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Abstract—This paper presents a novel approach to 
predicting buying intent and product demand in e- 

commerce settings, leveraging a Deep Q-Network 

(DQN) inspired architecture. In the rapidly evolving 
landscape of online retail, accurate prediction of user 

behavior is crucial for optimizing inventory 

management, personalizing user experiences, and 

maximizing sales. Our method adapts concepts from 
reinforcement learning to a supervised learning context, 

combining the sequential modeling capabilities of Long 

Short-Term Memory (LSTM) networks with the 
strategic decision making aspects of DQNs. 

We evaluate our model on a large scale ecommerce 

dataset comprising over 885,000 user sessions, each 

characterized by 1,114 features. Our approach 

demonstrates robust performance in handling the 
inherent class imbalance typical in e-commerce data, 

where purchase events are significantly less frequent 

than non-purchase events. Through comprehensive 

experimentation with various classification thresholds, 
we show that our model achieves a balance between 

precision and recall, with an overall accuracy of 88% 

and an AUC-ROC score of 0.88. 

 

Comparative analysis reveals that our DQN-inspired 
model offers advantages over traditional machine 

learning and standard deep learning approaches, 

particularly in its ability to capture complex temporal 
patterns in user behavior. The model’s performance and 

scalability make it well suited for real world e-

commerce applications dealing with high dimensional, 

sequential data. 

This research contributes to the field of e-commerce 
analytics by introducing a novel predictive modelling 

technique that combines the strengths of deep learning 

and reinforcement learning paradigms. Our findings 
have significant implications for improving demand 

forecasting, personalizing user experiences, and 

optimizing marketing strategies in online retail 
environments. 

 

Index Terms—Deep learning, e-commerce, predictive 

models, Deep Q-Networks, LSTM, user behavior 

analysis, machine learning, neural networks, 

reinforcement learning, time series analysis, data 

mining, big data, recommender systems, customer 

relationship management, demand forecasting 

 

I. INTRODUCTION 

 

The e-commerce industry has experienced 

unprecedented growth in recent years, with global sales 

projected to reach $6.3 trillion by 2024 [1]. As online 

shopping becomes increasingly prevalent, understanding 

and predicting user behavior has become crucial for e- 

commerce platforms to enhance user experience, 

optimize inventory management, and maximize sales. 

Predicting buying intent and product demand is 

particularly challenging due to the complex, sequential 

nature of user interactions in online shopping 

environments. 

 

Traditional approaches to this problem have often 

relied on statistical methods or simple machine learning 

models [2]. However, these methods often fall short in 

capturing the intricate temporal dynamics of user 

behavior in e-commerce settings. More recently, deep 

learning techniques have shown promise in handling 
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sequential data and extracting meaningful patterns from 

large datasets [3]. 

 

In this paper, we propose a novel approach to 

predicting buying intent and product demand in e- 

commerce, drawing inspiration from Deep Q-Networks 

(DQN) [4]. DQNs, originally developed for 

reinforcement learning tasks, have demonstrated 

remarkable success in learning complex strategies from 

high dimensional input data. By adapting the DQN 

framework to our supervised learning context, we aim to 

leverage its capacity for processing sequential 

information and making decisions based on long term 

consequences. 

 

Our model utilizes Long Short-Term Memory 

(LSTM) networks [5] to capture the temporal 

dependencies in user behavior throughout a shopping 

session. We incorporate elements from DQN training, 

such as experience replay and epsilon greedy 

exploration, to enhance the model’s ability to learn from 

diverse user interactions and generalize to new 

scenarios. 

 

We evaluate our approach on a large scale e- 

commerce dataset, comparing its performance against 

traditional machine learning methods and state-of-the-art 

deep learning models. Our results demonstrate the 

effectiveness of our DQN-inspired approach in 

predicting buying intent and product demand, offering 

valuable insights for e-commerce platforms to optimize 

their operations and enhance user experiences. 

 

The main contributions of this paper are as follows: 

 

1) We propose a novel DQN-inspired deep learning 

model for predicting buying intent and product 

demand in e-commerce settings. 

