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Abstract: Sanskrit is a very ancient and classical language having a significant impact on science, 

philosophy, and literature. There are less and fewer skilled speakers of this ancient language, which 

prevents the easy access to its rich cultural heritage although it is the root of many Indian languages. Thus, 

resulting in declination of the spoken use of Sanskrit these days. To solve the problem, we need innovative 

technical solutions that will enable and promote the spoken form of Sanskrit. One way to produce speech 

to enhance accessibility to the language in the modern era is by using text-to-speech (TTS) synthesis. To 

help enhance the synthesis quality as well as naturalness of speech, the paper discusses on an improved 

Sanskrit TTS system having optimized transformer encoding. The system employs Grapheme-to-Phoneme 

(G2P) to convert Sanskrit text into sounds and use a transformer-based mel-style speaker encoder to extract 

the speaker’s vector. The Gated Convolutional Neural Network (GCNN) captures local features, and GRU, 

Gated Recurrent Unit, is used for analyzing temporal features. The optimized transformer encoder, 

optimized by the Adaptive Cheetah Optimization (ACO) algorithm, processes the extracted features The 

processed output acts as an input to a mel-spectrogram. Later, the mel-spectrogram is converted into high-

quality audio waveform using HiFi-GAN vocoder. This complete process leads to a highly effective TTS 

system that greatly improves speech synthesis for Sanskrit allowing natural sounding speech that closely 

resembles the voice quality of target speaker. To show that the suggested method is effective, we developed 

the system with Python and take Vāksañcayaḥ - Sanskrit Speech Corpus dataset for demonstrating our 

results. The results show a significant improvement in creating speech that resembles the voice of the target 

speaker.  

 

Keywords: Text-to-Speech (TTS) synthesis, Grapheme-to-Phoneme, Gated Convolutional Neural Network, 

Gated Recurrent Unit, Adaptive Cheetah Optimization, HiFi-GAN vocoder 

 

1. Introduction 

Being one of the ancient grammars and a key 

component of Indian social and cultural 

psychology, Sanskrit is a unique language 

that shows an extension of tradition from the 

Vedic era. "Languages are the repository of 

thousands of years of people's science and 

art" [1]. Over time, Sanskrit's influence has 

diminished significantly, and its usage and 

scope could be somewhat restricted. 

Nevertheless, there are numerous materials 

available on a vast array of aspects and 

historical eras, most of which are text-based. 

We believe that in order to provide natural 
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auditory access to these components, a TTS 

for Sanskrit is essential. 

The objective of generating speech that 

seems natural from text is still a challenging 

one to solve. At the moment, the most 

sophisticated TTS systems are those utilizing 

deep learning to produce speech that sounds 

natural. But the primary obstacle to Sanskrit 

TTS progress is an inadequate supply of 

high-quality data. Internal building blocks 

can be combined via deep learning [2] into a 

single model that directly links input and 

output. This approach is also known as "end-

to-end" learning. An end-to-end text-to-

speech system called Tacotron [3], which 

computes a spectrogram directly from an 

input text and is frequently referred to as "a 

black box," has recently shown impressive 

results despite the need for manually-

engineered parametric models based on 

domain-specific data. Tacotron‘s use of 

numerous repeating units contributes to its 

high training expenses [4]. Regular labs 

cannot do additional research or development 

without expensive machinery. Even while 

several people have tried building open 

replicas of Tacotron, they have not been able 

to produce speech that is as clear and of high 

quality as the original models.  

The conventional methods of synthesis were 

concatenative [5-7] and parametric, resulting 

in speech that was muted due to much more 

complex pipelines. Moreover, irregularities 

and abnormalities could appear in the speech 

output. The field has experienced enormous 

growth due to the quick evolution of deep 

learning-based techniques. It has been 

suggested that the current pipelines be 

substituted with end-to-end generative 

models like Tacotron2 [8, 9], and Deep Voice 

[10]. By integrating spectrogram forecasting 

and synthesis of speech into a single pipeline, 

these models have demonstrated state-of-the-

art performance. But these end-to-end 

systems need a large amount of processing 

power and tens of hours of audio data. These 

issues are addressed by the proposed Sanskrit 

TTS system, which uses an optimized 

transformer encoder to improve voice 

synthesis while decreasing the requirement 

for vast datasets and processing resources. 

The main contributions of this work are listed 

below: 

➢ To address phonetic complexity and 

data limitations, an advanced Sanskrit 

TTS system is developed using an 

optimized transformer encoder. 

➢ Consider the two input sets such as 

text data that needs to be converted 

into speech and reference audio signal 

which is the small sample of the target 

speaker's voice as a reference to guide 

the synthesis process. 

➢ Then, we Convert the input text into 

phonemes grapheme-to-phoneme 

conversion, which are the basic units 

of sound and we extract a speaker 

vector from the reference audio, 

which captures the unique 

characteristics of the target speaker's 

voice. 

➢ G2P conversion is integrated, along 

with GCNN and GRU for local and 

temporal feature extraction. 

➢ The Adaptive Cheetah Optimization 

algorithm is applied to optimize the 

transformer's performance. 

➢ HiFi-GAN vocoder is utilized to 

generate high-quality audio 

waveforms from mel-spectrograms. 
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➢ The system is evaluated using metrics 

like WER, MCD, SECS, MOS, and 

SMOS, demonstrating significant 

improvements in naturalness and 

speaker resemblance. 

➢ Python is used to implement the 

system for better accessibility and 

scalability. 

The following sections of the paper will be 

organized in this manner. Section 2 presents 

an overview of the related work. Section 3 

describes the proposed work. Section 4 

discusses the study's results and assessments. 

