P, can be obtained

by setting the numerator equal to zero.
Two equations determining the constants R and P, are

... (50)

Substituting the two zeros a, and a, (say) of the

denominator (at each of which the numerator
must vanish).

(L-a;)uRo —(L-a)r a1 Py =Eay er (51)
(1-a)uRg —(1-a,)1 2y Py =&a, - (52)
On solving these equations, we have
(a—ay) a8 A _ma 3-8
Py=—>—%— and R =———+—0a; —F |
a1\/I+l _ag/l+l (1_3'2)11 T a‘1\/I+1 _ag/l-rl
where
M(-a;) (1-ay)=-¢ a;>1
Now, from equation (50), we have
(31 _az) azM+l _ZM+1
a+7\’1(1_2)(1_a2)a|v|+1_a|\/|+1 a, -2
r(z)= L 2 e (52)
M(z-ap)(az -1)
r. = The co-efficient of z"
1 . n+l n
ap M-n @1 —aj M) on
M = EQ-Py)+ay " ————=—|| = | ag ... (54)
" ul-ap) a;—a; B

If £=0 and and p=1 (i.e., no catastrophe and feedback are allowed), then from equation (50), we have

M+1
I’(Z)z HRo -4 27" Py
p—»Az

The condition, lim r (z)=1 gives
z—1

Ry =4 Py =u—-2

As r(z) is analytic, the numerator and
denominator of equation (55) must vanish
simultaneously for z=p/A1, which is a zero of its

Ro=p " Py, p=2/n<1

... (55)

... (56)

denominator. Equating the numerator of equation
(55) to zero for z= u/i; we have

.. (57)
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Relation (56) and (57) gives

1-p (1-p)p"
Rozl_pM+1 » Py :W

Now, from equation (55), we have

r(z)= 1-p ' |:1_(p Z)M+1:|

which is a well known result of the M/M/1 queue
with finite waiting space M.

When there is an infinite waiting space, the
corresponding expression for r(z) is obtained by

r(z)= 1-p

1

... (58)

letting M tends to infinity in equation (58), If
(p.lz]) <1.

... (59)

which is again a well known result of the M/M/1 queue with infinite waiting space.

Case 111 Relation (40), on applying the theory of Laplace Transform gives

H, (z)Q,+H,(2)P, + H,(2)P,, + H4(z)§:Pn + Hs(z)iQn +H

... (60)

R(e)- 5. HED)

By (2)=B (2)| _,

H(z):L” (z)|S:0

H(2)=B (2)L1..(2)+ L (),

]| G|

nz( ¢=¢'=1, N=1

Li(2)=L.(2)

H' = the constant of Integration.

e=¢'=1,N=1

;i=1,2,3,4,5.

1J=2,3,4,5,6.

;k=8,9,10, 11, 12.

The unknown quantities of equation (60) can be evaluated as before.

7. Conclusion and application of the model:

In this paper, we have studied the transient
analysis of a limited capacity queueing system
incorporating the effects of feedback, two
randomly changing states and catastrophes. We
have obtained some particular cases and steady
state solutions along with some measures of
effectiveness. The proposed model is highly
useful for dealing with real-world queueing
situations such as manufacturing systems with

rework operations, shift changes and possibilities
of feedback and catastrophes that occurs in
production processes subject to rework, computer
networks, telecommunication systems, banking
sectors, hospital management, etc.
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