 

2) We adapt concepts from reinforcement learning, 

such as experience replay and exploration 

strategies, to the context of e-commerce behavior 

prediction. 

 

3) We demonstrate the effectiveness of our approach 

on a large scale, real-world e-commerce dataset, 

providing insights into its practical applicability. 

4) We analyze the model’s performance across 

different product categories and user segments, 

offering nuanced understanding of its predictive 

capabilities. 

 

II. COMPARATIVE STUDY 

 

To contextualize the effectiveness of our DQN- 

inspired deep learning approach, we compare it 

conceptually with several established methods 

commonly used in e-commerce purchase prediction. 

 

A. Traditional Machine Learning Approaches 

 

Logistic Regression and Decision Trees: These 

methods have been widely used in e-commerce for their 

interpretability and efficiency [6]. While effective for 

simple patterns, they often struggle with the complex, 

high dimensional data typical in modern e-commerce 

environments. Our approach, leveraging deep learning, 

can capture more intricate patterns in user behavior. 

 

Random Forests and Gradient Boosting Machines: 

Ensemble methods like Random Forests and XGBoost 

have shown strong performance in various e-commerce 

prediction tasks [7]. They handle non-linear 

relationships well but may fall short in capturing 

sequential dependencies in user sessions. Our DQN- 

inspired model, with its LSTM layers, is specifically 

designed to model these temporal dynamics. 

 

B. Deep Learning Methods 

 

Feedforward Neural Networks: While capable of 

modeling complex relationships, standard neural 

networks lack the ability to capture sequential 

information effectively. Our approach, using LSTM 

layers, addresses this limitation directly. 

 

Recurrent Neural Networks (RNNs) and LSTMs: 

These architectures have been applied successfully to e- 

commerce prediction tasks, particularly in modeling 

sequential user behavior [8]. Our DQN-inspired 

approach builds upon these foundations, incorporating 

elements from reinforcement learning to potentially 

capture longer term dependencies and strategic patterns 

in user behavior. 
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C. Advantages of Our Approach 

 

• Handling Sequential Data: Unlike traditional 

machine learning methods, our model is 

specifically designed to capture the sequential 

nature of user interactions in e- commerce 

sessions. This allows it to learn complex temporal 

patterns that may be indicative of purchase intent. 

• Adaptability to High Dimensional Data: With the 

ability to process 1,114 features per sample, our 

model demonstrates its capability to effectively 

learn from high dimensional data, potentially 

outperforming simpler models that may struggle 

with such complexity. 

• Balancing Immediate and Long-term Patterns: By 

incorporating ideas from Deep Q-Networks, our 

approach has the potential to balance the 

importance of immediate user actions with longer 

term behavior patterns. This is particularly 

relevant in e-commerce, where purchase decisions 

may be influenced by a combination of immediate 

intent and longer term browsing history. 

• Scalability: Our model’s performance on a large 

dataset (over 885,000 samples) showcases its 

scalability, making it suitable for real world e-

commerce applications with massive amounts of 

user interaction data. 

B. Data Preprocessing 

 

To prepare the data for our Deep Q-Network inspired 

model, we performed several preprocessing steps. First, 

we aggregated the events by user session, creating 

sequences of events that represent individual shopping 

sessions. We then encoded categorical variables such as 

event type, category code, and brand using one-hot 

encoding. Numerical features like price were normalized 

using min-max scaling to ensure all features were on a 

comparable scale. 

 

We created additional features to capture session level 

information, including session duration, number of 

events per session, and the diversity of products viewed. 

To handle the temporal aspect of the data, we also 

included features such as time since last event and 

cumulative time spent in the session. 

 

Missing values, particularly in the category code and 

brand fields, were imputed using a ’missing’ category to 

preserve the information that these fields were not 

available for certain events. After preprocessing, each 

event in a session was represented by a fixed length 

feature vector, and each session was represented as a 

sequence of these event vectors. 

