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Abstract: In this paper, a limited capacity queueing system incorporating the effects of feedback, 

randomly changing states and catastrophes is studied. The effect of two randomly changing states are 

taken to be a function of the number of customers present in the system. We undertake the transient 

analysis of a limited capacity queueing system with two randomly changing states in the presence of 

feedback and catastrophes. Transient solution of the queueing model is obtained by using the 

probability generating function technique. Some interesting particular cases of the queueing model 

with (without) feedback and catastrophes are obtained. Measures of effectiveness and steady state 

solutions of the model are also discussed. 

Keywords: Transient analysis, Feedback, Catastrophe, Randomly changing states, Probability 

generating function. 

1. Introduction:   

      In queueing theory, the M/M/1 queueing 

system has been the object of systematic and 

through investigations by many authors. In recent 

years, the attention has been focused to study the 

queueing systems on certain extensions that 

include the effect of feedback and catastrophes. 

These two factors consists of adding to the 

standard assumptions of the existing models. The 

catastrophes occur at the service- facility as a 

Poisson process with rate . Whenever a 

catastrophe occurs at the system, all the 

customers there are destroyed immediately, the 

server gets inactivated momentarily, and the 

server is ready for service when a new arrival 

occurs. The concept of catastrophe played a very 

important role in many areas of science, 

technology and management.  

The feedback in queueing literature represents 

customer dissatisfaction because of inappropriate 

quality of service. In case of feedback, after 

getting partial or incomplete service, the 

customer retries for service. This usually happens 

because of non-satisfactory quality of service. 

Also, the another factor of randomly changing 

states, i.e. the change in the two randomly states 

affects the state of the queueing system. In other 

words, the state of the queueing system is a 

function of randomly changing factors. This 

paper is the generalization of our previous work 

[Kumar, D. (9)] in which we do not consider the 

concept of customers feedback. 

Kumar and Arivudainambi [3] obtained the 

transient solution of M/M/1 queueing 

model with the possibility of catastrophes 

at the service station. Jain and Kanethia 

[10],  Goel [8]  studied the transient 

analysis of a queue with environmental 

and catastrophic effects. Several authors 

have investigated queueing systems 

subject to feedback. Takacs [14], in his 

interesting paper has introduced a queue 

with feedback. D’Avignon and Disney [4] 

studied single server queues with state 

dependent feedback. Thangaraj and 

Vanitha [15], obtained transient solution of 

M/M/1 feedback queue with catastrophes 

using continued fractions and the steady-

state solution. Kumar and Sharma [13] 
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studied a M/M/1 Feedback queuing model 

with retention of reneged customers and 

Balking.            

In this paper, we undertake the transient analysis of a 

queueing system incorporating the effects of 

feedback, catastrophes and randomly changing states 

in order to obtain some analytical results. In section 2, 

we have made the assumptions and definitions of the 

model. The detailed analysis of the main model is 

done in section 3 and some particular cases are 

obtained in section 4. In section 5 & 6, we have 

obtained the steady-state result and mean queue 

length. Also, the application of the model is discussed. 

2. Assumptions and Definitions: 

(i) The customers arrive in the system one 

by one in accordance with a Poisson process at a 

single service station. The arrival pattern is non-

homogeneous, i.e. there may exists two arrival 

rates, namely 
1
 and 0 of which only one is 

operative at any instant.  

(ii) The customers are served one by one at 

the single channel. The service time is 

exponentially distributed. Further, corresponding 

to arrival rate 
1
 the Poisson service rate is 

1
 

and the service rate corresponding to the arrival 

rate 0 is 
2
. The state of the system when 

operating with arrival rate 
1
 and service rate 

1
 

is designated as E whereas the other with arrival 

rate 0 and service rate 
2
 is designated as F.  

(iii) In state E after obtaining a service, an 

unsatisfied customer may rejoin the queue for 

receiving another service with probability 1-p 

(=q), referred to as “feedback” or they can 

choose to leave the system permanently with 

probability p, p+q=1. There is no feedback in 

state F of the system.  