Section 5 includes the final conclusion and 

plans for further work.  

2. Related works 

Yinghao Aaron Li and Cong Han et al., [11] 

presented the Style-Based Generative Model 

for Natural and Diverse Text-to-Speech 

Synthesis. Through self-supervised learning, 

Style TTS was generating speech with the 

same emotional and prosodic tone as the 

reference speech without needing explicit 

labels for these categories. A limitation of 

Style TTS systems was that mapping 

different prosodic patterns from reference 

recordings can be challenging. This could 

result in difficulty maintaining smooth 

control over subtle, highly specialized 

stylistic variations, which was affect the 

naturalness or consistency of the synthesized 

speech. These systems often struggle with 

fine-tuning prosody while preserving the 

intended style, especially for nuanced or 

complex speech patterns. 

Ye Jia et al. [12] presented Transfer Learning 

from speaker verification to multi-speaker 

text-to-speech synthesis. This method 

synthesized natural speech from speakers not 

encountered during training, using the 

understanding of speaker variation gained by 

a discriminatively learnt speaker encoder in 

the multi-speaker TTS challenge. It has been 

proved that the model learns a high-quality 

speaker description when it can synthesize 

speech in the voice of speakers other than 

those utilized during training using randomly 

selected speaker embeddings. Finally, a 

similar pattern emerged: the model struggled 

to distinguish between the voice of the 

speaker and the prosody of the reference 

speech. 

Chengyi Wang et al. [13] introduced neural 

codec language models, which are zero-shot 

text to speech synthesizers. They presented 

VALL-E, a language model technique for 

TTS that used intermediate models in the 

form of audio codec code. That demonstrated 

the ability to learn in context in zero-shot 

circumstances. On VCTK and Libri Speech, 

they attain new state-of-the-art zero-shot TTS 

outcomes. Moreover, VALL-E could 

maintain the synthesis of the speaker’s 

emotions and the surrounding acoustics while 

producing a variety of outputs for various 

sampling-based decoding techniques. 

Ruchika Kumari et al. [14] demonstrated a 

robust adaptive neural network-based text-to-

speech synthesizers for the Hindi language. 

This paper laid out a text-to-speech 

synthesizer for the Hindi language that was 

based on the language-based restrictions 

recommended for constructing parameters 

such as intonation, duration, and syllable 

phases, as well as the parameters of Mel-

frequency cepstral (MFCC) features that 

were gathered for processing. The suggested 

ALO-ANN method outperforms all other 

methods in terms of accurate prediction. To 

investigate the individual feature results, the 
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durations, intensities, and basic frequencies 

of the syllables were evaluated in conjunction 

with these aspects. Objective data such as the 

correlation coefficient, standard deviation, 

and average prediction error are used to 

determine intonation representation. 

Junrui Ni et al., [15] laid out the 

Unsupervised TTS synthesis via 

Unsupervised Automatic Speech 

Recognition. The two components of their 

suggested unsupervised text-to-speech 

system are an orientation module that 

produces pseudo-text and a synthesis module 

that employs real text for training and 

pseudo-text for inference. With roughly 10–

20 hours of speech in seven languages, the 

suggested unsupervised system could 

perform on par with the supervised system. 

This work's modest decreased intelligibility 

for non-English languages as compared to 

supervised TTS models was one of its 

limitations. 

A cross-lingual, multi-speaker neural end-to-

end text-to-speech system that can mimic 

speaker characteristics and synthesize speech 

in several languages was presented by 

Mengnan Chen et al. [16]. A neural speaker 

embedding network that has been trained 

separately was shown by them; it was capable 

of describing the latent structure of various 

speakers and language pronunciations. Our 

findings demonstrated that the multi-speaker 

TTS model was capable of extracting from 

the latent space both speaker features and 

language pronunciations with speaker 

embedding. They also confirmed that the 

suggested approach can effectively handle 

cross-lingual jobs with a minimal amount of 

audio data. The use of a Griffin-Lim vocoder, 

which may provide less-than-ideal audio 

quality when compared to more sophisticated 

neural vocoders, was a limitation of this 

work. 

A Robust Transformer-Based text-to-speech 

Model was presented by Naihan Li et al. [17]. 

A robust neural TTS model based on 

Transformer, called Robu Trans (Robust 

Transformer), was proposed by them. In 

contrast to transformer TTS, our approach 

feeds input texts to the encoder after first 

converting them to linguistic features, such as 

prosodic and phonemic features. They 

produced exceptional results, resulting in 

very high-quality and realistic synthesized 

sounds. In addition to solving the robustness 

issue, the suggested model achieves parity 

MOS with 4.36 on the general set, with 

transformer TTS with 4.37 and Tacotron2 

with 4.37. Nevertheless, the robustness 

problem with existing neural TTS models 

leads to anomalous audios (poor instances), 

particularly for unusual text. 

The pipeline for creating artificial child 

speech in a situation with minimal training 

data was presented by Rishabh Jain et al. 

[18]. Additionally, a subjective evaluation 

technique appropriate for child speech 

generated was presented and illustrated. 

These phrases could use some refinement. 

Using a trained adult speech wav2vec2 ASR 

model, the WER for generated child voices 

was 25.63, while the WER for real child 

voices was 15.27. They succeed in 

significantly raising the vocoder's quality. 