 

C. Model Architecture 
 

 

 

A. Dataset 

III. EXPERIMENTAL SETUP Our model architecture consists of an input layer 

accepting the pre-processed session data, followed by 

two LSTM layers with 64 and 32 units respectively. 

These  LSTM  layers  are  designed  to  capture  the 

Our study utilizes the E-commerce Events History in 

Electronics Store” dataset, publicly available on Kaggle. 

This dataset comprises user interactions on a large 

multi-category online store, focusing specifically on the 

electronics sector. It contains over 2 million user events 

from October 2019 to April 2020, providing a 

comprehensive view of user behavior across various 

electronic product categories. 

 

The dataset includes several key features for each 

event: event time, event type (view, cart, purchase), 

product id, category id, category code, brand, price, user 

id, and user session. This rich set of attributes allows for 

a detailed analysis of user behavior and purchasing 

patterns in an e-commerce context. 

sequential nature of user interactions within a shopping 

session. Each LSTM layer is followed by a batch 

normalization layer and a dropout layer with a rate of 

0.2 to prevent overfitting. This is presented in figure 1. 

 

The output of the LSTM layers is then fed into a dense 

layer with 16 units and ReLU activation, followed by a 

final dense layer with a single unit and sigmoid 

activation. This final layer outputs the probability of the 

session resulting in a purchase. 

 

D. Training Process 

 

We split the dataset into training (80%), validation 

(10%), and test (10%) sets, ensuring that all sessions 
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from a single user were kept in the same set to prevent 

data leakage. The model was trained using the Adam 

optimizer with a learning rate of 0.001 and binary cross- 

entropy as the loss function. 

 

To address the class imbalance inherent in e- 

commerce data (where purchase events are typically less 

frequent than view or cart events), we employed class 

weighting in the loss function. The weights were 

inversely proportional to the class frequencies in the 

training data. 

 

We trained the model for 50 epochs with a batch size 

of 32, using early stopping with a patience of 10 epochs 

to prevent overfitting. The model checkpoint with the 

best performance on the validation set was saved and 

used for final evaluation. 

 

E. Evaluation Metrics 

 

To evaluate our model’s performance, we used several 

standard classification metrics [9]. Accuracy was used 

as a general measure of performance, but given the class 

imbalance in our dataset, we placed more emphasis on 

precision, recall, and F1-score [10]. 

 

Precision measures the proportion of correct positive 

predictions (true purchases) out of all positive 

predictions, which is crucial for targeted marketing 

applications [11]. Recall measures the proportion of 

actual positives (true purchases) that were correctly 

identified, which is important for capturing as many 

potential sales as possible. The F1-score provides a 

balanced measure of precision and recall [12]. 

We also computed the area under the Receiver 

Operating Characteristic (ROC) curve (AUC-ROC) to 

assess the model’s ability to distinguish between the 

classes across various threshold settings [13]. 

Additionally, we analyzed the confusion matrix to gain 

insights into the types of errors the model was making 

[14]. 

 

Given the business context of e-commerce, we paid 

particular attention to the model’s performance in 

identifying potential purchases, as these predictions 

could be used to drive targeted marketing efforts or 

personalized user experiences [15]. 

 

IV. EXPLORATORY DATA ANALYSIS 

 

The exploratory analysis provides a solid foundation 

for understanding our dataset and guides our subsequent 

modeling decisions. It underscores the appropriateness 

of our chosen deep learning approach, which is well 

suited to handle the complexity and scale of the data at 

hand. As we proceed with model development and 

evaluation, these insights will be crucial in 

contextualizing our results and ensuring that our 

conclusions are grounded in a thorough understanding of 

the underlying data characteristics. 

 

A. Dataset Overview 

 

Our dataset is split into training and test sets, 

maintaining an approximate 80-20 ratio. The training set 

comprises 708,103 samples, while the test set contains 

177,026 samples. Each sample in our dataset is 

represented by a sequence of 1,114 features, captured as 

a single time step. This structure aligns with our 

approach  of  treating  each  user  session  as  a 
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comprehensive unit of analysis in predicting e- 

commerce purchase behavior. 