(iv) The Poisson rate d
n
 at which the system 

goes from environmental state E to F tends to 

decrease or increase whereas at the same time the 

Poisson rate b
n
 at which the system moves from 

environmental state F to E tends to increase or 

decrease according as the numbers in the queue 

(say n) increase or decrease from some fixed 

number (say N). We therefore define,   

( ) 
ε'

1
NnwithnNε'1βdn +−+=  

and   0   n  N + 
 

1
  M 

Also 

( ) 
ε

1
NnwithNnε1αbn −−+=  

and  Mn
ε

1
N0 −  

Where M denotes the size of the waiting 

space and  , '  are positive  numbers such 

that    
N

1
 and '   

NM

1

−
. These restrictions 

on M  also are necessary to avoid the negative 

values of d
n
 and b

n
. When  n=N or  =0, b

n
 

gives the normal rate as  and when n=N or 

 = ' =0,  d
n
 and b

n
 gives the normal rates 

as  and . 

(iv) When the system is not empty, 

catastrophes occur according to a  Poisson 

process with rate . The effect of each 

catastrophe is to make  the queue instantly 

empty. Simultaneously, the system becomes 

ready  to accept the new customers.  

(v) The queue discipline is first- come-first-

served.  

(vi) The capacity of the system is limited to M. 

i.e., if at any instant there  are M units in 

the queue then the units arriving at that instant 

will  not be permitted to join the queue, it will 

be considered lost for the  system.  

Define,  

P
n
 (t) =  Joint probability that at time t the system is in state 

E and n units are in the queue, including the one 

in service.   
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Q
n
(t) =  Joint probability that at time t the system 

is in state F and n units are in the queue, 

including the one in service.  

R
n
(t) =  The probability that at time t there are n units in the queue, including the one in service.  

Obviously, 

  R
n
(t) = P

n
(t) + Q

n
(t)  

Let us reckon time t from an instant when there 

are zero customers in the queue and the system is 

in the environmental state E so that the initial 

conditions associated with P
n
(t) and Q

n
(t) 

becomes,  

 P
n
(0) = 



 =

otherwise;0

0n;1
 

 Q
n
(0) = 0 ;     for all n.  

3. Formulation of Model and Analysis (Time Dependent Solution):  

The differential-difference equations governing the system are: 

( ) ( ) ( ) ( ) ( ) ( ) ;tPξtQbtpPμtPξdλtP
dt

d M

0n

n00110010 
=

+++++−=  n = 0 ..... (1) 

( ) ( ) ( ) ( ) ( ) ( ) ;tQbtPλtpPμtPξdpμλtP
dt

d
nn1n11n1nn11n ++++++−= −+  

    0 < n < M           ..... (2) 

( ) ( ) ( ) ( ) ( ) ;tQbtPλtPξdpμtP
dt

d
MM1M1MM1M ++++−= −  n = M          .... (3) 

( ) ( ) ( ) ( ) ( ) ( ) ;
0

0012000 
=

++++−=
M

n

n tQtPdtQtQbtQ
dt

d
  n = 0   .... (4) 

( ) ( ) ( ) ( ) ( ) ;tPdtQμtQξbμtQ
dt

d
nn1n2nn2n ++++−= +  0 < n < M   .... (5) 

( ) ( ) ( ) ( ) ;tPdtQξbμtQ
dt

d
MMMM2M +++−=   n = M     .... (6) 

Define, the Laplace Transform as 

L.T. [f (t)] = ( ) ( )


− =
0

st sfdttfe       .....(7)  

Now, taking the Laplace transforms of equations (1)–(6) and using the initial conditions, we get  

( ) ( ) ( ) ( ) ( )
=

++=−+++
M

0n

n0011001 sPξsQbsPpμ1sPξdλs    .... (8) 

( ) ( ) ( ) ( ) ( )tQbsPλsPpμsPξdpμλs nn1n11n1nn11 ++=++++ −+     .... (9) 

( ) ( ) ( ) ( )sQbsPλsPξdpμs MM1M1MM1 +=+++ −                     .... (10) 
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( ) ( ) ( ) ( ) ( )
=

++=++
M

0n

n001200 sQξsPdsQμsQξbs     .... (11) 

( ) ( ) ( ) ( )sPdsQμsQξbμs nn1n2nn2 +=+++ +       .... (12) 

( ) ( ) ( )sPdsQξbμs MMMM2 =+++        .... (13) 

Define, the probability generating functions  

( ) ( )
=

=
M

0n

n
n zsPs,zP        .... (14) 

( ) ( )
=

=
M

0n

n
n zsQs,zQ        .... (15) 

( ) ( )
=

=
M

0n

n
n zsRs,zR        .... (16) 

where  

( ) ( ) ( )sQsPsR nnn +=      

Multiplying equations (8)–(10) by the suitable powers of z, summing over all n and using equations (14) –

(16), we have. 