The audio patterns that had produced did not 

significantly improve in quality, and some of 

the synthesis showed the presence of extra 

noise. 
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3. Proposed Optimized TTS System for 

Sanskrit 

The objective of this work is to develop an 

advanced TTS synthesis system for Sanskrit 

that enhances speech synthesis accuracy and 

naturalness. To achieve this, the 

methodology begins with converting text into 

phonetic representation using a Grapheme-

to-Phoneme tool. A Transformer-based mel-

style speaker encoder extracts speaker 

vectors from reference audio, capturing 

distinct vocal attributes. Local and temporal 

speaker characteristics are further refined 

through the use of Gated Convolutional 

Neural Networks for local features and Gated 

Recurrent Units for temporal features. These 

features are then processed by an optimized 

transformer encoder, with the optimization 

performed using the Adaptive Cheetah 

Optimization algorithm. The final mel-

spectrogram output is converted into high-

quality audio waveforms using the HiFi-

GAN vocoder, resulting in a robust TTS 

system that significantly improves speech 

synthesis for Sanskrit by generating natural-

sounding speech that closely mirrors the 

target speaker's vocal attributes. Figure 1 

depicts the proposed framework’s structure. 

 

 
Figure 1: Structure of proposed framework 

3.1 Input preparation 

The proposed system takes two main inputs: 

a text sequence that needs to be converted 

into speech and a reference audio signal, a 

small sample of the target speaker's voice. 

The text is converted into its phonetic 

representation through a Grapheme-to-

Phoneme conversion, ensuring accurate 
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pronunciation. The reference audio is 

processed to extract a speaker vector, 

capturing the unique vocal characteristics of 

the target speaker. 

3.1.1 Grapheme-to-Phoneme Conversion 

For the Grapheme-to-Phoneme conversion in 

our Text-to-Speech system, we utilized the 

G2P tool available at Kyubyong's GitHub 

repository 

(https://github.com/Kyubyong/g2p). This 

tool is a neural network-based model 

designed to map text (graphemes) to their 

corresponding phonetic representations 

(phonemes) accurately. The G2P conversion 

process is a critical component in our 

pipeline, ensuring that the input text is 

translated into phonemes, which are then 

used to generate natural-sounding speech. By 

leveraging Kyubyong's G2P tool, we were 

able to achieve reliable and efficient 

phoneme generation, contributing to the 

overall quality and intelligibility of the 

synthesized speech. 

3.1.2 Speaker Vector Extraction 

In our study, we use a Transformer-based 

mel-style speaker encoder [19] to preprocess 

the reference audio signal. The purpose of the 

speaker encoder in our method is to train the 

synthesis network using a reference signal of 

speech from the intended target speaker. The 

representation used by the speaker encoder 

must accurately depict the distinctive 

qualities of different speakers in order for 

standardization to be efficient. The encoder 

extracts a latent speaker vector, represented 

as embSV , by processing the reference audio's 

mel spectrogram. This vector captures the 

unique characteristics of the target speaker's 

voice, like pitch, tone, and speaking style. 

3.2 Local and Temporal Feature 

Extraction for Speaker Control Using 

GCNN and GRU 

In this work, we develop a two-branched 

feature extraction method that employs two 

separate methods to translate speaker 

characteristics. To ensure that the generated 

speech appropriately reflects the speaker's 

identity, the first channel captures local 

frame-to-frame information using a GCNN. 

In order to capture temporal dependencies 

and overall speaker style, the second channel 

makes use of a GRU, which improves the 

synthetic speech's authenticity.  

3.2.1 Local feature extraction using 

GCNN:  

In our work, the GCNN is responsible for 

extracting local features from the input data 

by capturing frame-to-frame dependencies. It 

processes the phoneme sequence combined 

with the speaker vector, ensuring that the 

generated speech is conditioned on the 

speaker's identity. The GCNN improves the 

parallelization and computational efficiency 

of the system by avoiding sequential 

procedures that are commonly utilized in 

recurrent models. To simulate dependencies 

across extended sequences, the GCNN 

employs gated temporal convolutions rather 

than recurrent connections, as in RNNs. With 

the addition of many convolutional layers to 

the network, this technique learns both local 

and global structures from the input data. 

Figure 1 shows the model architecture. 

Formally, the GCNN processes a sequence of 

input features Nww ,,0   and produces a 

representation NhhH ,,0 = , where each ih

is a context representation of the 

corresponding input iw . The input sequence 

is represented as embeddings

https://github.com/Kyubyong/g2p
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],,[ 0 wNw DDE = , and the hidden layers of 

the network are computed by convolving 

these embeddings with the function f: 

wfH *=      

 (1) 

The features that are output Llhl 1, = are 

calculated by: 

)*()*( 11 cvhbwhh lll ++= −− 
  

  
(2) 

In which, 0h is the input feature, wЄℝk×m×n 

and vЄℝk×m×n are the convolutional weight 

matrices, and   is the sigmoid function. In 

this case, n is the number of filters, k is the 

convolutional kernel's size, and m is the input 

dimension. The biases of filters are denoted 

by bЄℝn and cЄℝn. 

To compute posterior probabilities, we stack 

L, GCNN layers and add a softmax layer on 

top of the final one. The softmax layer 

outputs an estimate of the posterior 

probabilities p(s|o) for states s, and provided 

features o. The output of the softmax layer is 

calculated by, 

)(max)( sLs bhwsoftosP +=
   

  
(3) 

Where Lh  is the output of the L-th GCNN 

layers and (ws; bs) is the connection weight 

matrix and bias vector for the softmax layer. 