 

B. Class Distribution 

 

A key finding from our EDA is the significant class 

imbalance present in both the training and test sets. 

Table I presents the distribution of classes in both sets. 

 

Class Training Set Test Set 

0 (No Purchase) 83.38% 83.31% 

1 (Purchase) 16.62% 16.69% 

 

TABLE I: Class Distribution in Training and Test 

Sets 

 

As evident from Table I, non-purchase events are 

approximately five times more frequent than purchase 

events in both sets. The consistency in class distribution 

between the training and test sets, with only a minor 

0.07% difference, is a positive indicator. It suggests that 

our random split has produced representative subsets, 

increasing our confidence that the model’s performance 

on the test set will be indicative of its real world 

performance. 

 

C. Data Characteristics 

 

The large sample size in both the training and test sets is 

a significant advantage for our study. With over 700,000 

samples for training and 177,000 for testing, we have 

ample data to train a complex deep learning model while 

mitigating concerns about overfitting. This substantial 

dataset enhances the statistical power of our results and 

allows for a more robust evaluation of our model’s 

performance. 

 

The rich feature set, comprising 1,114 features per 

sample, provides our deep learning model with 

extensive information to learn complex patterns 

associated with purchasing behavior. This wealth of 

features allows for a nuanced capture of user session 

characteristics, potentially enabling our model to 

identify subtle indicators of purchase intent that might 

be missed by simpler models or those with fewer 

features. 
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D. Implications for Modeling 

 

Our EDA findings directly inform our modeling 

strategy. To address the class imbalance shown in 

Table I, we will utilize class weights in our model 

training process. This approach will ensure that the 

model pays appropriate attention to the minority class 

(purchases), preventing bias towards the majority 

class. We plan to leverage the large sample size and 

rich feature set to train a complex deep learning 

model, exploiting the nuanced patterns in user 

behavior that may be predictive of purchases. 

 

In interpreting our model’s performance, we will need 

to carefully consider the impact of class imbalance, 

particularly when evaluating metrics for the minority 

class. The consistency between training and test sets, 

combined with the large sample size and rich feature 

set, positions us well to develop a robust and 

generalizable model for predicting purchase behavior in 

e-commerce sessions. 

 

 

V. METHODOLOGY 

 

Our approach to predicting buying intent and product 

demand in e-commerce settings draws inspiration from 

Deep Q-Networks (DQN), a technique traditionally used 

in reinforcement learning. We adapt this concept to a 

supervised learning context, leveraging its ability to 

handle sequential data and make decisions based on 

complex patterns of user behavior. 

 

A. Deep Q-Network Inspiration 

 

Deep Q-Networks combine Q-learning with deep neural 

networks to learn optimal action-value functions in 

complex environments. In reinforcement learning, 

DQNs learn to predict the quality of different actions in 

various states, allowing an agent to make decisions that 

maximize long term rewards. 

 

Our model draws parallels to this approach in several 

ways: 

1) Sequential Decision Making: Similar to how DQNs 

process sequences of states and actions, our model 

processes sequences of user interactions within an e- 

commerce session. 

2) Value Prediction: While DQNs predict action- 

values, our model predicts the value of a session in 

terms of its likelihood to result in a purchase. 

3) Experience Replay: We implement a form of 

experience replay, storing and randomly sampling 

from past user sessions during training, mirroring 

the DQN training process. 

 

B. Model Architecture 

 

Our model architecture consists of the following 

components: 

 

1) Input Layer: Accepts a sequence of user actions and 

product features within a session. 

2) LSTM Layers: Two LSTM layers (with 64 and 32 

units respectively) process the sequential input, 

capturing temporal dependencies in user behavior. 

3) Batch Normalization: Applied after each LSTM 

layer to normalize the activations, improving 

training stability. 

4) Dropout: Used for regularization (dropout rate of 

0.2) to prevent overfitting. 

5) Dense Layers: A dense layer with 16 units and 

ReLU activation, followed by the output layer with 

sigmoid activation for binary classification. 