( ) ( ) ( )   ( )sz,PpμNε1βξpμλszzλsz,Qzεαsz,Pzεβ 111

2

1

22 ++++++−++  

( ) ( ) ( ) ( ) ( ) ( ) ( )
=

+ −−−+−=−+
M

0n

n01M

1M

1 sPzξzsPz1pμsP1zzλsz,QzNε1α   .... (17) 

Similarly, from equations (11)–(13) and using (14)–(16), we have  

( ) ( ) ( ) ( ) ( )   ( )sz,Q
2

μNε1αξ
2

μszsz,PzNε1βsz,Q2zεαsz,P2zεβ −−+++++−+                   

( ) ( ) ( )
=

+−=
M

0n

n02 sQzξsQ1zμ      .... (18) 

Subtracting equation (18) from (17), we have.  

( )  ( ) ( )  ( ) ( ) ( )sP1zzλsz,Qξμszμsz,Ppμξpμλszzλ M

1M

122111

2

1 −=++−+++++− +

 ( ) ( ) ( ) ( ) ( ) ( )
==

−−−−−−+
M

0n

n

M

0n

n0201 sQzξsPξzzsQ1zμsPz1pμ  .... (19) 

Differentiating equation (19) with respect to z, we have  

( )  ( ) ( )  ( )sz,Pξpμλszλ2sz,Ppμξpμλszzλ 111111

2

1 +++−+++++−  

( )  ( ) ( ) ( ) ( ) ( )  ( )sP1Mz2Mzλsz,Qξμssz,Qξμszμ M

M

1222 +−+=++−++−+           

( ) ( ) ( ) ( )
==

−−−−−
M

0n

n

M

0n

n0201 sQξsPξ1sQμsPpμ    .... (20) 

Eliminating Q'(z,s) and Q(z,s) from equations (18), (19) and (20), we arrive at a computationally 

convenient equation.  
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( )
( )
( )

( )
( )

( ) ( ) ( ) ( ) ( )







+++++=+ 

==

M

0n

n6

M

0n

n5M403021

22

1 sQzsPzsPzsPzsQzz
zη

1
sz,P

zη

zη
sz,P   

        .... (21) 

where   

( ) 54

2

3

3

2

4

11 azazazazazη ++++=  

( ) ( )  87

2

622

2

2 azazaξμszμzzη ++++−=  

( )
( ) ( )

( )
( )

( )87

2

66

76

222

1

azazaa

az2aD

z

1
zCB

ξμszμ

A

zη

zη

++

+
+++

++−
=  

 ( )







































−








−










+

−
+

6

8
2

67

2

6

7
6

67

a

a
aa

2

1

a2

a
za

a2DaE  

C = 

82

5

aμ

a
 

( ) 
82

8272

82

5
4

aμ

1
aξμsaμ

aμ

a
aB 








++−−=  

( )

( )

( )


−

−−

−−

=
1

0bBba

bcbBba

0cbBba

A

431

42322

2213

 

( )

( )

( )


−

−−

−−

=
1

Bba0a

CbBbaba

CbBbaa

D

316

32247

21328

 

( )

( )

( )


−

−−

−−

=
1

Bbaba

CbBbaa

CbBba0a

E

3146

32227

2138

 

0ba

ba

0a

46

427

28





=  

b
1
 = 

2
 a

7
–a

8
 (s+

2
+) 

b
2
 = 

2
 a

6
–a

7
 (s+

2
+) 

b
3
 = – a

6
 (s+

2
+) 

b
4
 = – (s+

2
+) 

( ) ( )  Nε1αξμsαεξμsλa 2211 −++++++=  
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( ) ( ) ( )  ( )  .Nε1αξμsμλξμsNε1βξμsa 221222 −++++++++++−=