As the error signals are backpropagated via 

the l-th GCNN layers, the gradient is 

computed as follows: 

( ) ( ) ( ) )*(**)*(* 11111 bwhcvhcvhbvhbwhh llllll ++++++= −−−−− 

       
(4) 

GCNN models combine the capabilities of 

LSTM RNNs and CNNs by using 

convolutional kernels to collect local features 

and LSTM-like gating techniques to handle 

time dependencies. GCNNs allow for more 

exact learning of local structures than models 

such as time delay 

neural networks (TDNN), which rely on 

linear transformations without gates. 

Furthermore, unlike highway networks, 

which employ numerous gates and complex 

processes, GCNNs simplify the process with 

a single gate, resulting in more efficient 

computations and shorter processing times. 

This unique combination enables GCNNs to 

efficiently balance local feature learning with 

temporal dependencies.  

The latent speaker vector is combined with 

the sequential features of the input to 

generate the time-expanded speaker 

vector. Using this combined input as a 

starting point, a range-limited Soft Gate 

control signal is generated following sigmoid 

function and voltage layer processing in the 

conv3 layer. The CNN branch's output is 

shown as follows,
CNNh|

: 

)(*))((| iembiGCNN hconvSVhconvSigmoidh +=

     

 
(5)in which the symbols conv and 

sigmoid denote the convolution process and 

the sigmoid activation functionality, 

correspondingly. In order to guarantee which, 

the speaker vector influences the output 

features, the CNN branch effectively records 

the local frame-to-frame data within speech. 

3.2.2 Temporal feature extraction using 

GRU 

In our work, the phoneme sequence 

representing the text data is combined with 

the implicit speaker vector obtained from the 

source audio to serve as the GRU model's 

input. The target speaker's distinct vocal 

qualities are captured by the speaker vector, 

while the phoneme sequence provides the 

basic sound units required for speech 
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synthesis. This combined input is processed 

by the GRU, which records speaker style and 

temporal dependencies during the entire 

speech. The output of the model combines 

these temporal and speaker-specific features 

into a feature representation. This output is 

crucial for ensuring that the generated speech 

maintains natural temporal flow and 

accurately reflects the target speaker's 

identity. 

GRU is an LSTM-based model [20] that 

maintains LSTM performance while 

improving the LSTM network layout. The 

prediction problem of long interval long 

delay time series can be resolved by the GRU 

network, which has only two gate structures 

the update gate and reset gate. The amount of 

information from the previous moment 

transferred into the present moment is 

managed by the update gate. The reset gate 

regulates how much of the data from the 

previous moment is discarded. A GRU 

construction is depicted in Fig. 2. The 

following formula can be used to determine 

the output of a GRU unit, assuming that the 

input sequence is ),,( ,21 txxx  , followed by 

a gate reset and an update at t. 

 ( )ttrt xhr ,* 1−= 
      (6)

 

 ( )ttzt xhz ,* 1−= 
      

 
(7) 

 ( )tttht xhrh ,*tanhˆ
1ˆ −= 

     (8) 

   
( ) ttttt hzhzh ˆ**1 1 +−= −      (9) 

   
( )tot hy = ˆ

      (10) 

In which, the formula's symbols tz  and tr  

denote the update gate, and the result value of 

the reset gate at time t. tx is the input at time 

t,   is the weight of the model and   is the 

activation function. th  and 1−th  denotes the 

output at time t and t-1 correspondingly. In 

other words, the output of the reset gate is 

used to adjust the update gate in order to 

optimise the neuron structure. Using the 

vector of the speaker embSV  as the beginning 

state, every frame input ih is converted by the 

GRU unit in this way: 





−

=
=

elseththGRU

tifthSVGRU
th

iGRU

iemb

GRU
))(),1((

1))(,(
)(

    

(11) 

Where the input and output frames of the 

GRU at every stage are indicated by )(thi and

)(thGRU , respectively. The very last feature 

GRUh  of the second branch is formed by 

combining the GRU outputs from all 

decoding phases. This enables speaker style 

control over the entire speech. We implement 

layer normalization (LN) [21] on the outputs 

from the GCNN and GRU channels, ( GCNNh

and GRUh ), in order to provide constant 

speaker identity control. In our proposed 

method, the speaker identification can be 

precisely controlled at both the local frame 

level and across the entire utterance by 

combining the normalised outputs to form the 

final output of each block. 
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Figure 2:  The structure of enhanced GRU's neurons 

 

3.3 Mel-Spectrogram Generation: 

Optimized Transformer Encoder 

The combined outputs from the GCNN and 

GRU branches are fed into the transformer in 

our suggested system. While the GRU 

captures temporal relationships and more 

detailed background details for the duration 

of the sequence, the GCNN extracts local 

features including speaker-specific variations 

and phonetic specifics. The input for the 

transformer is a single feature representation 

that is produced by combining and 

normalizing these outputs. 

 

The input for the Opt-transformer encoder is 

the combined feature representation. 

Positional encodings are added to the 

combined feature representation because 

transformers are not automatically aware of 

the sequence order. Due to the information 

provided by this encoding, the transformer is 

able to preserve the input data's sequential 

structure. Later, this feature embedding, 

denoted as, ( )nxxX ,,1 =
 
is transferred 

to the transformer encoder. Two-dimensional 

feature embeddings are produced as an output 

of these features after they go through a 

learnable linear transformation. Positional 

data is maintained by adding the positional 

embedding to the feature embedding, which 

concatenates the [cls] token. Layer 

normalisation (LN), an MLP block, and 

multi-head self-attention (MSA) combine to 

generate the layers that the embeddings pass 

throughout. Out of all the feature embeddings 

obtained from the opt-transformer encoder, 

just the [cls] token is sent into the MLP head 

in order to process input data. 