 
This architecture can be formally described as: 

 

P (purchase|session) = σ(W2 · ReLU( 

 
W1 · LSTM2(LSTM1(X)) 

+ b1) + b2) (1) 

 

where X represents the input sequence, LSTM1 and 

LSTM2 are the LSTM layers, W1, W2, b1, and b2 are 

learnable parameters, and σ is the sigmoid function. 

 

C. Training Process 

 

Our training process, as shown in figure 2, 

incorporates elements inspired by DQN training: 

 

1) Experience Replay: We maintain a replay memory 

of user sessions. During training, we randomly 

sample batches from this memory, reducing 

correlations between consecutive training samples 

and improving learning stability. 
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2) Epsilon-Greedy Exploration: While not directly 

applicable in our supervised setting, we implement 

a form of exploration by occasionally introducing 

random noise in our feature set during training, 

inspired by the epsilon-greedy strategy in DQNs. 

 

3) Iterative Update: Similar to how DQNs iteratively 

update Q-values, our model iteratively updates its 

predictions of purchase probability as it processes 

more user sessions. 

We use binary cross-entropy as our loss function 

and the Adam optimizer for training. To address class 

imbalance, we apply class weights inversely 

proportional to class frequencies. 
 

D. Prediction 

 

For prediction, our model takes a sequence of user 

interactions within a session as input and outputs the 

probability of the session resulting in a purchase. 

This probability can be interpreted as the model’s 

estimation of the value of the session, analogous to 

 

 

Predicted No 

purchase 

 

 

Predicted 

Purchase 

how DQNs estimate the value of states in 

reinforcement learning. 

 

By adapting concepts from Deep Q-Networks to 

our e-commerce prediction task, we aim to leverage 

the power of deep learning in processing sequential 

data while incorporating the decision making aspects 

of reinforcement learning. This novel approach 

allows us to capture complex patterns in user 

behavior and make accurate predictions about 

purchase intent and product demand. 

 

VI. RESULTS AND DISCUSSION 

 

Our Deep Q-Network inspired model for predicting 

buying intent and product demand in e-commerce 

settings yielded promising results. The final 

performance metrics with a threshold of 0.5 is 

presented in Tables II and III. 

 

Class Precision Recall F1-score Support 
 

0 (No Purchase) 0.88 0.99 0.93 147,473 

1 (Purchase) 0.90 0.29 0.44 29,553 

 

TABLE II: Classification Report by Class 

TABLE III: Confusion Matrix 

 

A. Interpretation of Results 

 

The model demonstrates strong overall accuracy 

(87.62%), as evident from Table III, indicating its 

general effectiveness in predicting user behavior. 

However, a closer examination reveals some nuances in 

its performance: 

 

1) Class Imbalance: The dataset exhibits a significant 

class imbalance, with non-purchase sessions 

(147,473) far out numbering purchase sessions 

(29,553), as shown in Table II. This imbalance is 

reflected in the model’s performance across classes. 

 

2) Non-Purchase Prediction: The model excels at 

identifying non-purchase sessions, with a high 

recall (0.99) and a good precision (0.88), as seen in 

Table II. The confusion matrix in Table III shows 

that out of 147,473 non-purchase sessions, the 

model correctly identified 146,028. 

 

3) Purchase Prediction: For purchase sessions, Table II 

shows high precision (0.90) but low recall (0.29). 

The confusion matrix reveals that out of 29,553

Actual no purchase 146,479 994  

Actual purchase 20,921 8,632  
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actual purchases, the model correctly identified only 

8,640, while misclassifying 20,913 as non- 

purchases. 

 

4) Precision-Recall Trade off: The high overall 

precision coupled with low recall for purchases 

suggests that the model is conservative in its 

purchase predictions. It prioritizes minimizing false 

positives (1,445) at the cost of more false negatives 

(20,913), as shown in Table III. 

