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Abstract—Cloud computing is a computing environment that involves the process of accessing of services, which 

includes the storage environments, various applications and servers through the Internet. Cloud is a large pool of 

information, software packages, shared resources, storage and enormous applications based on user demands at any point 

of time. In other words, cloud computing refers to system-oriented software, physical hardware devices, and day-to-day 

applications delivered to the users through the medium of the internet as services. Cloud resources can be accessed in 

diverse ways for multiple purposes, making scheduling crucial for providing optimal services to users. With data and 

resource availability increasing constantly, the need for efficient scheduling algorithms becomes paramount. Effective 

load-balancing techniques can significantly enhance system performance while reducing costs and energy consumption. 

Various heuristic algorithms have been proposed to tackle these challenges, with intelligent approaches being widely 

adopted. This paper portrays the detailed description of the MPSOA-LB scheme propounded for attaining substantial load 

balancing in a cloud computing setting. The planned system model explores various factors that contribute to the 

development of a fitness function, which helps evaluate the over-utilization and under-utilization in the MPSOA-LB. This 

algorithm focuses on efficient load distribution among virtual machines and hosts within cloud environments. The paper 

also discusses the simulation setup, and the results obtained from implementing the MPSOA-LB under varying conditions, 

including the quantity of tasks, instruction finishing lengths, and increasing the quantity of virtual machines. 
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INTRODUCTION 

A computing environment known as cloud computing 

allows users to access services, including servers, 

storage, and apps, over the Internet. It utilizes the 

existing resources of various organizations as remote 

services available for payment. In cloud computing, 

load balancing entails allocating tasks among several 

virtual machines within a data center. The workload 

entering into the cloud computing environment need to 

be significantly allocated to the resources, such that 

each share is responsible for sharing an equivalent 

quantity of loads at any particular moment. The 

performance of the cloud environment completely 

varies on the degree to which the resources are equally 

shared since imbalance in load leads to deterioration in 

the network efficiency. Further, the system needs to 

follow a potential load-balancing scheme for facilitating 

the promotion of resource availability that in turn leads 

to the increased performance of the cloud computing 

environment.  

Moreover, the balancing load process consists of 

complex issues for facilitating optimal resource 

utilization with rapid processing time. The workload 

associated with each individual VM present in the 

datacenter is presented based on the cumulative sum of 

the forecasted or expected computation of time 

associated with respect to the assigned independent 

tasks. In particular, load balancing aims in effective 

resource utilization for maximizing the throughput with 

reduced response time through the equal sharing of 

workloads among the servers in the cloud environment. 

The main objective of load balancing approach aims at 

enhancing the performance based on workload 

balancing phenomenon among the virtual machines. It 

also concentrates towards the achievement of ideal 

resource consumption, maximizing output, and 

maximizing latency for preventing overloads. 

 

WHY LOAD BALANCING IS ESSENTIAL 

The following are the primary components of load 

balancing in cloud computing. 

i) The load balancing process are considered to be 

potential in handling any sudden traffic received into the 

cloud computing environment at any particular point of 

time. 

ii) The load balancing mechanisms are capable enough 

in handling any amount of traffic burst incoming into 

environment, since they distribute the load uniformly to 
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the available VMs of the data for maximizing the 

response time. 

iii) The load balancing techniques are highly flexible in 

nature by distributing the workload among the number 

of servers and network units even if any of the node ends 

in failure. 

iv) The load balancing techniques are highly scalable in 

handling huge amount of traffic with robustness and 

fault tolerance capability. 

v) They are significant in easily managing the high-end 

user data traffic with the existence of network devices 

and servers. 

vi) It plays an anchor role in e-commerce, since they 

help the commercial websites of Flipkart and Amazon 

to deal with millions of customers every single second 

of time. 

vii) It is helpful in e-commerce activities by managing 

and distributing workloads during the offers of sale and 

promotional time. 

viii) They are also easily implementable and less 

expensive as compared to their counterparts since they 

enable the organizations to work on their clients’ 

applications in a rapid speed for delivering optimal 

performance at a comparatively lower cost.  

 

PROPOSED MPSOA-LB SYSTEM 

The MPSOA-LB scheme focuses on three key 

capabilities: 

1. Classification of VMs: It categorizes virtual 

machines into under-loaded and over-loaded groups to 

facilitate effective load balancing. 

2. Energy Minimization: It aims to reduce the overall 

incurred costs by minimizing energy consumption in the 

data centre. 

3. Utilization Identification: This component of the 

scheme identifies Virtual Machines (VMs) within the 

data center that are either not being fully utilized or are 

overloaded 

Additionally, includes a method for defining specific 

metrics that set upper and lower limits, which act as 

benchmarks for recognizing when VMs are 

experiencing either excessive or insufficient workloads. 

These metrics are based on the volume of tasks entering 

the cloud system. 

