

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2637

Transforming Sanskrit: Natural Text-to-Speech with Optimized Encoders

Sabnam Kumari1, Amita Malik2

Submitted:03/09/2024 Revised:22/10/2024 Accepted:02/11/2024

Abstract: Sanskrit is a very ancient and classical language having a significant impact on science,

philosophy, and literature. There are less and fewer skilled speakers of this ancient language, which

prevents the easy access to its rich cultural heritage although it is the root of many Indian languages. Thus,

resulting in declination of the spoken use of Sanskrit these days. To solve the problem, we need innovative

technical solutions that will enable and promote the spoken form of Sanskrit. One way to produce speech

to enhance accessibility to the language in the modern era is by using text-to-speech (TTS) synthesis. To

help enhance the synthesis quality as well as naturalness of speech, the paper discusses on an improved

Sanskrit TTS system having optimized transformer encoding. The system employs Grapheme-to-Phoneme

(G2P) to convert Sanskrit text into sounds and use a transformer-based mel-style speaker encoder to extract

the speaker’s vector. The Gated Convolutional Neural Network (GCNN) captures local features, and GRU,

Gated Recurrent Unit, is used for analyzing temporal features. The optimized transformer encoder,

optimized by the Adaptive Cheetah Optimization (ACO) algorithm, processes the extracted features The

processed output acts as an input to a mel-spectrogram. Later, the mel-spectrogram is converted into high-

quality audio waveform using HiFi-GAN vocoder. This complete process leads to a highly effective TTS

system that greatly improves speech synthesis for Sanskrit allowing natural sounding speech that closely

resembles the voice quality of target speaker. To show that the suggested method is effective, we developed

the system with Python and take Vāksañcayaḥ - Sanskrit Speech Corpus dataset for demonstrating our

results. The results show a significant improvement in creating speech that resembles the voice of the target

speaker.

Keywords: Text-to-Speech (TTS) synthesis, Grapheme-to-Phoneme, Gated Convolutional Neural Network,

Gated Recurrent Unit, Adaptive Cheetah Optimization, HiFi-GAN vocoder

1. Introduction

Being one of the ancient grammars and a key

component of Indian social and cultural

psychology, Sanskrit is a unique language

that shows an extension of tradition from the

Vedic era. "Languages are the repository of

thousands of years of people's science and

art" [1]. Over time, Sanskrit's influence has

diminished significantly, and its usage and

scope could be somewhat restricted.

Nevertheless, there are numerous materials

available on a vast array of aspects and

historical eras, most of which are text-based.

We believe that in order to provide natural

1Department of Computer Science & Engineering,

Deenbandhu Chhotu Ram University of Science &

Technology (DCRUST), Sonipat, Haryana, India

Shabnam022@gmail.com

2Department of Computer Science & Engineering,

Deenbandhu Chhotu Ram University of Science &

Technology (DCRUST), Sonipat, Haryana, India

amitamalik.cse@dcrustm.org

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2638

auditory access to these components, a TTS

for Sanskrit is essential.

The objective of generating speech that

seems natural from text is still a challenging

one to solve. At the moment, the most

sophisticated TTS systems are those utilizing

deep learning to produce speech that sounds

natural. But the primary obstacle to Sanskrit

TTS progress is an inadequate supply of

high-quality data. Internal building blocks

can be combined via deep learning [2] into a

single model that directly links input and

output. This approach is also known as "end-

to-end" learning. An end-to-end text-to-

speech system called Tacotron [3], which

computes a spectrogram directly from an

input text and is frequently referred to as "a

black box," has recently shown impressive

results despite the need for manually-

engineered parametric models based on

domain-specific data. Tacotron‘s use of

numerous repeating units contributes to its

high training expenses [4]. Regular labs

cannot do additional research or development

without expensive machinery. Even while

several people have tried building open

replicas of Tacotron, they have not been able

to produce speech that is as clear and of high

quality as the original models.

The conventional methods of synthesis were

concatenative [5-7] and parametric, resulting

in speech that was muted due to much more

complex pipelines. Moreover, irregularities

and abnormalities could appear in the speech

output. The field has experienced enormous

growth due to the quick evolution of deep

learning-based techniques. It has been

suggested that the current pipelines be

substituted with end-to-end generative

models like Tacotron2 [8, 9], and Deep Voice

[10]. By integrating spectrogram forecasting

and synthesis of speech into a single pipeline,

these models have demonstrated state-of-the-

art performance. But these end-to-end

systems need a large amount of processing

power and tens of hours of audio data. These

issues are addressed by the proposed Sanskrit

TTS system, which uses an optimized

transformer encoder to improve voice

synthesis while decreasing the requirement

for vast datasets and processing resources.

The main contributions of this work are listed

below:

➢ To address phonetic complexity and

data limitations, an advanced Sanskrit

TTS system is developed using an

optimized transformer encoder.

➢ Consider the two input sets such as

text data that needs to be converted

into speech and reference audio signal

which is the small sample of the target

speaker's voice as a reference to guide

the synthesis process.

➢ Then, we Convert the input text into

phonemes grapheme-to-phoneme

conversion, which are the basic units

of sound and we extract a speaker

vector from the reference audio,

which captures the unique

characteristics of the target speaker's

voice.

➢ G2P conversion is integrated, along

with GCNN and GRU for local and

temporal feature extraction.

➢ The Adaptive Cheetah Optimization

algorithm is applied to optimize the

transformer's performance.

➢ HiFi-GAN vocoder is utilized to

generate high-quality audio

waveforms from mel-spectrograms.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2639

➢ The system is evaluated using metrics

like WER, MCD, SECS, MOS, and

SMOS, demonstrating significant

improvements in naturalness and

speaker resemblance.

➢ Python is used to implement the

system for better accessibility and

scalability.

The following sections of the paper will be

organized in this manner. Section 2 presents

an overview of the related work. Section 3

describes the proposed work. Section 4

discusses the study's results and assessments.

Section 5 includes the final conclusion and

plans for further work.