( )( )  αμελ2ξpμλsξμsμλ 2111221 +++++++  

( ) ( )  ( ) ξpμλsμpμαεNε1μβ2ξμsa 1121223 ++++−+++=  

 ( )  ( ) Nε1αξμsξμsαε 22 −+++++++  

 ( ) ( )  ( ) 1

2

211221 zμξpμλsμξμspμ +++++++  

( ) ( )  2111

2

24 pμμξpμλsNε1βμa ++++++−=  

 ( ) ( )  +++−+++ 22 sN1s  

2

215 μpμa =  

2

16 λεαa −=  

( ) ( )ξμsβξpμλsαa 2117 ++−+++=   

( )pμεαμεβa 128 −=  

( ) ( )   N1αξμsαξμszz 22

3

1  −++++++−=  

( ) ( )  2

222

2 μzαN1αξμs2μz −+−++++ 

 ( ) ( ) ( )  ( ) ++−−+++−= ξμszN1αξμs2μ1zzz 2222       

( )   ( ) ( )  2

22

2

222 sz1zN1s ++−−−−−+++  

     ( ) ξμszμzαμ 22

2

2 ++−+   

( ) ( )  ( ) ( ) ( ) .z1zξμspμ1zzNε1αξμs2pμμz 2

212213 −+++−−+++=  

  ( )  ( ) εαzpμμpμz1Nε1αξμs 2

1

2

212 +−+−+++  

  ( )  zξμsμ 22 ++−  

 ( ) ( ) ( )  N1αξμsξμsλ1zzzz 221

3M

4 −+++++−=  

  ( ) ( ) ( ) +−+++−− Nε1αξμs2μλ1zz 221

2
 

( ) ( ) ( )  ( ) ξμszμ1M2Mzλzεαμλ1zz 221

22

21 ++−+−+−−  

( ) ( ) ( )  

( )  ( ) ξμsNε1αξμsαεξμz

N1αξμsξμsξμsξzz

222

2

222

3

5

++−−++++

+−+++−++++= 
 

( ) ( ) 

( ) ( )   
2

2222

2

22

3

6

zμNε1αξμsξμsαεξμz

Nε1αξμsξμsξzz

−−+++++++

+−+++++−=
  

On solving equation (21), we have  
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( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )zL

(s)Q(z)L(s)P(z)LsPzLsPzLsQzLzL

sz,P

M

0n

n6

M

0n

n5M403021 
==

+++++

=  ...(22) 

where  

 ( ) ( )  ( ) ( )
( )

E

ξμsA

22
azX

azX
ξμszμzL 2



++−










+

−
++−=  

  ( ) ( )C/2D

87

2

6

B expazazaz −

++  

 

6a2

D
D =  

66

7

a2

1
D

a2

a
EE 













−=  

( )
6

7

a2

a
zzX +=  

½

6

8
2

6

7

a

a

a

a

2

1
a

























−










=  

( )
( )

( ) ;zdzL
zη

z
zL

Z

0 2

j

j =    j =1, 2, 3, 4, 5, 6. 

Now, from equations (19) and (22), we have  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )zLzB

(z)L(s)Q(z)L(s)PzLsPzLsPzLsQzL

sz,Q
12

M

0n

n11

M

0n

n10M90807 
==

+++++

= …(23) 

where 

( ) ( ) ( ) ( )zLzzgzLzL 17 −=  

( ) ( ) ( ) ( ) ( )zL1zμzgzLzL 228 −−=  

( ) ( ) ( ) ( ) ( )zL1zpμzgzLzL 139 −−=  

( ) ( ) ( ) ( ) ( )zL1zzλzgzLzL 1M

1410 −+= +
 

( ) ( ) ( ) ( )zLξzzgzLzL 511 −=  

( ) ( ) ( ) ( )zLξzzgzLzL 612 −=  

( ) ( ) 2

1111 zλpμξpμλszzg −−+++=  

( ) ( ) ξμszμzB 22 ++−=  

Adding equations (22) and (23), we have  
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( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )zLzB

(s)Q(z)C(s)P(z)CsPzCsPzCsQzCzC

sz,R

M

0n

n6

M

0n

n5M403021 
==

+++++

=  .... (24) 

where  

C
i
 (z) = B (z) L

i
 (z) + L

i+6
 (z) ;  i=1, 2, 3, 4, 5, 6.  

Since,  

 ( ) ( )
=

==
M

0n

n
s

1
sRs,1R                                                                    .... (25) 

Thus equation (24) for z=1, gives 

( ) ( )s,zRlim
s

1
s,1R

1z→
==        .... (26) 

( ) ( ) ( )s,zPlimsPs,0P
0z

0
→

==       .... (27) 

And    ( ) ( ) ( )s,zQlimsQs,0Q
0z

0
→

==       .... (28) 

The equations (26), (27) and (28) on solution gives the values of ( ) ( ) ( ) 
==

M

0n

n

M

0n

nM00 (s)Qand(s)P,sP,sQ,sP .  