Multi-Head Self-Attention Layer 

Using k self-attention (SA) or multi-head 

self-attention operations on two-dimensional 

embedded features, 
DmRE + )1(

uses the 

following equations to learn the relationships 

between each patch. Query q  and key k  have 

a pairwise similarity of 
ijA , which is the 

attention weight matrix A .  

  qkvEWVKQ =,,                             

hDD

qkv RW
3


    

(12) 

Every sub-layer adopts residual connections 

and layer normalisation. Every sublayer 

outputs data in precisely the same dimension. 
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In our design, the attended feature vector is 

translated from x by the encoder block with 

multi-head attention. Subsequently, feed-

forward is applied to every attention vector in 

order to transform it into a format acceptable 

by the next level (whether it can be the 

decoder or as the encoder) ( )tzzZ ,,1 = . 

Feed-forward network  

Following the self-attention layers of each 

encoder and decoder is a feed-forward 

network (FFN). It consists of a nonlinear 

activation function positioned between two 

linear transformation layers. The following is 

the function that represents it: 

)()( 12 XVVXFFN =     

 (13) 

The nonlinear activation function is 

represented by the symbol σ, while the two 

linear transformation layers' parameter 

matrices are V1 and V2. 

Residual Connection in the Encoder and 

Decoder 

Every sub-layer within the encoder and 

decoder has a residual link created for it, as 

seen in Figure 3. Both performance and data 

transfer are enhanced as a result. The residual 

connectivity is followed by a layer-

normalization [22]. The following are the 

results from such operations: 

))(( XAttentionXLayerNorm +   

  (14) 

The input matrix X is shown to construct the 

self-attention layer, which then generates the 

query, key, and value vectors (q, k, and v).  

 
Figure 3: Proposed Transformer encoder model 
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3.3.1 Adaptive cheetah optimization 

algorithm  

The Adaptive Cheetah Optimisation (ACO) 

algorithm is used to optimise the transformer 

encoder. This approach optimizes the 

transformer encoder's model parameters to 

improve the device's ability to produce 

precise and superior mel-spectrograms. The 

ACO algorithm determines the transformer 

encoder's optimal weights and configurations 

by effectively identifying the parameter 

space. The CO algorithm is a novel meta-

heuristic optimisation method that takes its 

cues from cheetah hunting techniques [23]. It 

has many benefits, including fast 

convergence; minimal parameter 

modifications needed, and simplified 

computations. The three main phases of the 

algorithm include searching, waiting, and 

attacking. 

1. Initialization 

In the Cheetah Optimisation Algorithm, a 

population consists of a collection of 

potential solutions denoted by the locations 

of individual cheetahs inside the search 

region. Important hyperparameters like 

learning rate ( rL ), batch size ( sB ), number of 

attention heads ( H ), and number of layers (

Nl ) are considered during the process to 

ensure the model is effectively fine-tuned. 

Every member of the population is a potential 

solution to the optimisation issue at hand. 

Each cheetah's location inside the search area 

corresponds to the solution it provides. To get 

the best solution, the algorithm moves such 

individuals around iteratively.  

 nwwwwW ,,,, 321 =    

  (15) 

Where, W is the population and nw  

represents the thn  solution. 

],,,[1 Nsr lHBLw =     

  (16) 

In which,  represents the current iteration; 

)1,0(  

2. Fitness calculation 

Fitness is evaluated by this method using the 

error rate. The following is a description of 

the fitness calculation: 

+
=

RE
Fitness

1

     

 

(17) 

Where, RE →Error rate of the model 

→A small constant that is inserted 

to prevent division by zero 

In order to improve the score, the fitness 

function minimizes the error rate because a 

lower error rate corresponds to a better fitness 

score. 

3. Updation process 

i. Searching phase: - The cheetah 

watches its surroundings with alert 

eyes, using its hunting skills to find 

the best prey based on the dynamics 

of the surrounding environment. At 

this point, the mathematical model is 

described as follows: 


jijiji randCC ,,

1

, +=+

     
(18) 

( )LLji LU −+=
max

, 001.0



     

(19) 
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Where 


jiC ,  denotes the current position of 

cheetah-i at iteration  , 
1

,

+

jiC represents 

updated position of cheetah-i at iteration 

1+ , rand  is a random number selected 

from the interval (0, 1), 


ji,  indicates random 

step length; LL LandU represents the upper 

and lower bounds of variable, respectively;   

and max  denote the current and maximum 

iteration numbers. 

ii. Sitting and waiting phase: - Every 

motion a cheetah makes when 

hunting has the danger of alerting and 

possibly shocking its prey, which 

could result in an escape. Cheetahs 

wait patiently for prey to approach 

them from a distance by remaining 

low or hiding in bushes. The cheetah 

keeps its location constant during the 

sitting and waiting phase, which can 

be expressed numerically as follows: 


jiji CC ,

1

, =+

     

 
(20) 

iii. Attacking phase: - The secret to a 

cheetah's skill is timing the attacks on 

prey perfectly, using their exceptional 

speed and quickness. During the 

attacking phase, they close the 

distance swiftly and carefully disrupt 

the target with speed. Attacks, 

whether alone or in a group, need 

strategic placement according to the 

motions of the prey and the dynamics 

of the group. Here is the stage's 

mathematical representation: 


jijijHji NMCC ,,,

1

, +=+

    

 
(21) 

)2sin( ,
2

exp

,,

,

ji

rand

jiji randrandM
ji

=














  

  
(22) 



jijqji CCN ,

1

,, −= +

    

  
(23) 

Where, 


jHC , denotes the position of the prey, 



jiji NandM ,, stand for the turning and 

interaction factors, respectively, and 
jirand ,

represents a value selected at random from a 

normal distribution. Furthermore, the 

symbols 


jijq CandC ,

1

,

+
represent the locations 

of cheetahs q and i at iteration , respectively. 