2. Related works

Yinghao Aaron Li and Cong Han et al., [11]

presented the Style-Based Generative Model

for Natural and Diverse Text-to-Speech

Synthesis. Through self-supervised learning,

Style TTS was generating speech with the

same emotional and prosodic tone as the

reference speech without needing explicit

labels for these categories. A limitation of

Style TTS systems was that mapping

different prosodic patterns from reference

recordings can be challenging. This could

result in difficulty maintaining smooth

control over subtle, highly specialized

stylistic variations, which was affect the

naturalness or consistency of the synthesized

speech. These systems often struggle with

fine-tuning prosody while preserving the

intended style, especially for nuanced or

complex speech patterns.

Ye Jia et al. [12] presented Transfer Learning

from speaker verification to multi-speaker

text-to-speech synthesis. This method

synthesized natural speech from speakers not

encountered during training, using the

understanding of speaker variation gained by

a discriminatively learnt speaker encoder in

the multi-speaker TTS challenge. It has been

proved that the model learns a high-quality

speaker description when it can synthesize

speech in the voice of speakers other than

those utilized during training using randomly

selected speaker embeddings. Finally, a

similar pattern emerged: the model struggled

to distinguish between the voice of the

speaker and the prosody of the reference

speech.

Chengyi Wang et al. [13] introduced neural

codec language models, which are zero-shot

text to speech synthesizers. They presented

VALL-E, a language model technique for

TTS that used intermediate models in the

form of audio codec code. That demonstrated

the ability to learn in context in zero-shot

circumstances. On VCTK and Libri Speech,

they attain new state-of-the-art zero-shot TTS

outcomes. Moreover, VALL-E could

maintain the synthesis of the speaker’s

emotions and the surrounding acoustics while

producing a variety of outputs for various

sampling-based decoding techniques.

Ruchika Kumari et al. [14] demonstrated a

robust adaptive neural network-based text-to-

speech synthesizers for the Hindi language.

This paper laid out a text-to-speech

synthesizer for the Hindi language that was

based on the language-based restrictions

recommended for constructing parameters

such as intonation, duration, and syllable

phases, as well as the parameters of Mel-

frequency cepstral (MFCC) features that

were gathered for processing. The suggested

ALO-ANN method outperforms all other

methods in terms of accurate prediction. To

investigate the individual feature results, the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2640

durations, intensities, and basic frequencies

of the syllables were evaluated in conjunction

with these aspects. Objective data such as the

correlation coefficient, standard deviation,

and average prediction error are used to

determine intonation representation.

Junrui Ni et al., [15] laid out the

Unsupervised TTS synthesis via

Unsupervised Automatic Speech

Recognition. The two components of their

suggested unsupervised text-to-speech

system are an orientation module that

produces pseudo-text and a synthesis module

that employs real text for training and

pseudo-text for inference. With roughly 10–

20 hours of speech in seven languages, the

suggested unsupervised system could

perform on par with the supervised system.

This work's modest decreased intelligibility

for non-English languages as compared to

supervised TTS models was one of its

limitations.

A cross-lingual, multi-speaker neural end-to-

end text-to-speech system that can mimic

speaker characteristics and synthesize speech

in several languages was presented by

Mengnan Chen et al. [16]. A neural speaker

embedding network that has been trained

separately was shown by them; it was capable

of describing the latent structure of various

speakers and language pronunciations. Our

findings demonstrated that the multi-speaker

TTS model was capable of extracting from

the latent space both speaker features and

language pronunciations with speaker

embedding. They also confirmed that the

suggested approach can effectively handle

cross-lingual jobs with a minimal amount of

audio data. The use of a Griffin-Lim vocoder,

which may provide less-than-ideal audio

quality when compared to more sophisticated

neural vocoders, was a limitation of this

work.

A Robust Transformer-Based text-to-speech

Model was presented by Naihan Li et al. [17].

A robust neural TTS model based on

Transformer, called Robu Trans (Robust

Transformer), was proposed by them. In

contrast to transformer TTS, our approach

feeds input texts to the encoder after first

converting them to linguistic features, such as

prosodic and phonemic features. They

produced exceptional results, resulting in

very high-quality and realistic synthesized

sounds. In addition to solving the robustness

issue, the suggested model achieves parity

MOS with 4.36 on the general set, with

transformer TTS with 4.37 and Tacotron2

with 4.37. Nevertheless, the robustness

problem with existing neural TTS models

leads to anomalous audios (poor instances),

particularly for unusual text.

The pipeline for creating artificial child

speech in a situation with minimal training

data was presented by Rishabh Jain et al.

[18]. Additionally, a subjective evaluation

technique appropriate for child speech

generated was presented and illustrated.

These phrases could use some refinement.

Using a trained adult speech wav2vec2 ASR

model, the WER for generated child voices

was 25.63, while the WER for real child

voices was 15.27. They succeed in

significantly raising the vocoder's quality.

The audio patterns that had produced did not

significantly improve in quality, and some of

the synthesis showed the presence of extra

noise.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2641

3. Proposed Optimized TTS System for

Sanskrit

The objective of this work is to develop an

advanced TTS synthesis system for Sanskrit

that enhances speech synthesis accuracy and

naturalness. To achieve this, the

methodology begins with converting text into

phonetic representation using a Grapheme-

to-Phoneme tool. A Transformer-based mel-

style speaker encoder extracts speaker

vectors from reference audio, capturing

distinct vocal attributes. Local and temporal

speaker characteristics are further refined

through the use of Gated Convolutional

Neural Networks for local features and Gated

Recurrent Units for temporal features. These

features are then processed by an optimized

transformer encoder, with the optimization

performed using the Adaptive Cheetah

Optimization algorithm. The final mel-

spectrogram output is converted into high-

quality audio waveforms using the HiFi-

GAN vocoder, resulting in a robust TTS

system that significantly improves speech

synthesis for Sanskrit by generating natural-

sounding speech that closely mirrors the

target speaker's vocal attributes. Figure 1

depicts the proposed framework’s structure.

Figure 1: Structure of proposed framework

3.1 Input preparation

The proposed system takes two main inputs:

a text sequence that needs to be converted

into speech and a reference audio signal, a

small sample of the target speaker's voice.

The text is converted into its phonetic

representation through a Grapheme-to-

Phoneme conversion, ensuring accurate

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2642

pronunciation. The reference audio is

processed to extract a speaker vector,

capturing the unique vocal characteristics of

the target speaker.

