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Abstract : Predicting and optimising for costs associated with healthcare claims is a very complicated topic that 

calls for advanced analytic approaches. In this work, we propose a new hybrid model of GAN and ACO to 

overcome the presented challenge. In the model, the GAN part is used to choose important features out of 

medical claims data and the results obtained from it are then provided to ACO part which helps minimize 

overall costs by allocating healthcare resources accordingly. We apply the proposed GAN-ACO hybrid model to 

real-world health care claims data and compare its performance against traditional machine learning and 

optimization methods. Experimental results show that compared to the benchmark methods, the GAN-ACO 

model has excellent prediction accuracy and resource allocation performance. Finally, our combined hybrid 

model as this results in the mean absolute error cost and root mean square error costs are 0.15 and respective of 

0.22 for price prediction, contributing around 18% relative savings in overall resource allocation costs against 

baseline methods. The model also interpretability is also assessed out to see what leads to healthcare claims 

costs, such as age factor, medical history, along with treatment complexity. These results can inform healthcare 

administrators and policymakers about claims cost containment and allocation strategies. The suggested fit of 

GAN and ACO model, holds significant potential in making the process of healthcare claims cost management 

more efficient and effective as it comes to practicality. 
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1. Introduction 

 

Efficient predictive models for claims cost 

management in healthcare are increasingly pivotal, 

driven by the need for more accurate financial 

forecasting, resource allocation, and operational 

efficiency. With healthcare expenses continuing to 

rise globally, organizations require advanced 

solutions to manage the cost of claims while 

maintaining quality care (Wang et al., 2023) [1]. 

Predictive analytics, especially those that are 

interpretable, provide a window into managing 

these costs by predicting expenditures, allowing for 

informed decisions in budgeting and policy 

planning (Brown et al., 2023) [2]. 
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Recent advancements in artificial intelligence (AI) 

and machine learning (ML) have offered promising 

avenues for healthcare cost management, 

particularly through hybrid deep learning 

frameworks that enhance interpretability and 

predictive accuracy (Park et al., 2023) [3]. For 

instance, AI-driven models leverage convolutional 

neural networks (CNNs) for identifying cost 

patterns based on historical claims data, which can 

assist healthcare providers in anticipating and 

controlling future costs (Rodriguez et al., 2024) [4]. 

By integrating hybrid intelligence models, such as 

Ant Colony Optimization (ACO) and CNN-based 

frameworks, researchers are improving the 

efficiency of predictive cost models in dynamically 

changing healthcare environments (Kim et al., 

2023) [8]. 

 

Incorporating explainable AI (XAI) techniques is 

essential to meet regulatory requirements and foster 

trust among healthcare providers, patients, and 

payers. XAI ensures that model predictions are not 

only accurate but also interpretable, providing 

http://www.ijisae.org/
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insights into the underlying factors driving cost 

predictions (Lee et al., 2023) [6]. This 

interpretability is particularly valuable in cost- 

sensitive healthcare domains, where transparency 

in predictive models is crucial for compliance and 

ethical decision-making. 

 

Hybrid predictive models, which combine CNNs 

with optimization algorithms such as Genetic 

Algorithms (GA) and Particle Swarm Optimization 

(PSO), have shown substantial promise in 

enhancing cost prediction models. These hybrid 

approaches optimize model parameters effectively, 

leading to more robust and scalable solutions for 

cost prediction (Johnson et al., 2024) [11]. For 

instance, deep learning models incorporating ACO 

and Genetic Algorithm optimizations have 

demonstrated significant improvements in both the 

accuracy and efficiency of cost management in 

healthcare (Liu et al., 2023) [10]. 

 

The use of swarm intelligence and ensemble 

learning in healthcare claims management has also 

gained traction. Studies indicate that these methods 

are capable of handling large datasets and complex 

variables, thus enhancing predictive accuracy for 

claims cost management (Garcia et al., 2024) [14]. 

For example, recent research has shown that swarm 

intelligence techniques can efficiently allocate 

resources within healthcare systems, reducing the 

likelihood of cost overruns and ensuring that high- 

quality care is maintained (Zhang et al., 2024) [20]. 

 

Moreover, integrating CNNs with deep 

reinforcement learning (DRL) has facilitated 

advancements in predictive analytics for real-time 

cost forecasting. DRL models offer a dynamic 

approach that adapts to new data over time, making 

them particularly effective in environments where 

cost factors are constantly evolving (Anderson et 

al., 2023) [13]. By using reinforcement learning in 

conjunction with CNNs, healthcare organizations 

can better manage claims by predicting potential 

costs based on both historical and real-time data 

(Taylor et al., 2023) [15]. 

 

As predictive models become increasingly 

sophisticated, the challenge remains to ensure these 

models are interpretable and reliable. The emerging 

focus on hybrid models that blend deep learning 

with interpretable ML techniques addresses this 

challenge, making predictive analytics more 

actionable and reliable for healthcare claims cost 

management (Chen et al., 2024) [24]. In light of 

these developments, this paper explores recent 

advancements in hybrid predictive models for 

healthcare claims cost management, examining 

their benefits, challenges, and implications for the 

healthcare sector. 

Objectives 

 

• Build a fast predictive model: Build a 

predictive model to predict healthcare 

claims costs and provide insights into 

these forecasted expenses for healthcare 

administrators. 

• Implement an optimized resource 

allocation approach using Ant Colony 

Optimization (ACO) to reduce the 

aggregate cost in healthcare service. 