Again, we have from equations (22) and (23) on setting z=1 and ( )sP0  = P
0
, ( )sQ0  =Q

0
 , ( )sPM  = P

M
 

,
n

M

0n

nn

M

0n

n Q(s)QandP(s)P == 
==

 

( )
( ) ( ) ( ) ( )

( )1L

Q(1)LP(1)LP1LP1LQ1L1L

s1,P

M

0n

n6

M

0n

n5M403021 
==

+++++

=   .... (29) 

( )
( ) ( ) ( ) ( )

( ) ( )1L1B

Q(1)LP(1)LP1LP1LQ1L1L

s1,Q

M

0n

n12

M

0n

n11M1009087 
==

+++++

=   .... (30) 

These on inversions give the respective probabilities for the system to be in the randomly changing states E 

and F. 

4. Particular Cases: 

Case I Setting n=N or  =0 in equations (22) and (23), (i.e., when the rate of change of randomly changing 

state from F to E is constant), we have  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )zL

(s)Q(z)L(s)P(z)LsPzLsPzLsQzLzL

sz,P

M

0n

M

0n

n6n5M403021



+++++

=
 

= =  ...(31) 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )zLzB

(s)Q(z)L(s)P(z)LsPzLsPzLsQzLzL

sz,Q

M

0n

n12

M

0n

n11M1009087



+++++

=


== ...(32) 

where 
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( ) ( )
0εii zLzL

=
= ;  i=1, 2, 3, . . . . 12. 

( ) ( )
0ε

zLzL
=

=  

( ) ( )
0ε

zBzB
=

=  

On adding equations (31) and (32), we have.  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )zLzB

(s)Q(z)C(s)P(z)CsPzCsPzCsQzCzC

sz,R

M

0n

n6

M

0n

n5M403021



+++++

=


== ... (33) 

where 

( ) ( ) ( ) 6iii LzLzBzC +
+= (z) ;  i=1, 2, 3, 4, 5, 6. 

The unknown quantities ( ) ( ) ( ) 
==

M

0n

n

M

0n

nM00 (s)Qand(s)P,sP,sP,sQ can be evaluated as before. 

Case II Setting 0== or n=N in equation (17) and (18), (i.e. when the rates of interchange of randomly 

changing states from E to F and F to E is constant), we have  

( ) ( ) ( ) ( ) ( ) 0zXs,zQzXs,zPzX 321 =++     .... (34) 

( ) ( ) ( ) ( ) ( ) 0zXs,zQzXs,zPzX 654 =++     .... (35) 

where 

( ) ( ) pμξβpμλszzλzX 111

2

11 +++++−−=  

( ) zzX2 −=  

( ) ( ) ( ) ( ) ( ) ( )







++−+−−= 

=

+
M

0n

nM

1M

1013 sPzξzsPz1zλsP1zpμzX  

( ) zzX4 =  

( ) ( ) +++−= 225 szzX  

( ) ( ) ( ) ( ) 







+−= 

=

M

0n

n026 sQzsQ1zzX  

From equations (34) and (35), we have  

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )zXzXzXzX

zXzXzXzX
s,zP

4251

5362

−

−
=      .... (36) 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )zXzXzXzX

zXzXzXzX
s,zQ

4251

6134

−

−
=      .... (37) 

Thus, we have  
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( )

( ) ( ) ( )  ( ) ( ) ( ) ( )  ( )

( ) ( )  ( ) ( ) ( )  ( ) ( )

( ) ( )  ( ) ( ) ( ) 

( ) ( ) ( ) ( )ξβαξzzXz1zXssz

zXzXsPzξzXzXz

sPz1zXzXzλsPzXzX

z1pμzXzXsQzξsQzXzX1zμ

sz,R
2

87

22

45

M

0n

n45

M45

1M

1054

112

M

0n

n0122

++−−++−

−+−

+−−+−

−+−+−−

=




=

+

=

 .... (38) 

where 

( ) ( ) ( )21211

23

17 μpμz2ξβαμpμλzzλzX +++++++−=  

( ) ( ) ( )  .pμμξβpμλμpμαzξμαλzzX 21112121

2

8 −+++++++−=  

And    ( ) ( )
( )ξβαss

ξαs
sPs1,P

M

0n

n
+++

++
==

=

 

( ) ( )
( )+++


== 

= ss
sQs,1Q

M

0n

n
 

Relation (38) is a polynomial in z and exists for 

all values of z, including the three zeros of the 

denominator. Hence ( ) ( ) ( )sPandsQ,sP M00  

are obtained by setting the numerator equal to 

zero and substituting the three zeros, 
1
, 

2
 and 


3
 (say) of the denominator (at each of which the 

numerator must vanish).    