3.1.1 Grapheme-to-Phoneme Conversion

For the Grapheme-to-Phoneme conversion in

our Text-to-Speech system, we utilized the

G2P tool available at Kyubyong's GitHub

repository

(https://github.com/Kyubyong/g2p). This

tool is a neural network-based model

designed to map text (graphemes) to their

corresponding phonetic representations

(phonemes) accurately. The G2P conversion

process is a critical component in our

pipeline, ensuring that the input text is

translated into phonemes, which are then

used to generate natural-sounding speech. By

leveraging Kyubyong's G2P tool, we were

able to achieve reliable and efficient

phoneme generation, contributing to the

overall quality and intelligibility of the

synthesized speech.

3.1.2 Speaker Vector Extraction

In our study, we use a Transformer-based

mel-style speaker encoder [19] to preprocess

the reference audio signal. The purpose of the

speaker encoder in our method is to train the

synthesis network using a reference signal of

speech from the intended target speaker. The

representation used by the speaker encoder

must accurately depict the distinctive

qualities of different speakers in order for

standardization to be efficient. The encoder

extracts a latent speaker vector, represented

as embSV , by processing the reference audio's

mel spectrogram. This vector captures the

unique characteristics of the target speaker's

voice, like pitch, tone, and speaking style.

3.2 Local and Temporal Feature

Extraction for Speaker Control Using

GCNN and GRU

In this work, we develop a two-branched

feature extraction method that employs two

separate methods to translate speaker

characteristics. To ensure that the generated

speech appropriately reflects the speaker's

identity, the first channel captures local

frame-to-frame information using a GCNN.

In order to capture temporal dependencies

and overall speaker style, the second channel

makes use of a GRU, which improves the

synthetic speech's authenticity.

3.2.1 Local feature extraction using

GCNN:

In our work, the GCNN is responsible for

extracting local features from the input data

by capturing frame-to-frame dependencies. It

processes the phoneme sequence combined

with the speaker vector, ensuring that the

generated speech is conditioned on the

speaker's identity. The GCNN improves the

parallelization and computational efficiency

of the system by avoiding sequential

procedures that are commonly utilized in

recurrent models. To simulate dependencies

across extended sequences, the GCNN

employs gated temporal convolutions rather

than recurrent connections, as in RNNs. With

the addition of many convolutional layers to

the network, this technique learns both local

and global structures from the input data.

Figure 1 shows the model architecture.

Formally, the GCNN processes a sequence of

input features Nww ,,0  and produces a

representation NhhH ,,0 = , where each ih

is a context representation of the

corresponding input iw . The input sequence

is represented as embeddings

https://github.com/Kyubyong/g2p

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2643

],,[0 wNw DDE = , and the hidden layers of

the network are computed by convolving

these embeddings with the function f:

wfH *=

 (1)

The features that are output Llhl 1, = are

calculated by:

)*()*(11 cvhbwhh lll ++= −− 

(2)

In which, 0h is the input feature, wЄℝk×m×n

and vЄℝk×m×n are the convolutional weight

matrices, and  is the sigmoid function. In

this case, n is the number of filters, k is the

convolutional kernel's size, and m is the input

dimension. The biases of filters are denoted

by bЄℝn and cЄℝn.

To compute posterior probabilities, we stack

L, GCNN layers and add a softmax layer on

top of the final one. The softmax layer

outputs an estimate of the posterior

probabilities p(s|o) for states s, and provided

features o. The output of the softmax layer is

calculated by,

)(max)(sLs bhwsoftosP +=

(3)

Where Lh is the output of the L-th GCNN

layers and (ws; bs) is the connection weight

matrix and bias vector for the softmax layer.

As the error signals are backpropagated via

the l-th GCNN layers, the gradient is

computed as follows:

() () ())*(**)*(* 11111 bwhcvhcvhbvhbwhh llllll ++++++= −−−−− 

(4)

GCNN models combine the capabilities of

LSTM RNNs and CNNs by using

convolutional kernels to collect local features

and LSTM-like gating techniques to handle

time dependencies. GCNNs allow for more

exact learning of local structures than models

such as time delay

neural networks (TDNN), which rely on

linear transformations without gates.

Furthermore, unlike highway networks,

which employ numerous gates and complex

processes, GCNNs simplify the process with

a single gate, resulting in more efficient

computations and shorter processing times.

This unique combination enables GCNNs to

efficiently balance local feature learning with

temporal dependencies.

The latent speaker vector is combined with

the sequential features of the input to

generate the time-expanded speaker

vector. Using this combined input as a

starting point, a range-limited Soft Gate

control signal is generated following sigmoid

function and voltage layer processing in the

conv3 layer. The CNN branch's output is

shown as follows,
CNNh|

:

)(*))((| iembiGCNN hconvSVhconvSigmoidh +=

(5)in which the symbols conv and

sigmoid denote the convolution process and

the sigmoid activation functionality,

correspondingly. In order to guarantee which,

the speaker vector influences the output

features, the CNN branch effectively records

the local frame-to-frame data within speech.

3.2.2 Temporal feature extraction using

GRU

In our work, the phoneme sequence

representing the text data is combined with

the implicit speaker vector obtained from the

source audio to serve as the GRU model's

input. The target speaker's distinct vocal

qualities are captured by the speaker vector,

while the phoneme sequence provides the

basic sound units required for speech

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2644

synthesis. This combined input is processed

by the GRU, which records speaker style and

temporal dependencies during the entire

speech. The output of the model combines

these temporal and speaker-specific features

into a feature representation. This output is

crucial for ensuring that the generated speech

maintains natural temporal flow and

accurately reflects the target speaker's

identity.

GRU is an LSTM-based model [20] that

maintains LSTM performance while

improving the LSTM network layout. The

prediction problem of long interval long

delay time series can be resolved by the GRU

network, which has only two gate structures

the update gate and reset gate. The amount of

information from the previous moment

transferred into the present moment is

managed by the update gate. The reset gate

regulates how much of the data from the

previous moment is discarded. A GRU

construction is depicted in Fig. 2. The

following formula can be used to determine

the output of a GRU unit, assuming that the

input sequence is),,(,21 txxx  , followed by

a gate reset and an update at t.