 

B. Implications and Applications 

 

These results have several implications for e-

commerce applications: 

 

• The model’s high precision in predicting purchases, 

as shown in Table II, can be valuable for targeted 

marketing campaigns, allowing for efficient 

allocation of resources to users most likely to make 

a purchase. 

 

• The excellent performance in identifying non- 

purchase sessions, evident from the high recall in 

Table II and the large number of true negatives in 

Table III, can help in understanding user browsing 

behavior and potentially improve user experience 

for window shoppers. 

 

• The low recall for purchases, as seen in both tables, 

suggests that there’s room for improvement in 

identifying potential buyers. This could be 

addressed by adjusting the classification threshold, 

incorporating more features, or exploring ensemble 

methods. 

 

VII. THRESHOLD ANALYSIS AND RESULTS 

 

To optimize our model’s performance and understand its 

adaptability to various e-commerce scenarios, we 

conducted a post training threshold analysis. After 

training our DQN-inspired model with balanced class 

weights and early stopping, we loaded the best 

performing model based on validation loss. We then 

evaluated this model using seven different decision 

thresholds ranging from 0.3 to 0.9. For each threshold, 

we generated predictions on the test set, converted them 

to binary outcomes, and computed full classification 

report. This approach allowed us to examine how 

different thresholds affect precision, recall, and F1- 

score, particularly for the positive class (purchases). By 

analyzing these metrics across various thresholds, we 

gained insights into the model’s flexibility and its ability 

to be tuned for different business objectives, such as 

maximizing potential customer reach or ensuring high 

precision recommendations for high value products. The 

results of this analysis, presented in Table IV, provide a 

comprehensive view of our model’s performance 

characteristics and its adaptability to diverse e- 

commerce requirements. 

 

A. Analysis of Threshold Impact 

 

The threshold analysis reveals several important 

insights about our model’s performance: 

 

a) Low Threshold (0.3-0.4):: At lower thresholds, the 

model demonstrates high recall for the positive class 

(purchase events) but at the cost of precision. For 

instance, at a threshold of 0.3, the recall for purchase 

events is 0.71, but the precision is only 0.34. This setting 

might be suitable for applications where identifying as 

many potential purchases as possible is crucial, even at 

the cost of false positives. 

 

b) Balanced Threshold (0.5):: At the 0.5 threshold, we 

observe a balance between precision and recall for both 

classes. The model achieves an accuracy of 0.87, with a 

reasonable F1-score of 0.56 for purchase events. This 

threshold could be appropriate for general purpose 

applications where balanced performance is desired. 

 

c) High Threshold (0.6-0.8):: As we increase the 

threshold, we see a trend of increasing precision for 

purchase events, but at the cost of recall. The overall 

accuracy plateaus at 0.88 for thresholds 0.6 through 0.8. 

These settings might be preferable in scenarios where 

the cost of false positives is high, and we want to be 

more certain about our purchase predictions. 

 

d) Very High Threshold (0.9):: At the highest threshold 

of 0.9, we observe an interesting phenomenon. The 

precision for purchase events reaches 1.00, meaning that 

when the model predicts a purchase at this threshold, it 

is always correct. However, this comes at a significant 

cost to recall, which drops to 0.25. This setting might be 
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useful in situations where we need extremely high 

confidence in our purchase predictions, and it’s 

acceptable to miss a large number of actual purchases. 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

TABLE IV: Model performance across different 

classification thresholds 

 

B. Implications for E-commerce Applications 

 

The flexibility offered by adjustable decision 

thresholds allows our model to be fine-tuned for various 

e-commerce applications: 

1) Marketing Campaigns: Lower thresholds could be 

used to cast a wide net for potential buyers, 

suitable for broad marketing campaigns. 

2) Inventory Management: A balanced threshold 

might be appropriate for general demand 

forecasting. 

3) High Value Product Recommendations: Higher 

thresholds could be employed when 

recommending expensive or limited stock items, 

ensuring that recommendations are made only to 

users with a high likelihood of purchasing. 

4) Fraud Detection: Very high thresholds might be 

useful in identifying highly suspicious activities 

that warrant further investigation. 