 

ALGORITHM OF MPSOA-LB 

The MPSOA-LB uses a multi-objective function to 

manage how tasks are allocated and reassigned among 

VMs or hosts. This process is guided by primary 

constraints, which require that the load on VMs should 

not exceed the upper limit after task assignment. 

Deadline constraints are contemplated when there is a 

substantial quantity of available VMs. Furthermore, 

transferring tasks from VMs that are severely loaded to 

those with lighter loads is essential, depending on the 

tasks' deadlines or required completion times. In this 

approach, VMs with the earliest deadlines are 

prioritized for tasks that have high completion times. 

Conversely, for tasks with moderate completion times, 

VMs with more flexible deadlines are selected. 

Additionally, VMs are categorized based on their 

current load into two groups: those that are under-

loaded and those that are over-loaded. 

 

Algorithm 1: Steps for Implementing the MPSOA 

Step1: The population is initialized with Sj such that value of j satisfies the condition1: 

≤j≤n //n is the number of VMs present in the data centre of clouds. 

Step 2. Set the speed or velocity SVel(j) of the particle (VM) with which it could be allocated. However, the speed or 

velocity SVel(j) of the particle is initially 0. 

Step3. Compute the availability of each particle available in the data centres. 

Step 4. Aggregate the identified non-dominated solutions in the repository (VMs that are lightly loaded) for confirming 

its under-loaded conditions. 

Step5. Initiate the generation of hyper cubes. 

Step 6. Set the memory corresponding to each particle by aggregating information related to the stored initial positions, 

in order to identify the best position of the particles identified so far, based on        

Step7: Calculate and update the velocity of the particle based on  

 
Where the value of inertial weight is set to 0.4, with the random numbers rand1 and rand2 ranging between 0 and 1. 

Step 8. Manipulate the updated positions of each particle based on the equation 

Sj=Sj+S_Vel(j). 

Step 9. The particles that are estimated to be within the search boundaries are maintained in the repository. 

Step 10. Again, estimate the fitness of each particle. 

Step 11. Employ the operations of mutation over each and every particle. 

Step 12. The hypercube and repositories are updated by preventing the worst particles from participating in the allocation 

of virtual machines (VMs) to incoming tasks. 

Step 13. Update the memory of each particle by substituting the previous best position with the newly identified best 

position achieved by that particle. 

Step 14. Terminate the iteration if the maximum number of iterations has been completed. 

Step 15. Otherwise, iterate from Step 7 until the termination conditions are satisfied. 
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In the MPSOA-LB scheme, virtual machines (VMs) in 

overloaded groups are required to offload their tasks and 

wait until they can find a suitable VM for real location 

in the subsequent iteration. Meanwhile, VMs in 

underloaded groups receive tasks that are pending or 

require redistribution. This process of removing tasks 

from overloaded VMs continues until all underloaded 

VMs are allocated tasks. Potential allocation solutions, 

represented as particles, are generated randomly to 

explore possible options for task allocation. The 

MPSOA-LB scheme leverages Pareto ranking to 

address multi-objective optimization challenges 

associated with task allocation based on VM 

availability, which is assessed in terms of their 

overloaded or underloaded states. It also maintains a 

record of non-dominating solutions from previous 

iterations, tracking the best solutions identified by the 

particles. As detailed in Algorithm 1, these procedures 

contribute to the effective distribution of jobs/duties to 

VMs, considering constraints related to over-allocation 

and under-allocation, thereby enhancing the “load-

balancing process”. 

 

SIMULATION SET UP OF THE MPSOA-LB 

SCHEME 

The execution of the MPSOA-LB program was assessed 

through experiments conducted using CloudSim. 

CloudSim proved crucial for modelling and simulating 

various activities, allowing an in-depth study of how 

varying resource levels affect cloud environments. The 

evaluation of the MPSOA-LB scheme involved testing 

across diverse hosts, data centers, and virtual machines 

to gauge the impact of scalability within the cloud 

infrastructure. For the simulations, the MPSOA-LB 

scheme was implemented in an environment comprising 

10 data centers, 50 virtual machines, and a range of tasks 

from 100 to 1000. The tasks had the length of executable 

instructions between 1000 and 20000 Million 

Instructions (MI). Table 3.1 also outlines key simulation 

parameters used in the experimentation of the MPSOA-

LB scheme. 

 

Table 3.1: Key factors for the MPSOA-LB Scheme Execution 

Category Type Setting 

Tasks #Tasks 100-1000 

 Task Length 2000-20000 

Data Center VM-Scheduler Time-Shared 

 #Hosts 02-04 

 #DataCenters 10 

Virtual Machine (VM) Cloudlet-Scheduler Time-Shared 

 Bandwidth 500-1200 

 Essential Processor Count 01-02 

 Processor Speed 4000-8000MIPS 

 No. of VMs 50 

 Available storage area in each VM 256-2018Mb 

 

ANALYSIS AND FINDINGS OF THE PROPOSED 

WORK 

The following criteria are used to assess the 

effectiveness of the proposed MPSOA-LB scheme. 