 ()ttrt xhr ,* 1−= 
 (6)

 ()ttzt xhz ,* 1−= 

(7)

 ()tttht xhrh ,*tanhˆ
1ˆ −= 

 (8)

() ttttt hzhzh ˆ**1 1 +−= − (9)

()tot hy = ˆ

 (10)

In which, the formula's symbols tz and tr

denote the update gate, and the result value of

the reset gate at time t. tx is the input at time

t,  is the weight of the model and  is the

activation function. th and 1−th denotes the

output at time t and t-1 correspondingly. In

other words, the output of the reset gate is

used to adjust the update gate in order to

optimise the neuron structure. Using the

vector of the speaker embSV as the beginning

state, every frame input ih is converted by the

GRU unit in this way:





−

=
=

elseththGRU

tifthSVGRU
th

iGRU

iemb

GRU
))(),1((

1))(,(
)(

(11)

Where the input and output frames of the

GRU at every stage are indicated by)(thi and

)(thGRU , respectively. The very last feature

GRUh of the second branch is formed by

combining the GRU outputs from all

decoding phases. This enables speaker style

control over the entire speech. We implement

layer normalization (LN) [21] on the outputs

from the GCNN and GRU channels, (GCNNh

and GRUh), in order to provide constant

speaker identity control. In our proposed

method, the speaker identification can be

precisely controlled at both the local frame

level and across the entire utterance by

combining the normalised outputs to form the

final output of each block.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2645

Figure 2: The structure of enhanced GRU's neurons

3.3 Mel-Spectrogram Generation:

Optimized Transformer Encoder

The combined outputs from the GCNN and

GRU branches are fed into the transformer in

our suggested system. While the GRU

captures temporal relationships and more

detailed background details for the duration

of the sequence, the GCNN extracts local

features including speaker-specific variations

and phonetic specifics. The input for the

transformer is a single feature representation

that is produced by combining and

normalizing these outputs.

The input for the Opt-transformer encoder is

the combined feature representation.

Positional encodings are added to the

combined feature representation because

transformers are not automatically aware of

the sequence order. Due to the information

provided by this encoding, the transformer is

able to preserve the input data's sequential

structure. Later, this feature embedding,

denoted as, ()nxxX ,,1 =

is transferred

to the transformer encoder. Two-dimensional

feature embeddings are produced as an output

of these features after they go through a

learnable linear transformation. Positional

data is maintained by adding the positional

embedding to the feature embedding, which

concatenates the [cls] token. Layer

normalisation (LN), an MLP block, and

multi-head self-attention (MSA) combine to

generate the layers that the embeddings pass

throughout. Out of all the feature embeddings

obtained from the opt-transformer encoder,

just the [cls] token is sent into the MLP head

in order to process input data.

Multi-Head Self-Attention Layer

Using k self-attention (SA) or multi-head

self-attention operations on two-dimensional

embedded features,
DmRE +)1(

uses the

following equations to learn the relationships

between each patch. Query q and key k have

a pairwise similarity of
ijA , which is the

attention weight matrix A .

  qkvEWVKQ =,,

hDD

qkv RW
3



(12)

Every sub-layer adopts residual connections

and layer normalisation. Every sublayer

outputs data in precisely the same dimension.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2646

In our design, the attended feature vector is

translated from x by the encoder block with

multi-head attention. Subsequently, feed-

forward is applied to every attention vector in

order to transform it into a format acceptable

by the next level (whether it can be the

decoder or as the encoder) ()tzzZ ,,1 = .

Feed-forward network

Following the self-attention layers of each

encoder and decoder is a feed-forward

network (FFN). It consists of a nonlinear

activation function positioned between two

linear transformation layers. The following is

the function that represents it:

)()(12 XVVXFFN =

 (13)

The nonlinear activation function is

represented by the symbol σ, while the two

linear transformation layers' parameter

matrices are V1 and V2.

Residual Connection in the Encoder and

Decoder

Every sub-layer within the encoder and

decoder has a residual link created for it, as

seen in Figure 3. Both performance and data

transfer are enhanced as a result. The residual

connectivity is followed by a layer-

normalization [22]. The following are the

results from such operations:

))((XAttentionXLayerNorm +

 (14)

The input matrix X is shown to construct the

self-attention layer, which then generates the

query, key, and value vectors (q, k, and v).

Figure 3: Proposed Transformer encoder model

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2647

3.3.1 Adaptive cheetah optimization

algorithm

The Adaptive Cheetah Optimisation (ACO)

algorithm is used to optimise the transformer

encoder. This approach optimizes the

transformer encoder's model parameters to

improve the device's ability to produce

precise and superior mel-spectrograms. The

ACO algorithm determines the transformer

encoder's optimal weights and configurations

by effectively identifying the parameter

space. The CO algorithm is a novel meta-

heuristic optimisation method that takes its

cues from cheetah hunting techniques [23]. It

has many benefits, including fast

convergence; minimal parameter

modifications needed, and simplified

computations. The three main phases of the

algorithm include searching, waiting, and

attacking.

1. Initialization

In the Cheetah Optimisation Algorithm, a

population consists of a collection of

potential solutions denoted by the locations

of individual cheetahs inside the search

region. Important hyperparameters like

learning rate (rL), batch size (sB), number of

attention heads (H), and number of layers (

Nl) are considered during the process to

ensure the model is effectively fine-tuned.

Every member of the population is a potential

solution to the optimisation issue at hand.

Each cheetah's location inside the search area

corresponds to the solution it provides. To get

the best solution, the algorithm moves such

individuals around iteratively.

 nwwwwW ,,,, 321 =

 (15)

Where, W is the population and nw

represents the thn solution.

],,,[1 Nsr lHBLw =

 (16)

In which,  represents the current iteration; 

)1,0(

2. Fitness calculation

Fitness is evaluated by this method using the

error rate. The following is a description of

the fitness calculation:

+
=

RE
Fitness

1

(17)

Where, RE →Error rate of the model

→A small constant that is inserted

to prevent division by zero

In order to improve the score, the fitness

function minimizes the error rate because a

lower error rate corresponds to a better fitness

score.