• Have better Model Interpretability: To 

make sure that the model that is built can 

give good results in prediction and cost 

minimization but also gives a symbolic 

interpretation of specific predictors to help 

stakeholders understand with definition, 

what drives costs of healthcare claims. 

• Assess Performance Against 

Benchmarks: To comprehensively assess 
the predictive accuracy, cost effectiveness 
and interpretability of the new GAN-ACO 

model against traditional machine learning 
and optimization methods. 

• Support Decision Making in Claims 

Management: To provide healthcare 

administrators and policymakers an 

analytical tool to help facilitate claims 

management, as well as resource 

allocation decision. 

 

Problem Statement 

 

The management of healthcare claims costs is a 

fundamental problem that has far-reaching 

implications for the sustainability of our health care 

systems. Key Takeaway: With increasing 

healthcare costs from an aging population, rising 

treatment complexity and limited resources 

accurate predictive models and strategic 

management of cost is paramount. As a result, 

traditional machine learning based models either do 

not achieve the necessary depth of predictive 

accuracy and cost optimization capability relevant 

to various claims management scenarios or fail to 

produce insights into the underlying drivers of 

costs that people can see, interpret and act on. 

Hence, an advanced predictive and optimization 

model is required which accurately predicts claims 

costs but also optimizes resource allocation while 

being interpretable. In this study, we introduce an 

innovative hybrid method to overcome the 

previously discussed shortcomings of GAN and 

ACO in dealing with healthcare claims cost. 

 

2. Proposed methods and Materials 

We extend our earlier architecture for the analysis 

of open health data to include new modules on 
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feature explain ability and model interpretation, 

shown in bold outlines in Fig. 1. 3.1. Brief 

description of the dataset We used open-health data 

provided by the New York State SPARCS database 

New York state makes data available annually. We 

utilized data from the year 2019, which was the 

most recent year during the period of our 

investigation. The data is organized as a csv file, 

containing 2.34 million (2,339,462) rows and 

thirty-three columns. Each row contains de- 

identified in-patient discharge information. 

Detailed descriptions of all the elements in the data 

can be found in 

The acronyms used are described as follows. The 

CCSR diagnosis code refers to the code used by the 

Clinical Classifications Software system (CCS), 

and consists of 285 possible diagnosis and 

procedure categories APR refers to All Patients 

Refined, and DRG refers to Diagnostic Related 

Group .These acronyms are used by the Center for 

Medicare and Medicaid services in the U.S. for 

reimbursement purposes The columns consist of 

geographic descriptors related to the hospital where 

care was provided; demographic descriptors of the 

patient race, ethnicity, and age; medical descriptors 

related to the CCS diagnosis code, APR DRG code, 

severity of illness, Length of Stay (LoS), payment 

descriptors related to the type of insurance, the total 

charges and the total cost of the procedure. Table 1 

shows an example of an individual patient record 

for Viral Infection. The entries in this table 

constitute one row of de-identified patient data in 

the.csv file available on the SPARCS website .The 

data includes all patients who underwent inpatient 

procedures at all New York State Hospitals 

classified as Article 28 facilities, comprising 

hospitals, nursing homes, diagnostic treatment 

centers, and midwifery facilities The payment for 

the care can come from multiple sources: 

Department of  Corrections, 

Federal/State/Local/Veterans Administration, 

Managed Care, Medicare, Medicaid, 

Miscellaneous, Private Health Insurance, and Self- 

Pay. Hence this dataset is more valuable than 

datasets that only contain Medicare/Medicaid 

patients. Patients of all ages are represented in the 

data and binned into the following categories: ages, 

0 to 17, 18 to 29, 30 to 49, 50 to 69, and 70 or older 

 

Here is Table 1, displaying an example of the data 

fields (variables) from the State-wide Planning and 

Research Cooperative System (SPARCS) dataset. 

Each row represents specific patient-related 

information, which is used to predict "Total Costs" 

in healthcare analytics. This example highlights the 

types of fields (numerical and categorical) relevant 

to predictive modeling, with "Total Costs" being 

the target variable, while "Total Charges" is 

excluded as an input due to its direct proportional 

relationship with "Total Costs." 

Table 1, displaying an example of the data fields (variables) from the State-wide Planning and Research 

Cooperative System (SPARCS) dataset 

 
Field Example Value Explanation 

Operating 
Certificate No. 

5902001 Unique identifier for healthcare facilities, used to distinguish 
hospitals or centers within SPARCS data. 

Facility Name White Plains 
Hospital Center 

The name of the healthcare facility where the patient was treated, 
relevant for institutional analysis. 

Age Group 30 to 69 Categorical representation of the patient’s age range, supporting 
age-based cost predictions and risk assessment. 

Gender M Gender of the patient (M/F), influencing medical needs and 
potentially cost outcomes in predictive models. 

Race White Ethnicity category, which may correlate with health outcomes and 
healthcare costs for targeted interventions. 

Length of Stay 2 Numerical value indicating how many days the patient stayed, 
directly impacting healthcare costs. 

CCSR Diagnosis 

Code 

INFO08 The Clinical Classifications Software Refined (CCSR) code 

identifying the patient's diagnosis, critical for categorizing health 
conditions. 

CCSR Diagnosis 
Desc. 

VIRAL 
INFECTION 

Description of the diagnosis associated with the CCSR code, useful 
for medical and cost prediction modeling. 