Now letting →, →0 and setting 
1
= 

2
=  (say) in relation (38), we have  

( )
( ) ( ) ( ) ( )

( ) μξμλszzλ

z/sξzsPzλz1sRμz1
sz,r

1

2

1

M

1M

10

++++−

−−−−−
=

+

   .... (39) 

where 

 ( ) ( ) ( )sQsPsR 000 +=  

 ( ) ( )




=

→→
s,zRlimlims,zr

0
 

Relation (39) is a polynomial in z and exists for 

all values of z, including the two zeros of the 

denominator. Hence, ( ) ( )sPandsR M0  can be 

evaluated as before.   

Case III Putting 1== , N=1 in equation (24), (i.e. when d
n
=n and b

n
=n), we have.  

(z)LB(z)

(z)C(s)Q(z)C(s)P(z)C(s)P(z)C(s)P(z)C(s)Q(z)C

s)R(z,
6

M

0n

n5

M

0n

n4M30201



+++++

=


== ... (40) 

where 

 ( ) ( )
1N,1εε

zLzL
===

=  

( ) ( )
1N,1εεii zCzC

===
= ;   i=1, 2, 3, 4, 5, 6 

Case IV: In relation (38), if p=1, i.e. when there 

are no feedback customers. The model reduces to 

one which is studied by Kumar, D. [9].  
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5. Steady State Results: 

This can at once be obtained by the well-known property of the Laplace transform given below: 

( ) ( )sfslimtflim
0st →→

= ,  If the limit on the left hand side exists.  

Thus if   

( ) 
=

=
M

0n

n
n zRzR  

Then   

( ) ( )s,zRslimzR
0s→

=  

By using this property, we have from equation (24) for the steady state  

( )
( ) ( ) ( )

( ) ( )zLzB

NQ(z)NP(z)NPzNPzNQzN

zR
**

M

0n

n5

M

0n

n4M30201 +++++

=


==   .... (41) 

where 

 ( )sRsLimR n
0s

n
→

=  

 ( ) ( ) ( ) ( )
0s

*

7i

*

1ii zLzLzBzN
=

++ +=  ; i=1, 2, 3, 4, 5 

 ( ) ( ) 0szBz
*

B ==  

( ) ( )
0s

zLz
*

L
=

=  

( )
( )

( )= dzzL
z

2
η

i
z

z
*
i

L  ; i=1, 2, 3, 4, 5, 6 

( ) ( ) ( ) ( ) ( )zL1z2μzgz
*
2Lz

*

8
L −−=  

( ) ( ) ( ) ( ) ( )zL1z1μzgz
*
3Lz

*

9
L −−=  

( ) ( ) ( ) ( ) ( )zL1z
1M

z1λzgz
*
4Lz

*

10
L −

+
+=  

( ) ( ) ( ) ( )zLξzzgz
*

5
Lz

*

11
L −=  

( ) ( ) ( ) ( )zLξzzgz
*

6
Lz

*

12
L −=  

and N = The constant of integration.   

The unknown quantities P
0
, Q

0,
 P

M
, 

==

M

0n

n

M

0n

n QandP can be evaluated as before. 
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Particular cases: 

Case I Relation (33), on applying the theory of Laplace transform, we have  

( )
( ) ( ) ( )

( ) ( )zTzT

NQ(z)NP(z)NPzNzNzNQ

zR
21

M

0n

n5

M

0n

n4M30210
+++++

=


==

P

  .... (42) 

where, 

( ) ( ) ( ) ( )
0s

z
**

7i
Lz

**
1i

LzBz
i

N
=+

+
+

=  ;  i=1, 2, 3, 4, 5. 