Tent chaotic mapping 

Following the introduction of Tent chaotic 

mapping [24], the Tent chaotic map was used 

to initialize the cheetah instead of the 

randomly generated approach used in the 

regular CO. As a result, the equation (20) 

might be changed as follows: 


cjiji TCC +=+

,

1

,     

  
(24) 

 

 













−

−



=
−

−

−

−

1,,
)1(

)1(

,0,

1

1

1

1















c

c

c

c

c

T
T

T
T

T

   

  

(25) 

Dynamic weighting factor 

In this phase, the cheetah updates its position 

continuously using the dynamic weighting 

factor λ. λ is given a greater value at the start 

of the iteration, which enables the cheetah to 

carry out a successful global search. As the 

iteration comes to a close, λ gradually drops 

in an adaptive manner. Consequently, the 

following modification could be made to Eq. 

(9): 
  jijijHji NCC ,,,

1

, +=+

   

  
(26) 
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  max

2)1(2)1(2

)1(4)1(4

,









=
+

−
=

−−−

−−−

ee

ee

   

  

(27) 


jijqji CCN ,,, −=
    

  
(28) 

With these modifications, the fundamental 

CO can achieve superior search 

characteristics and balance the phases of 

exploration and exploitation by avoiding 

local traps or optima, leading to a global 

solution. 

4. Termination 

Equations (17) through (23), when applied to 

the algorithm, are repeated iteratively. The 

best solution found during the procedure is 

returned by the ACOA algorithm at 

completion of the execution. 

Algorithm 1: Adaptive Cheetah Optimization algorithm 

Input: learning rate ( rL ), batch size ( sB ), number of attention heads ( H ), and number of layers 

( Nl ) 

Output: Optimal output 

Start 

Initialize the learning population of solutions, iterations, and population size 

Use Tent chaotic map to initialize the cheetahs’ positions in the search space for better diversity using 

equation (25) 

Arrange cheetahs in the search area at random. 

For (each iteration) 

Calculate fitness for each cheetah using equation (17) 

Update cheetah positions using a step-length and random factor using equations (18), (20) and (21) 

if (no prey detected)  

Keep cheetah's position constant 

Else  

Adjust positions based on prey location and turning factor  

Adapt Tent chaotic map  and λ for better global and local search balance using equations (24) and (26) 

Repeat until max iterations or target fitness is reached.  

Return the best solution 

End 

In our system, the output mel-spectrogram is 

processed by the opt-transformer encoder to 

create the encoded representation. The next 

step is to convert the encoded representation 

into an audio waveform.  

3.4 Waveform Synthesis: HiFi-GAN 

Vocoder 

The mel-spectrogram that is generated is 

subsequently transformed into an auditory 

signal by means of a pretrained HiFi-GAN 

vocoder. Using GAN as the core generative 

method, HiFi-GAN incorporates two 

discriminators, the generator, and other 

components to efficiently convert the 

spectrum generated by the acoustic model 

into audio of excellent quality. An effective 

generator and multi-period and multi-scale 

discriminators are features of the high-

fidelity neural vocoder HiFi-GAN [25], 

which is based on generative adversarial 

networks (GAN). After receiving a mel-

spectrogram, the generator upsamples the 
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data to match the temporal resolution of the 

intended raw waveform using transposed 

convolution neural networks and multi-

receptive field fusion (MRF) modules. A 

customized kernel and dilation sizes for each 

of the receptive fields where the input feature 

is to be captured make up a multiple residual 

block model (MRF). Discover how to fool the 

generator's discriminators. Least Square 

GAN states that the discriminators pick up 

the skill of telling the difference between 

generated and ground truth speech, while the 

generator learns how to control them. The 

generator GL has three losses as its training 

objective: a mel-spectral L1 loss melL , an 

adversarial loss
advgL .

, a feature matching loss 

[15]
fmL , and so on. 

melmelfmfmadvgG LLLL  ++= .      

  
(29) 

Where, 
fm  and mel  are denotes the loss 

balancing hyperparameters. 

This adversarial process improves the 

quality of generated speech, gradually 

increasing its accuracy and naturalism. The 

combined impact of these losses, as 

controlled by certain hyperparameters, 

contributes to voice output that is clear, 

high-quality, and natural-sounding, closely 

matching the desired target audio. 

4. Results and Discussion 

The advanced TTS synthesis method for 

Sanskrit yields major improvements in 

speech quality and naturalness. Evaluation 

metrics such as Word Error Rate (WER%), 

Mel-Cepstral Distortion (MCD dB), Speech 

Emotion Recognition Score (SECS), Mean 

Opinion Score (MOS), and Speaker Mean 

Opinion Score (SMOS) show that the system 

captures and reproduces the target speaker's 

vocal features accurately. Python is used to 

implement the proposed methodology. The 

proposed methodology presented in this 

study should be implemented using a high-

performance processor, such as an Intel Core 

i9 or AMD Ryzen 9, and a system with 32GB 

or more of RAM. 

Dataset description: - The Vāksañcayaḥ - 

Sanskrit voice corpus has about 78 hours of 

data and 45,953 sentences recorded at a 22 

KHz sampling rate. The majority of the 

material consists of readings from numerous 

Sanskrit literature books covering many 

Śāstras. There are also modern tales, radio 

programs, extempore speeches, etc.  