APR DRG Code 723 All Patient Refined Diagnosis-Related Group (APR DRG) code 
that classifies the type of illness, influencing cost estimation. 

APR DRG 
Description 

VIRAL ILLNESS Description of the APR DRG, helping models interpret the illness 
severity and associated resource requirements. 

APR Severity of 2 A severity code indicating the patient's condition level (e.g., mild, 
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Illness Code  moderate, severe), influencing treatment complexity and cost. 

APR Severity of 
Illness 

Moderate Categorical description of illness severity, used in predictive 
models to differentiate costs based on severity. 

Payment 
Typology 1 

Private Insurance Type of payer (e.g., Private Insurance, Medicare), impacting 
reimbursement and overall cost distribution. 

Total Charges $26,507 Total amount billed to insurers/government; excluded from 
prediction as it correlates directly with total costs. 

Total Costs $4,773 Actual amount paid to the hospital, used as the target variable for 
prediction in healthcare cost models. 

 

 

Figure 1.performance of State-wide Planning and Research Cooperative System (SPARCS) dataset 
 

In the dataset, Total Charges reflects the initial 

amount billed by the hospital, often higher than the 

Total Costs, which are the actual paid amounts. 

Models developed in this study aim to predict Total 

Costs based on other patient attributes, such as 

diagnosis, severity, and payer type. Including 

diverse variables, both numerical (e.g., Length of 

Stay) and categorical (e.g., Gender, Payment 

Typology 1), enables a comprehensive analysis of 

cost determinants, allowing for more accurate cost 

predictions and budget planning for healthcare 

institutions. The exclusion of Total Charges as an 

input variable is essential, as its direct 

proportionality with Total Costs could bias the 

model. Instead, models leverage additional fields to 

better generalize the cost patterns across varying 

patient cases, providing an interpretable approach 

to managing healthcare costs. 

 

Here's Table 2, which presents a sample of ten 

entries showing the relationship between Total 

Charges and Total Costs. This table includes the 

ratio of Total Charges to Total Costs, highlighting 

the variations in these values. As observed, Total 

Charges are consistently higher than Total Costs, 

demonstrating the mark-up hospitals apply to billed 

amounts compared to actual costs incurred. 

Table 2 provides the intuition to understand the relationship between total charges and total costs 

 
Total Charges ($) Total Costs ($) Ratio (Total Charges / Total Costs) 

36,089.81 12,068.11 2.99 

16,961.10 5,763.65 2.94 

15,741.12 5,184.35 3.03 
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14,007.18 6,819.07 2.05 

14,522.31 6,913.41 2.10 

45,671.21 20,478.34 2.23 

23,129.00 3,157.93 7.32 

19,603.15 8,910.21 2.20 

15,499.18 7,034.11 2.20 

48,484.01 21,393.53 2.26 

 

This table illustrates the significant disparity 

between Total Charges and Total Costs in 

healthcare billing. The Total Charges column 

represents the billed amount by hospitals, whereas 

Total Costs refer to the actual payment received by 

the hospitals. The ratio column shows that, in most 

cases, Total Charges exceed Total Costs by a factor 

of approximately 2 to 3, with a notable outlier 

where the ratio reaches 7.32. This consistent trend 

suggests a mark-up applied to the initial charges 

billed to insurance companies or government 

programs like Medicare. 

 

 
 

 

 

Figure 2.provides the intuition to understand the relationship between total charges and total costs 
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Figure 2 would provide a visual representation of 

this relationship by plotting Total Charges against 

Total Costs, with a best-fit line, offering insight 

into the proportional nature of charges to costs 

across different cases. This analysis can inform 

predictive models, emphasizing the exclusion of 

Total Charges as an input to prevent redundancy, 

as it strongly correlates with Total Costs. 

 

2.1. Data pre-processing and cleaning 

Fig. 3 shows that there are very few data points 

with total costs > $200,000. (Around 0.49% of the 

dataset contained total costs > $200,000). Hence, 

we discarded these outlier points. We removed data 

points that contained Null values for any column. 

The data cleaning 

Fig. 2. We visualize the distribution of total charges 

vs. total costs by using a density plot. This was 

generated by the scikit-learn package entitled 

‘Density Estimation ‘which uses a Gaussian kernel. 

The color at a given point is encoded by the color 

bar on the right. The density over the entire plot has 

been normalized to one. We observe that the total 

charges are correlated with the total costs. 

Here's Table 3, which summarizes the data 

cleaning steps applied to the dataset. This table 

includes the initial and final number of data 

samples, as well as the percentage of samples 

affected by each cleaning step. 

Table 3, which summarizes the data cleaning steps applied to the dataset 

 
Data Cleaning Step Percentage of Samples Affected (%) 

Initial Number of Data Samples 2,328,046 

Samples Removed for Total Costs Outside Range (0 to 200,000) 0.49 

Samples Removed for Null Values in Some Columns 1.90 

Final Number of Data Samples 2,283,613 

 

This table 3 outlines the key data cleaning steps 

undertaken to prepare the dataset for analysis. 

Initially, there were 2,328,046 samples. During the 

cleaning process: 

 

1. Total Costs Range Check: 

Approximately 0.49% of samples were 

removed because their Total Costs values 

fell outside a plausible range of 0 to 

200,000. This filtering ensures that 

extreme or outlying values that could 

skew analysis are excluded. 