( ) ( )
0s1 zBzT

=
=  

( )
( )

( )

=















=

0

zL
z

2
η

j
z

z
**
j

L  dz  ; j=2, 3, 4, 5, 6. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )zL1z1μzgz
**

3
Lz

**

9
L

zL1z2μzgz
**

2
L(z)

**

8
L

−−=

−−=

 

( ) ( ) ( ) ( ) ( )zL1z
1M

z1λzgz
**

4
Lz

**

10
L −

+
+=   

z)(Lξzg(z)(z)
**

5
L(z)

**

11
L −=  

z)(Lξzg(z)(z)
**

6
L(z)

**

12
L −=  

N' = the constant of integration.  

The unknown quantities Q
0
, P

0
, P

M
, 

==

M

0n

n

M

0n

n QandP can be evaluated as before.  

Case II Relation (38), on applying the theory of Laplace transforms gives  

( )

( ) ( ) 
( ) ( )   ( ) ( ) 

( ) ( )  ( ) ( )  
( ) ( ) ( )  ( ) 

( )   21211121

112121

2

21

3

22111

2

1

M22

1M

10221

01

2

1112

pμμpμμξβpμλμpμαz

ξβαξξβpμλμpμαξαμλzξαμλz

ξβαμzμξαpμξβαpμλzzλβξβαz/ξ

Pzβξαμzμz1zλPξαμzμzβz1pμ

Qpμzλξβpμλzαzz1μ

zR

−++++++

++++++++++−++

+++−+++++++−++

+−++−−+++−−−

+−−++++−

=

+

.... (43) 

or, we can write  

( )
( ) ( ) ( ) ( )

( )zK

zMPzLPzNQzT
zR M00 +++

=     .... (44) 

Where T(z), N(z) and L(z) are the co-efficient of 

Q
0
, P

0
 and P

M
 respectively in the numerator of 

equation (43) and K(z) is the denominator of 

(43).  

Equation (44) is a polynomial in z and exists for 

all values of z, including three zeros of the 

denominator. Hence Q
0
, P

0
 and P

M
 can be 

obtained by setting the numerator equal to zero. 
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Substituting the three zeros b
1
, b

2
 and b

3
 (say) of 

the denominator (at each of which the numerator 

must vanish).  

Three equations determining the constants Q
0
, P

0
 and P

M
 are 

( ) ( ) ( ) ( )1M10101 bMPbLPbNQbT −=++     .... (45) 

( ) ( ) ( ) ( )2M20202 bMPbLPbNQbT −=++     .... (46) 

( ) ( ) ( ) ( )3M30303 bMPbLPbNQbT −=++     .... (47) 

After solving these equations, we have  

( ) ( ) ( )

A

AbMAbMAbM
Q 313212111

0

−+−
=  

( ) ( ) ( )

A

AbMAbMAbM
P 323222121

0

+−
=  

( ) ( ) ( )

A

AbMAbMAbM
P 333232131

M

−+−
=  

where 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )333

222

111

bLbNbT

bLbNbT

bLbNbT

A =  

A
ij
 is the co-factor of the (i, j)

th
 element of A. 

By putting the values of Q
0
, P

0
 and P

M
 in equation (44), we have 

( )

( ) ( ) ( ) ( )  ( ) ( ) ( ) ( ) 
( ) ( ) ( ) ( )  ( )

( )zKA

zMAAbMAbMAbMzL

AbMAbMAbMzNAbMAbMAbMzT

zR 333232131

323222121313212111



+−+−+

+−+−+−

=  . ... (48) 

6. Mean Queue Length: 

Define,  

 L
q
= Expected number of customers in the queue including the                one in service.  

Then  

L
q
 = ( )

1z
zR

=
   

Therefore, from equation (48), we have  

( ) ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( ) 
( ) ( ) ( ) ( )  ( ) ( ) ( ) ( )
( )  ( ) ( ) ( ) ( )  ( ) ( ) ( )

( )  ( ) ( )

( ) 2

333

232131323222121313

212111333232131

323222121313212111

q
1KA

1K1MAAbM

AbMAbM1LAbMAbMAbM1NAbM

AbMAbM1T1MAAbMAbMAbM1L

AbMAbMAbM1NAbMAbMAbM1T1K

L


+−

+−++−+−

+−−+−+−+

+−+−+−

=   

          .... (49) 

where dashes denotes the first derivative w. r. t. z.  
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Relation (39), on applying the theory of Laplace transforms gives  

( )
( ) ( )

( ) +++−

−−−−
=

+

1
2

1

M
1M

10

zz

zPzz1Rz1
zr      .... (50) 

where  

( ) ( )s,zrslimzr
0s→

=  

Equation (50) is a polynomial in z and exists for 

all values of z, including the two zeros of the 

denominator. Hence R
0
 and P

M
 can be obtained 

by setting the numerator equal to zero. 