3. Updation process

i. Searching phase: - The cheetah

watches its surroundings with alert

eyes, using its hunting skills to find

the best prey based on the dynamics

of the surrounding environment. At

this point, the mathematical model is

described as follows:


jijiji randCC ,,

1

, +=+

(18)

()LLji LU −+=
max

, 001.0




(19)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2648

Where


jiC , denotes the current position of

cheetah-i at iteration  ,
1

,

+

jiC represents

updated position of cheetah-i at iteration

1+ , rand is a random number selected

from the interval (0, 1),


ji, indicates random

step length; LL LandU represents the upper

and lower bounds of variable, respectively; 

and max denote the current and maximum

iteration numbers.

ii. Sitting and waiting phase: - Every

motion a cheetah makes when

hunting has the danger of alerting and

possibly shocking its prey, which

could result in an escape. Cheetahs

wait patiently for prey to approach

them from a distance by remaining

low or hiding in bushes. The cheetah

keeps its location constant during the

sitting and waiting phase, which can

be expressed numerically as follows:


jiji CC ,

1

, =+

(20)

iii. Attacking phase: - The secret to a

cheetah's skill is timing the attacks on

prey perfectly, using their exceptional

speed and quickness. During the

attacking phase, they close the

distance swiftly and carefully disrupt

the target with speed. Attacks,

whether alone or in a group, need

strategic placement according to the

motions of the prey and the dynamics

of the group. Here is the stage's

mathematical representation:


jijijHji NMCC ,,,

1

, +=+

(21)

)2sin(,
2

exp

,,

,

ji

rand

jiji randrandM
ji

=














(22)



jijqji CCN ,

1

,, −= +

(23)

Where,


jHC , denotes the position of the prey,



jiji NandM ,, stand for the turning and

interaction factors, respectively, and
jirand ,

represents a value selected at random from a

normal distribution. Furthermore, the

symbols


jijq CandC ,

1

,

+
represent the locations

of cheetahs q and i at iteration , respectively.

Tent chaotic mapping

Following the introduction of Tent chaotic

mapping [24], the Tent chaotic map was used

to initialize the cheetah instead of the

randomly generated approach used in the

regular CO. As a result, the equation (20)

might be changed as follows:


cjiji TCC +=+

,

1

,

(24)

 

 













−

−



=
−

−

−

−

1,,
)1(

)1(

,0,

1

1

1

1















c

c

c

c

c

T
T

T
T

T

(25)

Dynamic weighting factor

In this phase, the cheetah updates its position

continuously using the dynamic weighting

factor λ. λ is given a greater value at the start

of the iteration, which enables the cheetah to

carry out a successful global search. As the

iteration comes to a close, λ gradually drops

in an adaptive manner. Consequently, the

following modification could be made to Eq.

(9):
  jijijHji NCC ,,,

1

, +=+

(26)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2649

  max

2)1(2)1(2

)1(4)1(4

,









=
+

−
=

−−−

−−−

ee

ee

(27)


jijqji CCN ,,, −=

(28)

With these modifications, the fundamental

CO can achieve superior search

characteristics and balance the phases of

exploration and exploitation by avoiding

local traps or optima, leading to a global

solution.

4. Termination

Equations (17) through (23), when applied to

the algorithm, are repeated iteratively. The

best solution found during the procedure is

returned by the ACOA algorithm at

completion of the execution.

Algorithm 1: Adaptive Cheetah Optimization algorithm

Input: learning rate (rL), batch size (sB), number of attention heads (H), and number of layers

(Nl)

Output: Optimal output

Start

Initialize the learning population of solutions, iterations, and population size

Use Tent chaotic map to initialize the cheetahs’ positions in the search space for better diversity using

equation (25)

Arrange cheetahs in the search area at random.

For (each iteration)

Calculate fitness for each cheetah using equation (17)

Update cheetah positions using a step-length and random factor using equations (18), (20) and (21)

if (no prey detected)

Keep cheetah's position constant

Else

Adjust positions based on prey location and turning factor

Adapt Tent chaotic map and λ for better global and local search balance using equations (24) and (26)

Repeat until max iterations or target fitness is reached.

Return the best solution

End

In our system, the output mel-spectrogram is

processed by the opt-transformer encoder to

create the encoded representation. The next

step is to convert the encoded representation

into an audio waveform.

3.4 Waveform Synthesis: HiFi-GAN

Vocoder

The mel-spectrogram that is generated is

subsequently transformed into an auditory

signal by means of a pretrained HiFi-GAN

vocoder. Using GAN as the core generative

method, HiFi-GAN incorporates two

discriminators, the generator, and other

components to efficiently convert the

spectrum generated by the acoustic model

into audio of excellent quality. An effective

generator and multi-period and multi-scale

discriminators are features of the high-

fidelity neural vocoder HiFi-GAN [25],

which is based on generative adversarial

networks (GAN). After receiving a mel-

spectrogram, the generator upsamples the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2650

data to match the temporal resolution of the

intended raw waveform using transposed

convolution neural networks and multi-

receptive field fusion (MRF) modules. A

customized kernel and dilation sizes for each

of the receptive fields where the input feature

is to be captured make up a multiple residual

block model (MRF). Discover how to fool the

generator's discriminators. Least Square

GAN states that the discriminators pick up

the skill of telling the difference between

generated and ground truth speech, while the

generator learns how to control them. The

generator GL has three losses as its training

objective: a mel-spectral L1 loss melL , an

adversarial loss
advgL .

, a feature matching loss

[15]
fmL , and so on.

melmelfmfmadvgG LLLL  ++= .

(29)

Where,
fm and mel are denotes the loss

balancing hyperparameters.

This adversarial process improves the

quality of generated speech, gradually

increasing its accuracy and naturalism. The

combined impact of these losses, as

controlled by certain hyperparameters,

contributes to voice output that is clear,

high-quality, and natural-sounding, closely

matching the desired target audio.

4. Results and Discussion

The advanced TTS synthesis method for

Sanskrit yields major improvements in

speech quality and naturalness. Evaluation

metrics such as Word Error Rate (WER%),

Mel-Cepstral Distortion (MCD dB), Speech

Emotion Recognition Score (SECS), Mean

Opinion Score (MOS), and Speaker Mean

Opinion Score (SMOS) show that the system

captures and reproduces the target speaker's

vocal features accurately. Python is used to

implement the proposed methodology. The

proposed methodology presented in this

study should be implemented using a high-

performance processor, such as an Intel Core

i9 or AMD Ryzen 9, and a system with 32GB

or more of RAM.