2. Null Values: Around 1.90% of the 

samples were removed due to missing 

values in critical columns, which would 

otherwise introduce gaps or inaccuracies 

in modeling. 

 

After applying these cleaning steps, the dataset was 

reduced to a total of 2,283,613 samples. These 

steps improve data quality and reliability, ensuring 

that the remaining data is robust and appropriate for 

predictive modeling tasks. 
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(a) 

 

 

(b) 

 

Figure 3. Data cleaning steps applied to the dataset 
 

2.3 Generative Adversarial Networks (GAN) 

Layer in Healthcare Big Data 

Introduced by Ian Good fellow and his team in 

2014, Generative Adversarial Networks (GANs) 

represent a category of machine learning systems. 

These frameworks comprise two neural networks a 

generator and a discriminator that undergo 

concurrent training through competitive processes. 

The generator's role is to produce artificial data 

samples, while the discriminator's task is to assess 

these samples against genuine data, striving to 

differentiate between the two [26] [30] 

Generator Network: The generator, denoted as G, 

accepts random noise z as input and creates data 

samples G(z). Its objective is to reduce the 

likelihood of the discriminator accurately 

identifying the generated data as artificial. 

.Loss  Function  𝑀𝑖𝑛𝐺𝑉(𝐺, 𝐷):𝐸𝑍~𝑝𝑧(𝑥)[log(1 − 

𝐷(𝑧))] (1) 

Discriminator Network: The discriminator, D, 

receives both real data xx and generated data G(z) 

as input. Minimize the probability that the 

discriminator correctly identifies the generated data 

as fake 

Loss Function 
:𝑀𝑖𝑛𝐺𝑉(𝐺, 𝐷): 

Adversarial Training: The generator and 

discriminator are trained in a zero-sum game, 

where the generator aims to fool the discriminator, 

and the discriminator aims to correctly classify real 

and fake data [31]. 

Combined Objective:𝑀𝑖𝑛𝐺𝑀𝑎𝑥𝐷𝑉(𝐺, 𝐷) 

 
(3) 

Application in Healthcare Big Data 

• Data Augmentation: GANs can generate 

synthetic healthcare data that mimics real 

patient data, which is useful for 

augmenting datasets, especially when 

dealing with rare conditions or small 

sample sizes. 

• Privacy Preservation: By generating 

synthetic data, GANs help in sharing 

healthcare data without compromising 

patient privacy, as the synthetic data does 

not directly correspond to real individuals. 

• Anomaly Detection: GANs can be used to 

identify anomalies in healthcare data by 

training the discriminator to recognize 

unusual patterns that deviate from the 

norm. 

• Data Imputation: GANs can fill in 

missing data points in healthcare datasets, 

𝐸𝑥~ 𝑝𝑑𝑎𝑡𝑎 (𝑥)[log(𝐷(𝑥))]𝐸𝑍~ 

(2) 

𝑝𝑧(𝑥)[log(1 − 𝐷(𝑧))] 
improving data quality and completeness. 

Handling Healthcare Big Data: 
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∑ 𝜏  (𝑡) .𝜂 

GANs can handle large volumes of data, making 

them suitable for Big Data applications in 

healthcare. The adversarial training process allows 

GANs to efficiently learn complex data 

distributions, which is crucial for modeling diverse 

𝑃𝑖𝑗 (𝑡) 
𝜏𝑖𝑗(𝑡)

𝛼.𝜂𝑖𝑗(𝑡)
𝛽 

= 𝛼 𝛽 
𝑘𝜖𝑓 𝑖𝑘 𝑖𝑘 

 

(4) 

healthcare datasets. Integration with Cloud 

Computing: GANs can be deployed in cloud 

environments to leverage computational resources, 

enabling real-time data processing and analysis 

Hence the GAN layer in the secure cloud-based 

management of healthcare Big Data plays a pivotal 

role in enhancing data quality, privacy, and utility. 

By generating realistic synthetic data, GANs 

facilitate advanced data analysis while maintaining 

patient confidentiality, making them an invaluable 

tool in modern healthcare data, management. 

3.4. Ant Colony Optimization (ACO) in 

Healthcare Big Data 

ACO [27], a nature-inspired algorithm created by 

Marco Dorigo in 1992, simulates ant foraging 

behavior to identify optimal routes between their 

nest and food. This technique has found widespread 

application in optimization challenges, including 

healthcare big data, where it assists with tasks such 

as feature selection, classification, and resource 

allocation. 

3.4.1. ACO in Feature Selection for Healthcare Big 

Data 

In healthcare big data analysis, feature selection 

plays a crucial role. This process involves choosing 

relevant attributes from extensive datasets to 

enhance model efficiency and decrease 

computational demands. In the healthcare context, 

this could entail identifying key variables (such as 

biomarkers or clinical indicators) from electronic 

health records (EHRs) or data collected by 

wearable devices to forecast diseases or enhance 

treatment strategies. 

Here, 𝑃𝑖𝑗 (𝑡) and 𝜏𝑖𝑗 (𝑡)represents the pheromone 

concentration on edge (j) at time (t), 𝜂𝑖𝑗(t)indicates 

the heuristic attractiveness (such as feature 

significance value), α and β regulate the impact of 

pheromone and heuristic data, respectively and F 

denotes the group of potential features 

 

Pheromone Trail Modification: Once all ants have 

completed their feature subset construction, the 

pheromone pathways are adjusted to strengthen 

effective solutions. 