4.1 Experimental results 

The experimental results demonstrate the 

effectiveness of the advanced TTS synthesis 

system for Sanskrit. The analysis indicates 

that the synthesized audio closely replicates 

the frequency and temporal features of the 

original speech, demonstrating a high level of 

closeness in the output. Performance 

measurements demonstrate constant progress 

throughout the training phase, with notable 

decreases in loss and error rates, 

demonstrating the model's ability to learn and 

adapt efficiently.  
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(e) 

Figure 4: Comparison of Reference and Synthesized Spectrograms for Various Phrases in the TTS System 

Figure 4 displays different spectrograms that 

compare synthesized and reference audio for 

various phrases proposed Sanskrit TTS 

system. The reference spectrogram is on the 

left, and the synthesized version is on the 

right, in each pair of spectrograms that are 

shown side by side. The comparison shows 

how well the TTS technology replicates 

normal speech patterns. In subplot (a), the 

synthesized audio nearly matches the 

reference in terms of frequency and time, 

with just minor changes in strength. Subplot 

(b) demonstrates that the synthesized output 

captures the general structure of the 

phonemes, with minor deviations in the 

higher frequency ranges. In subplot (c), the 

reference and synthesized spectrograms are 

very similar, with only very small variations 

in the transition between phonemes. Subplot 

(d) shows an excellent matching between the 

two versions, especially in the low-frequency 

areas, but some smoothing is visible in the 

synthesized version. Subplot (e) shows a 

largely accurate reproduction of the reference 

audio. Overall, the comparisons indicate that 

the TTS system is effective at producing 

natural-sounding speech, with only modest 

changes in frequency strength and transitions. 

 
(a)          (b) 

Figure 5: (a) Log Loss over Epochs (b) Error Rate over Epochs 

The two graphs in the figure 5 show the 

model's performance increase over 20 

epochs, as measured by (a) log loss and (b) 

error rate. Training of the model is improving 
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the accuracy of its probability predictions, as 

seen by the left graph where the log loss 

steadily decreases from 0.8 in the first epoch 

to about 0.25 by the 20th epoch. This 

declining trend begins earlier in the epochs 

(1–5), indicating quick learning at first, and 

then it becomes more gradual as the model 

converges. The error rate is also plotted on 

the right graph, falling to approximately 

0.015 by epoch 20 from a starting point of 

nearly 0.145 in the first epoch. Both graphs 

depict the model's successful learning 

process, with performance improving as the 

epochs progress. 

4.2 Comparative analysis 

In this section, a comparative analysis is 

presented to evaluate the performance of the 

proposed TTS system against existing 

models like Tacotron and Transformer 

encoder. The focus is on examining key 

metrics such as word error rates, mel-cepstral 

distortion, and speaker effectiveness to 

highlight improvements in speech synthesis 

accuracy and audio quality. Additionally, 

listener evaluations, including MOS and 

SMOS scores, provide insights into the 

naturalness and similarity of the synthesized 

speech to human speech. The analysis also 

explores classification accuracy by 

comparing true positive rates across different 

false positive rates, offering a comprehensive 

assessment of the proposed system's 

effectiveness in advancing TTS systems. 

Table 1: Performance Comparison of GCNN and GRU Models in TTS Systems 

Model MCD(dB)↓ SECS↑ 

GCNN only 2.56 0.806 

GRU only 2.48 0.814 

GCNN+GRU (Proposed) 2.13 0.851 

 

Table 1 illustrates the results of an ablation 

study evaluating the impact of various model 

elements on speaker control in the proposed 

TTS system. The GCNN model has an MCD 

(mel-cepstral distortion) of 2.56 dB and an 

SECS (Speaker Encoder Cosine Similarity) 

score of 0.806, whereas the GRU model has 

a slightly higher MCD of 2.48 dB and SECS 

of 0.814. With the lowest MCD of 2.13 dB 

and the greatest SECS score of 0.851, the 

proposed model, which combines both 

GCNN and GRU, performs better. According 

to these outcomes, combining the GRU and 

GCNN models improves speaker similarity, 

decreases distortion, and improves speaker 

control over employing a single model. 

Table 2: Comparative Evaluation of TTS Models Using Key Metrics (Existing Models vs. Proposed Model) 

Model WER 

(%)↓ 

MCD(dB)↓ SECS↑ MOS↑ SMOS↑ 

Tacotron 6.59 5.835 0.7907 3.12 3.54 

Transformer 

encoder 

6.08 5.439 0.8120 3.8 3.71 

Opt-

transformer 

encoder 

(Proposed) 

5.73 4.965 0.8970 4.98 3.89 
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A comparative analysis of TTS models based 

on important metrics is shown in Table 2, 

which also highlights the performance of the 

suggested optimised transformer encoder and 

existing models. The suggested model's 

WER is 5.73%, which is substantially lower 

than Tacotron and the Transformer encoder's 

WERs of 6.59% and 6.08%, respectively, 

suggesting better speech synthesis accuracy. 

Furthermore, the suggested model shows 

improved audio quality over existing models 

with a decreased MCD of 4.965 dB. Notably, 

the suggested model outperforms Tacotron 

and the Transformer encoder with a higher 

SECS score of 0.8970. Furthermore, the 

MOS of 4.98 demonstrates a significant 

improvement in perceived speech quality, 

while the SMOS of 3.89 suggests that 

listeners consider the synthesized speech to 

be more comparable to actual human speech 

than previous models. Overall, the optimized 

transformer encoder exceeds standard models 

on all major measures, demonstrating its 

effectiveness in TTS systems. Tacotron has 

greater word error rates because to its 

ineffective handling of speech, which affects 

audio quality and listening experience. The 

Transformer encoder improves slightly in 

accuracy, but it still problems with audio 

clarity and speaker efficacy. In contrast, the 

suggested optimised transformer encoder 

exceeds these existing models, displaying 

improved accuracy and audio quality. This 

improvement increases speaker effectiveness 

and audience satisfaction, demonstrating its 

usefulness in text-to-speech systems. 