Dataset description: - The Vāksañcayaḥ -

Sanskrit voice corpus has about 78 hours of

data and 45,953 sentences recorded at a 22

KHz sampling rate. The majority of the

material consists of readings from numerous

Sanskrit literature books covering many

Śāstras. There are also modern tales, radio

programs, extempore speeches, etc.

4.1 Experimental results

The experimental results demonstrate the

effectiveness of the advanced TTS synthesis

system for Sanskrit. The analysis indicates

that the synthesized audio closely replicates

the frequency and temporal features of the

original speech, demonstrating a high level of

closeness in the output. Performance

measurements demonstrate constant progress

throughout the training phase, with notable

decreases in loss and error rates,

demonstrating the model's ability to learn and

adapt efficiently.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2651

(a)

(b)

(c)

(d)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2652

(e)

Figure 4: Comparison of Reference and Synthesized Spectrograms for Various Phrases in the TTS System

Figure 4 displays different spectrograms that

compare synthesized and reference audio for

various phrases proposed Sanskrit TTS

system. The reference spectrogram is on the

left, and the synthesized version is on the

right, in each pair of spectrograms that are

shown side by side. The comparison shows

how well the TTS technology replicates

normal speech patterns. In subplot (a), the

synthesized audio nearly matches the

reference in terms of frequency and time,

with just minor changes in strength. Subplot

(b) demonstrates that the synthesized output

captures the general structure of the

phonemes, with minor deviations in the

higher frequency ranges. In subplot (c), the

reference and synthesized spectrograms are

very similar, with only very small variations

in the transition between phonemes. Subplot

(d) shows an excellent matching between the

two versions, especially in the low-frequency

areas, but some smoothing is visible in the

synthesized version. Subplot (e) shows a

largely accurate reproduction of the reference

audio. Overall, the comparisons indicate that

the TTS system is effective at producing

natural-sounding speech, with only modest

changes in frequency strength and transitions.

(a) (b)

Figure 5: (a) Log Loss over Epochs (b) Error Rate over Epochs

The two graphs in the figure 5 show the

model's performance increase over 20

epochs, as measured by (a) log loss and (b)

error rate. Training of the model is improving

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2653

the accuracy of its probability predictions, as

seen by the left graph where the log loss

steadily decreases from 0.8 in the first epoch

to about 0.25 by the 20th epoch. This

declining trend begins earlier in the epochs

(1–5), indicating quick learning at first, and

then it becomes more gradual as the model

converges. The error rate is also plotted on

the right graph, falling to approximately

0.015 by epoch 20 from a starting point of

nearly 0.145 in the first epoch. Both graphs

depict the model's successful learning

process, with performance improving as the

epochs progress.

4.2 Comparative analysis

In this section, a comparative analysis is

presented to evaluate the performance of the

proposed TTS system against existing

models like Tacotron and Transformer

encoder. The focus is on examining key

metrics such as word error rates, mel-cepstral

distortion, and speaker effectiveness to

highlight improvements in speech synthesis

accuracy and audio quality. Additionally,

listener evaluations, including MOS and

SMOS scores, provide insights into the

naturalness and similarity of the synthesized

speech to human speech. The analysis also

explores classification accuracy by

comparing true positive rates across different

false positive rates, offering a comprehensive

assessment of the proposed system's

effectiveness in advancing TTS systems.

Table 1: Performance Comparison of GCNN and GRU Models in TTS Systems

Model MCD(dB)↓ SECS↑

GCNN only 2.56 0.806

GRU only 2.48 0.814

GCNN+GRU (Proposed) 2.13 0.851

Table 1 illustrates the results of an ablation

study evaluating the impact of various model

elements on speaker control in the proposed

TTS system. The GCNN model has an MCD

(mel-cepstral distortion) of 2.56 dB and an

SECS (Speaker Encoder Cosine Similarity)

score of 0.806, whereas the GRU model has

a slightly higher MCD of 2.48 dB and SECS

of 0.814. With the lowest MCD of 2.13 dB

and the greatest SECS score of 0.851, the

proposed model, which combines both

GCNN and GRU, performs better. According

to these outcomes, combining the GRU and

GCNN models improves speaker similarity,

decreases distortion, and improves speaker

control over employing a single model.

Table 2: Comparative Evaluation of TTS Models Using Key Metrics (Existing Models vs. Proposed Model)

Model WER

(%)↓

MCD(dB)↓ SECS↑ MOS↑ SMOS↑

Tacotron 6.59 5.835 0.7907 3.12 3.54

Transformer

encoder

6.08 5.439 0.8120 3.8 3.71

Opt-

transformer

encoder

(Proposed)

5.73 4.965 0.8970 4.98 3.89

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2654

A comparative analysis of TTS models based

on important metrics is shown in Table 2,

which also highlights the performance of the

suggested optimised transformer encoder and

existing models. The suggested model's

WER is 5.73%, which is substantially lower

than Tacotron and the Transformer encoder's

WERs of 6.59% and 6.08%, respectively,

suggesting better speech synthesis accuracy.

Furthermore, the suggested model shows

improved audio quality over existing models

with a decreased MCD of 4.965 dB. Notably,

the suggested model outperforms Tacotron

and the Transformer encoder with a higher

SECS score of 0.8970. Furthermore, the

MOS of 4.98 demonstrates a significant

improvement in perceived speech quality,

while the SMOS of 3.89 suggests that

listeners consider the synthesized speech to

be more comparable to actual human speech

than previous models. Overall, the optimized

transformer encoder exceeds standard models

on all major measures, demonstrating its

effectiveness in TTS systems. Tacotron has

greater word error rates because to its

ineffective handling of speech, which affects

audio quality and listening experience. The

Transformer encoder improves slightly in

accuracy, but it still problems with audio

clarity and speaker efficacy. In contrast, the

suggested optimised transformer encoder

exceeds these existing models, displaying

improved accuracy and audio quality. This

improvement increases speaker effectiveness

and audience satisfaction, demonstrating its

usefulness in text-to-speech systems.