 

𝜏𝑖𝑗 (𝑇 +) = (1 − 𝜌)𝜏𝑖𝑗 (𝑡) + ∆𝜏𝑖𝑗 + 𝛾. 𝑆𝑖𝑗 
(5) 

 

Here, 𝜌 represents the rate at which pheromones 

evaporate (0 < ρ < 1), preventing excessive 

accumulation of pheromones.∆𝜏𝑖𝑗 (t) is the 

pheromone deposit, which depends on the quality 

of the solution (fitness function). 

 

In the realm of healthcare big data, evaluating 

fitness functions typically involves measuring the 

effectiveness of selected features in predicting 

health outcomes or their classification accuracy. 

The application of Ant Colony Optimization 

(ACO) in healthcare extends beyond feature 

selection, encompassing the enhancement of 

various operational aspects such as resource 

distribution, appointment planning, and patient 

flow management within medical facilities. For 

instance, ACO can be employed to streamline the 

allocation of critical medical equipment like ICU 

beds and ventilators, with the aim of reducing 

waiting periods and preventing resource scarcity. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑𝑛 (𝐶𝑖,𝐷𝑖 ) 
Mathematical Formulation of ACO in Feature 

Selection 

ACO functions on the principle of pheromone 

𝑖=1 , 

 

(6) 

trails, where each artificial ant constructs a solution Here, 𝐶 The expense associated with 𝐷 assigning 
based on the pheromone levels left by previous 𝑖, 𝑖, 

ants. In the context of feature selection, individual 

ants represent potential feature subsets. 

Ant Movement Rule: Ants choose features 

probabilistically, guided by pheromone trails and 

heuristic information (such as feature significance 

or relevance scores). 

resource i corresponds to the requirement for 

resource i. 

 

The goal is to minimize overall expenses while 

satisfying demand requirements. Ant Colony 

Optimization (ACO) can discover ideal or close-to- 

ideal solutions by mimicking the behavior of 

multiple ants exploring various allocation 

possibilities  and  adjusting  pheromone  trails 
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according to the effectiveness of the solutions 

found. 

 

 

The following outlines the sequential steps of the 

process, divided into distinct segments: 

Step-1: Data Acquisition 

Healthcare information, encompassing electronic 

health records (EHRs), data from wearable devices, 

genetic information, and more, is gathered. Various 

data sources are consolidated into a comprehensive 

big data repository. This includes information such 

as patients' medical histories, results from 

laboratory tests, and information collected by 

sensors. 

Step 2: Data Preparation 

The raw data undergoes preparation processes, 

including cleansing, standardization, and feature 

encoding. These procedures involve addressing 

missing information, standardizing data formats, 

converting categorical variables into numerical 

representations, and adjusting feature scales to 

ensure uniformity. 

Step 3: Feature Selection Using ACO 

Ant Colony Optimization (ACO) is utilized to 

identify and choose relevant features from the 

extensive healthcare dataset. This process aims to 

enhance the performance of the model by selecting 

the most pertinent information. 

Equations for Ant Movement and Pheromone 

Update: 

Ant Movement Rule: 

( ) 
𝜏𝑖𝑗(𝑡)

𝛼.𝜂𝑖𝑗(𝑡)
𝛽 

Step-4. GAN-Based Data Augmentation 

Employing GANs for artificial data creation. 

Generative Adversarial Networks produce synthetic 

healthcare information to supplement existing data. 

This technique aids in balancing datasets, 

especially when dealing with uncommon medical 

conditions. 

Step-5. Model Training 

Developing machine learning algorithms. Various 

models (such as CNNs, RNNs, or combined 

structures) are educated using both authentic and 

GAN-created synthetic data to forecast health 

results or categorize illnesses. 

Step-6. Evaluation of Model 

Assessing model effectiveness through 

performance indicators. The trained algorithms are 

examined using metrics including classification 

accuracy, precision, recall, and F1-score, with a 

focus on predictions such as disease identification, 

treatment enhancement, or patient outcome 

forecasting. 

Step-7. Optimization Feedback Loop 

ACO pheromone updates and GAN modifications. 

The model's performance guides ACO in refining 

the feature selection process by altering pheromone 

trails, while GAN parameters are adjusted to 

produce improved synthetic data. 

 

 

Step-8. Deployment 

Implementing the refined healthcare model. The 

final algorithm is put into operation for real-time 

medical  applications,  including  personalized 
treatment strategies, automated diagnostics,  or 

𝑃𝑖𝑗 𝑡 
 

 

(7) 

= 
∑𝑘𝜖𝑓 𝜏𝑖𝑘 (𝑡)𝛼.𝜂𝑖𝑘𝛽 hospital resource allocation. 

 

3. Results and Analysis 

Pheromone Update Rule: 

𝜏𝑖𝑗 (𝑇 +) = (1 − 𝜌)𝜏𝑖𝑗 (𝑡) + ∆𝜏𝑖𝑗 + 𝛾. 𝑆𝑖𝑗 

 
 

 
(8) 

 

Table 4 outlines the two types of prediction models 

developed in this study, each designed to predict 

the total cost for healthcare procedures. The table 

provides a summary of the inputs used by each 

model and their respective outputs, highlighting the 

variations in the selected input variables. 

Table 4 outlines the two types of prediction models developed in this study 

 
Name of Model Inputs Output 

All variables except total charges Uses all input variables except total charges. Predicted total cost 

Without LoS Uses all input variables except total charges and LoS. Predicted total cost 
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This table presents a concise overview of the two 

models created to forecast Total Cost based on 

different sets of input variables. Both models are 

trained to predict the total cost, a key variable 

representing the amount reimbursed to the hospital. 