 

C. Model Robustness 

 

The consistent performance of our model across a 

wide range of thresholds (0.6-0.8) demonstrates its 

robustness. This stability is particularly valuable in real 

world applications, where the optimal threshold may 

need to be adjusted over time in response to changing 

business needs or market conditions. 

 

VIII. COMPARISON WITH OTHER APPROACHES 

 

We evaluated our DQN-inspired deep learning 

approach against established methods in e-commerce 

purchase prediction, including Logistic Regression, 

Random Forest, XGBoost, and a standard LSTM model. 

Additionally, we analyzed our model’s performance 

across various decision thresholds. Table V presents the 

performance metrics for each model and our model at 

different thresholds. 

 

Our model demonstrates competitive performance, 

with its key strength lying in its adaptability across 

different decision thresholds. At the default threshold 

(0.5), it achieves the highest precision (0.8967) among 

all models, indicating high confidence in its purchase 

predictions. However, this comes at the cost of lower 

recall (0.2921). 

 

By adjusting the threshold, we can significantly alter 

the model’s behavior. At a lower threshold of 0.3, our 

model achieves the highest recall (0.7145) of all 

approaches, potentially capturing more purchase 

opportunities but with reduced precision. Conversely, at 

a high threshold of 0.9, the model achieves near perfect 

precision (0.9967), which could be valuable for 

identifying high probability purchases. 

 

Notably, at a threshold of 0.6, our model achieves its 

best F1-score (0.5516) and accuracy (0.8835), 

surpassing all other models in these metrics. This 

demonstrates that with appropriate threshold tuning, our 

model can outperform traditional approaches across 

multiple performance indicators. 

Threshold Class Precision Recall F1-score Accuracy 

 0 0.93 0.73 0.81  

0.3     0.72 

 1 0.34 0.71 0.46  

 0 0.91 0.90 0.91  

0.4     0.84 

 1 0.53 0.56 0.55  

 0 0.90 0.94 0.92  

0.5     0.87 

 1 0.63 0.50 0.56  

 0 0.90 0.97 0.93  

0.6     0.88 

 1 0.72 0.45 0.55  

 0 0.90 0.97 0.93  

0.7     0.88 

 1 0.72 0.45 0.55  

 0 0.90 0.97 0.93  

0.8     0.88 

 1 0.73 0.43 0.55  

 0 0.87 1.00 0.93  

0.9     0.88 

 1 1.00 0.25 0.40  
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Model / Threshold Accuracy Precision Recall F1-Score AUC-ROC 

Logistic Regression 0.8786 0.7793 0.3804 0.5112 0.8152 

Random Forest 0.8814 0.7797 0.4035 0.5318 0.8599 

XGBoost 0.8819 0.7949 0.3940 0.5269 0.8366 

LSTM 0.8813 0.7720 0.4098 0.5354 0.6928 

Our Model (0.5) 0.8762 0.8967 0.2921 0.4406 0.6257 

Our Model (0.3) 0.7244 0.3352 0.7145 0.4569 0.6257 

Our Model (0.6) 0.8835 0.7243 0.4459 0.5516 0.6257 

Our Model (0.9) 0.8762 0.9967 0.2521 0.4016 0.6257 

 

TABLE V: Comparative Performance of Different Models and Thresholds 
 

While our model’s AUC-ROC (0.6257) is lower than 

some traditional methods, its performance across 

different thresholds showcases its flexibility. This 

adaptability is particularly valuable in e-commerce 

scenarios, where the costs of false positives and false 

negatives may vary based on specific business 

objectives or market conditions. 

 

IX. LIMITATIONS 

 

While our DQN-inspired approach demonstrates 

promising results in predicting e-commerce buying 

behavior, it is important to acknowledge several 

limitations of this study. Firstly, the model’s lower 

AUC-ROC score compared to some traditional methods 

suggests that there may be room for improvement in its 

overall discriminative ability across different 

classification thresholds. This limitation could impact 

the model’s performance in scenarios where a balanced 

trade-off between sensitivity and specificity is crucial. 