Figure 6: Comparison of ROC curve for proposed and existing models

Figure 6 illustrates a ROC curve that

compares the True Positive Rate (TPR) vs

False Positive Rate (FPR) of three models:

Tacotron, Transformer encoder, and the

proposed model. With an Area Under the

Curve (AUC) of 0.8, the proposed model

(green curve) performs most efficiently,

considerably exceeding the Transformer

encoder (orange curve) of AUC =0.77 and

the Tacotron (blue curve) of AUC = 0.79.

The model's ability to differentiate between

positive and negative classes improves with

the curve's proximity to the top-left corner.

All models outperform the random classifier

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2655

shown by the dashed diagonal line with AUC

= 0.5. When compared to the other two

models, the proposed model demonstrates

greater true positive rates throughout a

variety of false positive rates, indicating that

it provides more accurate classification.

4.3 Comparison with published work

In order to evaluate the efficacy of the

proposed optimized transformer encoder for

Sanskrit TTS synthesis, several of well-

known speech synthesis techniques were

chosen for comparison in this study. In

Section 2, these reference models, which

include the Transferable Monotonic Aligner

(TMA) [11], the Tacotron 2-based neural

vocoder [12], the Neural Codec Language

Model (VALL-E) [13], and MOSNet

[18], were examined and thoroughly

explained.

Table 3: Comparing published works with various metrics

Ref Technique WER

(%) ↓

MCD(dB)↓ SECS↑ MOS↑ SMOS↑

Yinghao Aaron

Li and Cong

Han et al., [11]

Transferable

Monotonic Aligner

(TMA)

8.26 - - 2.43 -

Ye Jia et al., [12] Neural vocoder

based on Tacotron 2

10.14 - - 3.65 -

Chengyi Wang

et al., [13]

Neural codec

language model

(called VALL-E)

5.9 - - 2.66 3.45

Rishabh Jain et

al.,[18]

MOSNet 15.27 - - - -

Opt-transformer encoder (Proposed) 5.73 4.965 0.8970 4.98 3.89

The table 3 presents findings that illustrate

how well the optimised transformer encoder-

based TTS model performs in comparison to

other methods. The suggested model

produces a WER of 5.73%, which is much

lower than the WER of models like MOSNet

with15.27%, Tacotron 2-based neural

vocoder with10.14%, and TMA with 8.26%.

Furthermore, as seen by its MCD of 4.965

dB, the suggested model has exceptional

audio quality. The suggested system is

noteworthy for its exceptional ability to

capture speaker similarity, as demonstrated

by its high SECS of 0.8970, which surpasses

all other models. By achieving a MOS of 4.98

in perceptual assessments, the suggested

model outperforms methods like VALL-E,

which only obtain a MOS of 2.66, on the

basis of overall naturalness and quality of the

synthesized speech. With a score of 3.89, the

SMOS indicates the model's superior ability

to replicate the speaker's features compared

to VALL-E, which scored 3.45. With

significant gains in several important speech

synthesis parameters, these findings clearly

show the efficacy of the optimized

transformer encoder and establish it as a very

accurate and affordable Sanskrit TTS system.

5. Conclusion

The purpose of this study is to present an

advanced and innovative TTS system

specifically designed for Sanskrit, a language

with immense historical and cultural

significance that faces many challenges in

speaking today. The suggested system

efficiently solves the complexity of Sanskrit

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2656

phonetics by applying an optimized

transformer encoder in conjunction with

techniques such as G2P conversion, GCNN

for local feature extraction, and GRU for

temporal analysis. The application of the

Adaptive Cheetah Optimisation algorithm to

increase transformer model performance, as

well as the HiFi-GAN vocoder for high-

quality audio waveform creation,

considerably improves the naturalness and

speaker similarity of synthesized speech. The

efficiency of the proposed technique has

been evaluated using the Vāksañcayaḥ -

Sanskrit Speech Corpus dataset. The system

shows significant advances in generating

accurate, human-like speech when measured

by important metrics such as WER, MCD,

SECS, and MOS and SMOS. These

enhancements demonstrate the efficacy of the

optimized transformer encoder and the

integration of G2P, GCNN, GRU, and HiFi-

GAN vocoders in addressing the problems of

Sanskrit speech synthesis. The results suggest

that this method has the potential to

considerably enhance the accessibility and

preservation of the Sanskrit language by

providing a modern and efficient approach

for producing highly accurate and natural

speech. In the future, the suggested method

could be enhanced by investigating transfer

learning between languages with similar

phonemes. Furthermore, research that uses

pretrained language models is required to

increase training performance and achieve

greater alignment across identical resource

instances.

References

[1] Harrison, K. David, (2007). When

Languages Die: The Extinction of the

World’s Languages and The Erosion of

Human Knowledge, Oxford University Press

Local Language Speech Technology

Initiative website http://llsti.org/

[2] I. Goodfellow et al., Deep Learning,

MIT Press, 2016,

http://www.deeplearningbook.org

[3] Dunaev, A., 2019. A Text-to-Speech

system based on Deep Neural

Networks. Bachelor Thesis.

[4] Alastalo, A., 2021. Finnish end-to-

end speech synthesis with Tacotron 2 and

WaveNet.

[5] Rama, GL Jayavardhana, A. G.

Ramakrishnan, R. Muralishankar, and R.

Prathibha. ”A complete text-to-speech

synthesis system in Tamil,”In Proc. 2002

IEEE Workshop on Speech Synthesis, pp.

191-194. IEEE, 2002.

[6] Kumar, H. R. S., J. K. Ashwini, B. S.

R. Rajaram and A. G. Ramakrishnan. ”MILE

TTS for Tamil and Kannada for Blizzard

Challenge 2013.” In Blizzard Challenge

Workshop, vol. 2013.

[7] B S R Rajaram, H R Shiva Kumar,

and A G Ramakrishnan, ”MILE TTS for

Tamil for Blizzard challenge 2014”, In

Blizzard Challenge Workshop, vol. 2014.

[8] Yuxuan Wang, R. J. Skerry-Ryan,

Daisy Stanton, Yonghui Wu, Ron J. Weiss,

Navdeep Jaitly, Zongheng Yang, Ying Xiao,

Zhifeng Chen, Samy Bengio, Quoc V. Le,

Yannis Agiomyrgiannakis, Rob Clark, and

Rif A. Saurous, ”Tacotron: Towards end-to-

end speech synthesis,” in INTERSPEECH,

2017.