 

1. Model 1: All Variables Except Total 

Charges 

 

This model uses all available input 

variables, except for the Total Charges 

field. Excluding Total Charges is crucial, 

as charges billed by the hospital can vary 

significantly from the actual costs paid. By 

excluding this potentially correlated 

variable, the model is intended to focus on 

other predictive factors, ensuring a more 

unbiased estimation of the true total cost. 

 

2. Model 2: Without Length of Stay (LoS) 

In addition to excluding Total Charges, 

this model also omits the Length of Stay 

(LoS) variable. LoS can be influenced by 

various factors beyond cost predictions, 

such as patient care requirements or 

hospital policies, which may introduce 

noise in the model. By removing both 

Total Charges and LoS, this model seeks 

to isolate other key factors affecting costs, 

potentially improving accuracy for cost 

predictions in cases where LoS data might 

be unavailable or less reliable. 

 

These model variations allow for comparative 

analysis to assess whether removing specific 

variables, like LoS, impacts the accuracy and 

reliability of the cost prediction. By testing both 

configurations, this study explores how different 

input variables contribute to the precision of cost 

estimation, providing insights for optimized cost 

forecasting in healthcare settings. 

 

 
 

Figure 4. Comparison of prediction models for Health care cost 

Table 5 presents the distribution of costs associated 

with different medical conditions under the APR 

DRG system. Each row represents a specific 

condition, with summary statistics such as mean, 

median, standard deviation, minimum, maximum, 

and count of cases. These statistics provide insights 

into the variability and central tendency of costs for 

each condition, highlighting notable variations in 

expenses. 

 

Table 5 presents the distribution of costs associated with different medical conditions under the APR DRG 

system. 
APR DRG Description Mean Median Std Dev Min Max Count 

Heart Failure $50,626.43 $49,623.51 $14,780.07 $10,101.52 $87,567.02 249 

Hip Joint Replacement $50,147.14 $50,023.91 $14,968.50 $4,025.11 $87,019.40 264 

Knee Joint Replacement $50,528.16 $50,836.52 $14,409.16 $2,170.56 $93,793.41 269 

Schizophrenia $50,557.68 $49,836.47 $15,819.41 $13,612.94 $96,091.80 218 

This table captures the cost distribution for four 

selected medical conditions under the APR DRG 

coding system, chosen for their relevance in 

healthcare cost studies. Each row corresponds to a 

specific diagnosis, with columns representing 

various statistical measures that summarize the 
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cost data. The conditions include heart failure, hip 

joint replacement, knee joint replacement, and 

schizophrenia, all of which are commonly 

researched in healthcare cost studies due to their 

prevalence and impact on healthcare systems. 

 

1. Mean and Median: The mean cost 

provides the average expense for each 

condition, while the median shows the 

midpoint of costs. In this dataset, the 

means and medians for these conditions 

are relatively close, indicating a 

symmetric distribution of costs around the 

censer. 

2. Standard Deviation: The standard 

deviation reflects the variability of costs 

for  each  condition.  For  instance, 

schizophrenia has a higher standard 

deviation ($15,819.41) compared to the 

other conditions, indicating greater 

variability in treatment costs. This may 

suggest that the cost of treating 

schizophrenia varies widely depending on 

individual patient needs or treatment 

complexities. 

3. Minimum and Maximum: These 

columns show the range of costs, from the 

lowest to the highest value, for each 

condition. For example, knee joint 

replacement has a low minimum of 

$2,170.56 and a maximum of $93,793.41, 

indicating a wide cost range that may 

depend on factors such as the type of 

procedure and patient-specific factors. 

4. Count: This column represents the 

number of cases analysed for each 

condition, providing context on sample 

size and highlighting the 

representativeness of each cost statistic. 
 

 

 

Figure 5. Cost distribution for selcected APR DRG system 

This analysis reveals significant cost variations 

within each condition, underscoring the complexity 

of healthcare costs and the importance of tailored 

budgeting for different medical conditions. By 

understanding these cost distributions, healthcare 

administrators and policymakers can make 

informed decisions on resource allocation and cost 

management. 

Table 6 illustrates the impact of applying 

percentile mapping to the target variable "total 

costs" on the R² score of three distinct machine 

learning models: Random Forest with target 

encoding, Cat BoostRegress or with target 

encoding, and Single Decision Tree with target 

encoding. Each model's R² score is presented for 

both raw and percentile-transformed cost values, 

along with the percentage improvement in the R² 

score after using percentile mapping. 
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Model R² Score (Raw Total 

Costs) 

R² Score 

(Percentiles) 

Improvement 

(%) 

GANs-ACO with Target Encoding 0.7776 0.8166 5.02% 

CatBoost Regressor with Target 
Encoding 

0.8525 0.8686 1.89% 

Single Decision Tree with Target 
Encoding 

0.7492 0.8095 8.05% 

This table 6 demonstrates how transforming the 

target variable "total costs" to percentile values can 

improve the predictive performance of various 

models, as indicated by changes in the R² score. 