 
Figure 6: Comparison of ROC curve for proposed and existing models 

Figure 6 illustrates a ROC curve that 

compares the True Positive Rate (TPR) vs 

False Positive Rate (FPR) of three models: 

Tacotron, Transformer encoder, and the 

proposed model. With an Area Under the 

Curve (AUC) of 0.8, the proposed model 

(green curve) performs most efficiently, 

considerably exceeding the Transformer 

encoder (orange curve) of AUC =0.77 and 

the Tacotron (blue curve) of AUC = 0.79. 

The model's ability to differentiate between 

positive and negative classes improves with 

the curve's proximity to the top-left corner. 

All models outperform the random classifier 



International Journal of Intelligent Systems and Applications in Engineering                     IJISAE, 2024, 12(23s), 2637–2658  |  2655 

shown by the dashed diagonal line with AUC 

= 0.5. When compared to the other two 

models, the proposed model demonstrates 

greater true positive rates throughout a 

variety of false positive rates, indicating that 

it provides more accurate classification.  

4.3 Comparison with published work 

In order to evaluate the efficacy of the 

proposed optimized transformer encoder for 

Sanskrit TTS synthesis, several of well-

known speech synthesis techniques were 

chosen for comparison in this study. In 

Section 2, these reference models, which 

include the Transferable Monotonic Aligner 

(TMA) [11], the Tacotron 2-based neural 

vocoder [12], the Neural Codec Language 

Model (VALL-E) [13], and MOSNet 

[18], were examined and thoroughly 

explained. 

Table 3: Comparing published works with various metrics 

Ref Technique WER 

(%) ↓ 

MCD(dB)↓ SECS↑ MOS↑ SMOS↑ 

Yinghao Aaron 

Li and Cong 

Han et al., [11] 

Transferable 

Monotonic Aligner 

(TMA) 

8.26 - - 2.43 - 

Ye Jia et al., [12] Neural vocoder 

based on Tacotron 2 

10.14 - - 3.65 - 

Chengyi Wang 

et al., [13] 

Neural codec 

language model 

(called VALL-E) 

5.9 - - 2.66 3.45 

Rishabh Jain et 

al.,[18] 

MOSNet 15.27 - - - - 

Opt-transformer encoder (Proposed) 5.73 4.965 0.8970 4.98 3.89 

 

The table 3 presents findings that illustrate 

how well the optimised transformer encoder-

based TTS model performs in comparison to 

other methods. The suggested model 

produces a WER of 5.73%, which is much 

lower than the WER of models like MOSNet 

with15.27%, Tacotron 2-based neural 

vocoder with10.14%, and TMA with 8.26%. 

Furthermore, as seen by its MCD of 4.965 

dB, the suggested model has exceptional 

audio quality. The suggested system is 

noteworthy for its exceptional ability to 

capture speaker similarity, as demonstrated 

by its high SECS of 0.8970, which surpasses 

all other models. By achieving a MOS of 4.98 

in perceptual assessments, the suggested 

model outperforms methods like VALL-E, 

which only obtain a MOS of 2.66, on the 

basis of overall naturalness and quality of the 

synthesized speech. With a score of 3.89, the 

SMOS indicates the model's superior ability 

to replicate the speaker's features compared 

to VALL-E, which scored 3.45. With 

significant gains in several important speech 

synthesis parameters, these findings clearly 

show the efficacy of the optimized 

transformer encoder and establish it as a very 

accurate and affordable Sanskrit TTS system. 

5. Conclusion 

The purpose of this study is to present an 

advanced and innovative TTS system 

specifically designed for Sanskrit, a language 

with immense historical and cultural 

significance that faces many challenges in 

speaking today. The suggested system 

efficiently solves the complexity of Sanskrit 
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phonetics by applying an optimized 

transformer encoder in conjunction with 

techniques such as G2P conversion, GCNN 

for local feature extraction, and GRU for 

temporal analysis. The application of the 

Adaptive Cheetah Optimisation algorithm to 

increase transformer model performance, as 

well as the HiFi-GAN vocoder for high-

quality audio waveform creation, 

considerably improves the naturalness and 

speaker similarity of synthesized speech. The 

efficiency of the proposed technique has 

been evaluated using the Vāksañcayaḥ - 

Sanskrit Speech Corpus dataset. The system 

shows significant advances in generating 

accurate, human-like speech when measured 

by important metrics such as WER, MCD, 

SECS, and MOS and SMOS. These 

enhancements demonstrate the efficacy of the 

optimized transformer encoder and the 

integration of G2P, GCNN, GRU, and HiFi-

GAN vocoders in addressing the problems of 

Sanskrit speech synthesis. The results suggest 

that this method has the potential to 

considerably enhance the accessibility and 

preservation of the Sanskrit language by 

providing a modern and efficient approach 

for producing highly accurate and natural 

speech. In the future, the suggested method 

could be enhanced by investigating transfer 

learning between languages with similar 

phonemes. Furthermore, research that uses 

pretrained language models is required to 

increase training performance and achieve 

greater alignment across identical resource 

instances. 
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