[9] Jonathan Shen, Ruoming Pang, Ron J.

Weiss, Mike Schuster, Navdeep Jaitly,

Zongheng Yang, Zhifeng Chen, Yu Zhang,

Yuxuan Wang, RJ Skerry-Ryan, Rif A.

http://llsti.org/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2657

Saurous, Yannis Agiomyrgiannakis, and

Yonghui. Wu, ”Natural TTS synthesis by

conditioning WaveNet

on mel spectrogram predictions,” In Proc.

IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP),

2018.

[10] Sercan O Arik, Mike Chrzanowski,

Adam Coates, Gregory Diamos, Andrew

Gibiansky, Yongguo Kang, Xian Li, John

Miller, Andrew Ng, Jonathan Raiman, et al.,

”Deep voice: Real-time neural text-

tospeech,” arXiv preprint arXiv:1702.07825,

2017

[11] Li, Y. A., Han, C., &Mesgarani, N.

(2022). Styletts: A style-based generative

model for natural and diverse text-to-speech

synthesis. ArXiv preprint arXiv:2205.15439.

[12] Jia, Y., Zhang, Y., Weiss, R., Wang,

Q., Shen, J., Ren, F., ... & Wu, Y. (2018).

Transfer learning from speaker verification to

multispeaker text-to-speech synthesis.

Advances in neural information processing

systems, 31.

[13] Wang, C., Chen, S., Wu, Y., Zhang,

Z., Zhou, L., Liu, S., ... & Wei, F. (2023).

Neural codec language models are zero-shot

text to speech synthesizers. ArXiv preprint

arXiv:2301.02111.

[14] Kumari, R., Dev, A., & Kumar, A.

(2021). An efficient adaptive artificial neural

networkbased text to speech synthesizer for

Hindi language. Multimedia Tools and

Applications, 80(16), 24669-24695.

[15] Ni, J., Wang, L., Gao, H., Qian, K.,

Zhang, Y., Chang, S., & Hasegawa-Johnson,

M. (2022). Unsupervised text-to-speech

synthesis by unsupervised automatic speech

recognition. ArXiv preprint

arXiv:2203.15796.

[16] Chen, M., Chen, M., Liang, S., Ma, J.,

Chen, L., Wang, S., & Xiao, J. (2019,

September). Cross-Lingual, Multi-Speaker

Text-To-Speech Synthesis Using Neural

Speaker Embedding. In Interspeech (pp.

2105-2109).

[17] Li, N., Liu, Y., Wu, Y., Liu, S., Zhao,

S., & Liu, M. (2020, April). Robutrans: A

robust transformer-based text-to-speech

model. In Proceedings of the AAAI

conference on artificial intelligence (Vol. 34,

No. 05, pp. 8228-8235).

[18] Jain, R., Yihas been, M. Y., Bigioi,

D., Corcoran, P., &Cucu, H. (2022). A text-

to-speech pipeline, evaluation methodology,

and initial fine-tuning results for child speech

synthesis. IEEE Access, 10, 47628-47642.

[19] D. Min, D.B. Lee, E. Yang, S.J.

Hwang, in International Conference on

Machine Learning. Meta-StyleSpeech:

multi-speaker adaptive text-tospeech

generation (PMLR, 2021), p. 7748–7759

[20] Khan, A. and Sarfaraz, A., 2019.

RNN-LSTM-GRU based language

transformation. Soft Computing, 23(24),

pp.13007-13024.

[21] J.L. Ba, J.R. Kiros, G.E. Hinton,

Layer normalization. (2016). arXiv preprint

arXiv:1607.06450

[22] Shang, W., Chiu, J. and Sohn, K.,

2017, February. Exploring normalization in

deep residual networks with concatenated

rectified linear units. In Proceedings of the

AAAI Conference on Artificial

Intelligence (Vol. 31, No. 1).

[23] Sait, S.M., Mehta, P., Gürses, D. and

Yildiz, A.R., 2023. Cheetah optimization

algorithm for optimum design of heat

exchangers. Materials Testing, 65(8),

pp.1230-1236.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 2637–2658 | 2658

[24] Fan, J., Li, Y. and Wang, T., 2021. An

improved African vultures optimization

algorithm based on tent chaotic mapping and

time-varying mechanism. Plos one, 16(11),

p.e0260725.

[25] Kong, J., Kim, J. and Bae, J., 2020.

Hifi-gan: Generative adversarial networks for

efficient and high fidelity speech

synthesis. Advances in neural information

processing systems, 33, pp.17022-17033.

Authors:

Ms. Sabnam Kumari received the

B.Tech degree in computer

science and engineering from

GGSIPU, New Delhi in 2011 and

M.Tech. degree in computer

science and engineering from MDU, Rohtak,

Haryana, India, in 2013, and pursuing Ph.D.

degree from the Department of Computer Science

and Engineering, Deenbandhu Chhotu Ram

University of Science and Technology

(DCRUST), Murthal, Sonepat, Haryana, India,

with nearly 12 years of experience in academic

and research affairs. She has authored or co-

authored more than 30 research papers in various

international/national journals and conferences

and 2 patents to her credit. She has guided 8

M.Tech. dissertations. She is a member of the

International Association of Engineers (IAENG),

Internet Society Chapter (ISOC) Delhi, Her

research interests include Natural Language

Processing, Text Analytics, Artificial Intelligence

and Machine Learning.

Dr. Amita Malik earned her Ph.D.

in Computer Engineering from

the National Institute of

Technology, Kurukshetra in

2010. She is presently working as

Professor in the Department of Computer Science

and Engineering at DCRUST, Murthal, Sonepat,

India with nearly 24 years of teaching experience.

She has published more than 60 research papers

in various International /National Journals and

Conferences of repute. She has guided 06 Ph.D

thesis and 15 M.Tech dissertations. Her research

interests include Mobile Ad hoc and Wireless

Sensor Networks, Scale-Free Networks, Cloud

and Edge Computing, Machine Learning, Text

Analytics and Blockchain Technology