Substituting the two zeros a
1
 and a

2
 (say) of the 

denominator (at each of which the numerator 

must vanish). 

Two equations determining the constants R
0
 and P

M
 are 

( ) ( ) 1M
1M

11101 aPaa1Ra1 =−−− +
    .... (51) 

( ) ( ) 2M
1M

21202 aPaa1Ra1 =−−− +
    .... (52) 

On solving these equations, we have  

( )
1M

2
1M

1

21
M

aa

aa
P

++ −

−
=  and 

( ) 1M
2

1M
1

211M
2

1

2

2
0

aa

aa
a

a1

a
R

++

+

−

−




+

−


=  ; 

where  

( ) ( ) 1a,a1a1 1211 −=−−  

Now, from equation (50), we have 

( )

( )( )
( )

( ) ( )1aaz

za

za

aa

aa
a1z1

zr
211

2

1M1M
2

1M
2

1M
1

21
21

−−

−

−

−

−
−−+

=

++

++

  .... (52) 

r
n
 = The co-efficient of z

n
 

( )
( ) n

2

n
1

21

1n
2

1n
1nM

2M
2

2
n a

aa

aa
aP1

a1

a
r 





















−

−
+−

−
=

++
−

  .... (54) 

If 0=  and and p=1 (i.e., no catastrophe and feedback are allowed), then from equation (50), we have  

( )
zλμ

PzλRμ
zr

1

M

1M

10

−

−
=

+

       .... (55) 

The condition, ( ) 1zrlim
1z

=
→

 gives 

1M10 λμPλRμ −=−        .... (56) 

As r(z) is analytic, the numerator and 

denominator of equation (55) must vanish 

simultaneously for z=/1, which is a zero of its 

denominator. Equating the numerator of equation 

(55) to zero for z= /1 we have  

1,PR 1M
M

0 == −
     .... (57)  
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Relation (56) and (57) gives 

( )
1M

M

M1M0
ρ1

ρρ1
P,

ρ1

ρ1
R

++ −

−
=

−

−
=  

Now, from equation (55), we have   

( )
( )













−

−

−

−
=

+

+ z1

z1
.

1

1
zr

1M

1M
      .... (58) 

which is a well known result of the M/M/1 queue 

with finite waiting space M.  

When there is an infinite waiting space, the 

corresponding expression for r(z) is obtained by 

letting M tends to infinity in equation (58), If 

(,|z|) 1. 

( )
z1

1
zr

−

−
=         .... (59) 

which is again a well known result of the M/M/1 queue with infinite waiting space.  

Case III Relation (40), on applying the theory of Laplace Transform gives  

( )
( ) ( ) ( )

( ) ( )zHzB

HQ(z)HP(z)HPzHPzHQzH

zR
1

M

0n

n5

M

0n

n4M30201
+++++

=


==   .... (60) 

where,  

 ( ) ( )
0s1 zBzB

=
=  

( ) ( )
0s

zLzH
=

=  

( ) ( ) ( ) ( )
0s7i1ii zLzLzBzH

=++
+=    ; i=1, 2, 3, 4, 5.  

( )
( )

( ) zdzL
zη

z
zL

1N,1εε2

j

j 
===









=    ; j= 2, 3, 4, 5, 6.  

( ) ( )
1N,1εεkk zLzL

===
=     ; k= 8, 9, 10, 11, 12. 

H' = the constant of Integration.  

The unknown quantities of equation (60) can be evaluated as before.  

 

7. Conclusion and application of the model: 

In this paper, we have studied the transient 

analysis of a limited capacity queueing system 

incorporating the effects of feedback, two 

randomly changing states and catastrophes. We 

have obtained some particular cases and steady 

state solutions along with some measures of 

effectiveness. The proposed model is highly 

useful for dealing with real-world queueing 

situations such as manufacturing systems with 

rework operations, shift changes and possibilities 

of feedback and catastrophes that occurs in 

production processes subject to rework, computer 

networks, telecommunication systems, banking 

sectors, hospital management, etc.  
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