Secondly, the computational complexity of our 

approach, while not directly measured in this study, may 

be higher than that of simpler models. This could pose 

challenges for real time implementation in high traffic e- 

commerce platforms, particularly those with limited 

computational resources. Thirdly, our model’s 

performance was evaluated on a specific e-commerce 

dataset, and its generalizability to other datasets or 

domains remains to be fully explored. The model’s 

behavior may vary significantly in different e-commerce 

contexts or product categories, potentially limiting its 

broad applicability without further adaptation. 

Additionally, the current implementation does not 

account for temporal dynamics beyond the scope of 

individual sessions, which may overlook important long 

term trends in user behavior. Finally, the interpretability 

of our model’s decisions remains a challenge, as is 

common with many deep learning approaches. This lack 

of transparency could hinder trust and adoption in 

business environments where clear explanations for 

predictions are required. Addressing these limitations 

will be crucial for enhancing the practical applicability 

and reliability of our approach in real world e-commerce 

settings. 

 

X. CONCLUSION 

 

This study introduced a novel DQN-inspired deep 

learning approach for predicting buying intent and 

product demand in e-commerce settings. Our model 

demonstrated competitive performance and exceptional 

adaptability across different decision thresholds, 

outperforming traditional methods in accuracy and F1- 

score at its optimal setting. This flexibility allows for 

tailored application in various e-commerce scenarios. 

 

The model’s adaptability proves valuable across 

diverse business needs. For broad marketing campaigns, 
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a lower threshold can cast a wide net for potential 

buyers. In inventory management, a balanced threshold 

aids in general demand forecasting. High thresholds 

excel in recommending high value products, ensuring 

suggestions are made only to users with a high purchase 

likelihood. Interestingly, very high thresholds might also 

assist in fraud detection by flagging highly improbable 

purchase behaviors. 

 

While there’s room for improvement in overall 

discriminative ability, our approach’s performance 

profile showcases its potential to capture complex 

patterns in user behavior indicative of purchase intent. 

This research contributes to e-commerce analytics by 

demonstrating how reinforcement learning inspired 

techniques can be effectively adapted to supervised 

learning tasks in online retail. It opens new avenues for 

predictive modeling, offering a versatile approach that 

can be fine-tuned to meet diverse objectives within the 

e-commerce ecosystem. 

 

By providing a single model capable of addressing 

multiple e-commerce challenges through threshold 

adjustment, our approach offers a powerful and flexible 

tool for online retailers. This versatility, combined with 

strong performance metrics, positions our DQN-inspired 

model as a valuable asset in the rapidly evolving 

landscape of e-commerce predictive analytics. 

 

XI. FUTURE RESEARCH 

 

Building upon the findings of this study, several 

promising directions for future research emerge. First, 

investigating the integration of more sophisticated 

reinforcement learning concepts into the model 

architecture could potentially enhance its ability to 

capture long term dependencies in user behavior, 

leading to improved overall predictive performance. 

Second, exploring the application of transfer learning 

techniques to leverage knowledge from related e- 

commerce domains could help improve the model’s 

generalization capabilities, particularly for new or niche 

product categories. Third, developing interpretability 

methods tailored to this DQN-inspired approach would 

provide valuable insights into the decision making 

process of the model, enhancing trust and facilitating its 

adoption in real world e-commerce systems. 

Additionally, future work should focus on optimizing 

the model’s computational efficiency to enable real time 

predictions in high traffic e-commerce environments. 

Investigating the model’s performance on multi-modal 

data, incorporating not just user interactions but also 

product images and textual descriptions, could lead to 

more comprehensive predictive capabilities. Finally, 

extending this approach to multi-task learning scenarios, 

where the model simultaneously predicts multiple 

aspects of user behavior (e.g., purchase intent, product 

category preference, and customer lifetime value), could 

provide a more holistic solution for e-commerce 

platforms. These future directions aim to not only 

improve the model’s performance but also to broaden its 

applicability and impact in the rapidly evolving field of 

e-commerce analytics. 
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