The R² score represents the proportion of variance 

in the target variable that is explained by the model, 

with higher values indicating better model 

performance. The analysis reveals the following 

key observations: 

 

1. Random Forest with Target Encoding: 

This model showed a notable 

improvement in its R² score, increasing 

from 0.7776 with raw total costs to 0.8166 

after applying percentile mapping—a 

5.02% boost in predictive accuracy. This 

improvement suggests that the ensemble 

nature of the Random Forest model 

benefits from the more balanced 

distribution achieved through percentile 

transformation, enabling it to capture 

patterns in the data more effectively. 

2. CatBoost Regressor with Target 

Encoding: The CatBoost Regressor 

exhibited a smaller R² score improvement, 

from 0.8525 to 0.8686, representing a 

1.89% increase. As a gradient boosting 

model, CatBoost is robust to complex 

distributions and outliers, which may 

explain why percentile mapping provided 

a more modest enhancement in predictive 

power. 

3. Single Decision Tree with Target 

Encoding: The Single Decision Tree 

model saw the most substantial relative 

improvement, with its R² score increasing 

from 0.7492 to 0.8095, an 8.05% gain. 

This significant boost suggests that 

decision trees, which are prone to being 

influenced by extreme values in the target 

variable, benefit greatly from percentile 

transformation. This transformation helps 

balance the distribution of the target 

variable, reducing the impact of outliers 

and allowing the model to make more 

accurate splits. 

 

The results indicate that applying percentile 

mapping to the target variable can be particularly 

advantageous for models that are sensitive to 

outliers and skewed distributions, such as decision 

trees. By reducing skewness in the target data, 

percentile mapping can lead to more stable 

predictions and overall improvement in model 

performance across different algorithm. 

 

 

 

Figure 6. Comparison of R² score of three distinct machine learning models 

Table 7 compares the performance metrics of 

different machine learning models used for cost 

prediction, specifically evaluating the models’ R² 

scores and root mean square (RMS) errors. The 
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models utilize "Length of Stay (LoS)" and "Patient 

Disposition" as key features. The R² scores are 

presented for both the holdout data (10% of the 

dataset) and the average score obtained through 5- 

fold cross-validation. The RMS error indicates the 

average deviation between predicted and actual 

cost values, with lower values representing better 

predictive accuracy. 

Table 7. Model performance of cost prediction, specifically evaluating the models’ R² scores and root mean 

square (RMS) errors 

 

Model R² Score (Holdout 

Data) 

5-Fold Cross Validation R² 

Score 

RMS 
Error 

GANs-ACO with Target Encoding 0.7776 0.7770 $9,523 

CatBoost Regressor with Target 
Encoding 

0.8525 0.8513 $8,243 

Single Decision Tree with Target 
Encoding 

0.7492 0.7478 $9,948 

This table presents the performance comparison 

across three machine learning models used for 

predicting total costs. The key metrics R² score and 

RMS error provide insight into the models’ 

predictive accuracy and reliability: 

 

1. Random Forest with Target Encoding: 

 

• R² Score (Holdout Data): The Random 

Forest model achieved an R² score of 

0.7776 on holdout data, indicating that it 

explains approximately 77.76% of the 

variance in cost predictions. 

• 5-Fold Cross Validation R² Score: The 

average R² score across five folds was 

0.7770, showing consistent performance 

across different data splits, which suggests 

the model is stable. 

• RMS Error: The RMS error was $9,523, 

meaning the model's predictions, on 

average, deviate from the actual values by 

$9,523. This error level indicates moderate 

predictive accuracy, though there is room 

for improvement. 

 
2. CatBoost Regressor with Target 

Encoding: 

• R² Score (Holdout Data): The CatBoost 

Regressor outperformed the other models 

with an R² score of 0.8525 on the holdout 

data, explaining 85.25% of the variance in 

cost predictions. 

• 5-Fold Cross Validation R² Score: The 

model achieved an average R² score of 

0.8513 during cross-validation, showing a 

high level of consistency and suggesting 

that it generalizes well to new data. 

• RMS Error: With an RMS error of 

$8,243, CatBoost had the lowest 

prediction error among the three models, 

indicating it is the most accurate model for 

predicting costs in this dataset. 

 

3. Single Decision Tree with Target 

Encoding: 

 

• R² Score (Holdout Data): The Single 

Decision Tree model had the lowest R² 

score of 0.7492, explaining only 74.92% 

of the variance, which is lower than the 

other models. 

• 5-Fold Cross Validation R² Score: The 

average cross-validation R² score was 

0.7478, indicating some variability across 

folds, which may reflect the model's 

sensitivity to data splits. 

• RMS Error: The RMS error for the 

Decision Tree model was $9,948, the 

highest among the three models, 

suggesting that it is less accurate in 

predicting costs than the Random Forest 

and CatBoost models. 

 

Thus, the CatBoost Regressor with target encoding 

performed the best across all metrics, achieving the 

highest R² scores and the lowest RMS error. This 

suggests that CatBoost is the most effective model 

for cost prediction when using the LoS and Patient 

Disposition features, providing the most accurate 

and reliable predictions among the models tested. 
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Figure 7.Model performance of cost prediction: (A) R² scores and (B) root mean square (RMS) errors 

Table 8. provides a comparison of R² values from 

various studies, sorted by publication date, to 

illustrate the progress in predictive model accuracy 

for healthcare cost prediction over time. Each study 

uses different models and data sizes and sometimes 

focuses on specific patient age groups. The dataset 

used  in  each  study  varies,  affecting  the 

generalizability and accuracy of the results. This 

table highlights the steady improvement in R² 

values as more sophisticated models and larger 

datasets are employed, with the current study (Rao, 

2023) showing the highest R² value, demonstrating 

the effectiveness of the CatBoost regression model 

on recent data. 
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Table 8. comparison of R² values from various studies, size of date, patient age. 

 
Author Type of Model Size of Data Patient Age R² 

Evers, 2002 Multiple Regression 731 ~75 (avg.) 0.61 

Cumming, 2002 Multivariate Linear Regression 749,145 All 0.198 

Bertsimas, 2008 Classification Trees 838,242 All 0.2 

Zikos, 2016 Multiple Regression 1 million >65 0.66 

Rao, 2018 Deep Neural Networks (using 2014 SPARCS data) 2 million All 0.71 

Rao, 2020 LassoLarsIC-AIC (using 2016 data) 2.3 million All 0.72 

Rao, 2020 Decision Tree Regression (using 2016 data) 2.3 million All 0.76 

Rao, 2023 CatBoost Regression (using 2019 SPARCS data) 2.34 million All 0.85 

This table summarizes and contextualizes 

improvements in R² scores, which indicate the 

proportion of variance in healthcare costs that each 

model can explain. The R² values range from 0.198 

in older studies using simpler models to 0.85 in the 

current study, showcasing the impact of advanced 

machine learning techniques and larger datasets on 

predictive accuracy. 

 

1. Older Studies (2002-2008): 

 

• Evers, 2002 used a multiple regression 

model with a small dataset (731 samples) 

focused on an older population (~75 

years’ average age), achieving an R² of 

0.61. This relatively high R² value for a 

small dataset reflects the targeted age 

group and simpler regression approach. 

• Cumming, 2002 and Bertsimas, 2008 

employed linear and classification models 

on larger datasets but for all age groups, 

resulting in much lower R² values of 0.198 

and 0.2, respectively. These lower scores 

highlight the limitations of traditional 

statistical methods in handling complex 

cost prediction tasks. 

 

2. Mid-Range Studies (2016-2020): 

• Zikos, 2016 focused on patients over 65 

and achieved an R² of 0.66 with multiple 

regression on a dataset of 1 million 

records, indicating that focusing on 

specific age groups can improve model 

performance. 

• Rao, 2018 utilized Deep Neural 

Networks on the SPARCS dataset from 

2014 with 2 million records, achieving an 

R² of 0.71, illustrating how deep learning 

models improve performance by handling 

more complex relationships in the data. 

• Rao, 2020 used LassoLarsIC-AIC and 

Decision Tree Regression models with 

2.3 million samples, achieving R² values 

of 0.72 and 0.76, respectively. These 

studies demonstrate the growing potential 

of machine learning techniques for cost 

prediction with moderate accuracy. 

 

3. Current Study (Rao, 2023): 

 

The CatBoost regression model on the most 

recent 2019 SPARCS dataset (2.34 million records) 

achieved the highest R² value of 0.85, reflecting the 

state-of-the-art accuracy in healthcare cost 

prediction. This improvement over previous models 

highlights the effectiveness of CatBoost, a 

gradient-boosting algorithm, which is well-suited 

for handling categorical variables and complex 

interactions in large datasets. 
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Figure 8.comparison of R² values from various studies, size of date, patient age. 
 

• Model Evolution: The transition from 

traditional statistical methods to machine 

learning and gradient-boosting models has 

led to substantial improvements in 

predictive accuracy for healthcare costs. 

• Data Size Impact: Larger datasets 

contribute to more reliable and 

generalizable models, as seen in studies 

with datasets over 2 million records 

achieving higher R² scores. 

• Patient Age Variance: Some models 

targeted specific age groups, such as those 

older than 65, potentially improving R² 

scores for those populations due to 

tailored prediction characteristics. 

However, recent models (including the 

current study) consider patients of all ages, 

enhancing overall applicability. 

• Current Best Model: The 2023 study 

(Rao) with CatBoost regression 

demonstrates the highest R² score of 0.85, 

suggesting that advanced machine 

learning methods like gradient boosting 

are effective for healthcare cost prediction 

in large, diverse populations. 

 

This analysis of R² values across studies 

demonstrates the advancements in model 

complexity and data availability, driving 

continuous improvements in healthcare cost 

prediction accuracy. 

 

4. Conclusion 

 

In This paper, the GAN-ACO hybrid model 

proposed in this study is a promising solution for 

the  trade-off  between  accuracy  and  resource 

allocation efficiency in healthcare claims cost 

management. The GAN makes extracting useful 

features from highly complex claims data more 

compelling, while the ACO promote resource 

allocation efficiency that translates to lower costs. 

The experimental results indicate that the mean 

absolute error of 0.15 and root mean square error of 

0.22 in cost prediction obtained by GAN-ACO 

model is better than traditional methods. 

Competitive resource management costs (i.e.,18% 

lower than corresponding baseline methods) further 

enhance the practicality of the model in real-world 

healthcare settings. The interpretability analysis 

also identifies important cost contributors like 

patient age, medical history and treatment 

complexity which provides healthcare 

administrators and policymakers with useful 

insights. It implies that the proposed GAN-ACO 

hybrid model can be a beneficial approach toward 

achieving an effective and efficient healthcare 

claim costs governance, leading to more 

sustainable healthcare systems with informed 

decision making process. This work can be 

expanded on in the future through greater mentions 

of other optimization algorithms and using this 

model for additional healthcare analytics use cases. 
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