1. Mean Response Time: Analysed concerning 

variations in the amount of work and the part of 

executable instructions.  

2. Performance Comparison with Traditional 

Algorithms: Comparison of “mean response time, 

executable instruction length, and mean execution time” 

between the proposed scheme and conventional 

algorithms. 

3. Mean Response Time, Executable Command 

Length, and Mean Execution Time are evaluated against 

algorithms based on swarm intelligence. 

4. Investigation of the quantity of migrated work as the 

number of virtual machines (VMs) increases and the 

task count remains constant. 

5. Task Migration Analysis with Increasing Task 

Count: Examination of the no. of migrated tasks as the 

task count grows, with a fixed number of VMs. 

 

Response Time with Different Numbers of Tasks and 

Practicable Instruction Measurements 

The importance of the MPSOA-LB scheme is evaluated 

in this fragment through the mean response time for 

varying task counts the lengths of executable 

instructions in a cloud computing environment. Figure 

1  plots the “MPSOA-LB scheme”, where the average 

response time is measured for varying task count and 

instruction length (i.e. in bytes). The mean response 

time increases from 8.14 seconds to 21.24 seconds when 

the task count increases from 100 to 1000, while the 

executable instruction length is 2000 bytes. For 

instance, when the instruction length is 8000 bytes, 

increasing the number of tasks leads to the mean 

response time increasing from 8.96 seconds to 45.48 

seconds. As tasks increase, the mean reaction time 
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raises from 9.12 seconds to 76.42 seconds for an 

instruction length of 14,000 bytes. Finally, the mean 

response time increases from 8.12 seconds to 102.14 

seconds as the task count increases steadily, while the 

instruction length is set to 20,000 bytes. The response 

time increases consistently with varying instruction 

length because of the threshold parameters used to 

measure the levels of over utilization and 

underutilization of the system. 

 

 
Figure 1: Mean Response Time Different Number of Tasks 

 

Figure 2 shows the variation of average response time 

of the MPSOA-LB program with the feasible instruction 

length for different task counts. As the instruction extent 

increases from 200 to 2000, the mean reaction time 

increases from 23.42 to 38.76 seconds with 200 tasks. 

For 400 tasks, the mean response time also rises from 

31.21 seconds to 56.12 seconds when the instruction 

length increases by the same amount. The response time 

is observed to increase from 36.54 seconds to 64.42 

seconds as the executable instruction length varies for 

700 tasks. Furthermore, the mean response time rises 

from 42.32 seconds to 78.18 seconds when the 

instruction length increases from 200 to 2000 with 1000 

tasks. The rise of response time as task count and 

instruction length vary can mainly be explained by the 

allocation and deallocation policies, as well as the 

threshold parameters used in the MPSOA-LB scheme. 

 

 
Figure 2: Mean Response Time under Different Executable Instruction Length 
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Performance Evaluation Over Benchmarked Swarm 

Intelligent Schemes 

This section compares the MPSOA-LB scheme with 

three swarm intelligence-based approaches: ACO-LB, 

ABC-LB and PSO-LB. The evaluation is done by 

changing the quantity of tasks from 100 to 1000 and the 

executable command length from 2000 to 20,000 for a 

upper limit value of 0.1. The average response period of 

the MPSOA-LB system is compared with ACO-LB, 

ABC-LB, and PSO-LB across different task counts as 

shown in Figure 3. The results show that the MPSOA-

LB scheme reduces the mean response time by 8.12%, 

9.84% and 10.21% as compared to ACO-LB, ABC-LB 

and PSO-LB respectively. The multi-objective 

optimization function in the task allocation process is 

the reason for the improvement in response time as the 

process of assigning tasks to virtual machines (VMs) is 

more efficient

. 

 

 
Figure 3: Mean Response Time under Number of Tasks 

 

 
Figure 4: Mean Response Time under Different Executable Instruction Length 
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Figure 5: Mean Execution Time under Number of Tasks 

 

The mean response time of the MPSOA-LB, ACO-LB, 

ABC-LB, and PSO-LB schemes is presented in Figure 

4, for feasible instruction length of 2000 to 20,000. The 

results show that the MPSOA-LB program reduces 

response time by 6.68%, 7.26% and 8.56% compared to 

ACO-LB, ABC-LB and PSO-LB respectively. The 

reason for this improvement is that the scheme’s 

objective function effectively reduces the standard 

deviation in load distribution among virtual machines 

(VMs). Figure 5 also shows the mean execution time of 

these schemes as the no. of tasks is varied from 100 to 

1000. The projected outline shows a good efficiency, 

reducing the execution time by 6.13%, 7.85%, and 

8.94% compared to ACO-LB, ABC-LB, and PSO-LB, 

respectively. The reason for this decrease is mainly 

because of the scheme’s use of dynamic upper and 

lower threshold values, which help to keep the load 

balance across the system optimal. 

 

Performance of Migrated Tasks with Varying No. of 

VMs 

The execution of the aimed program has been estimated 

by analyzing the number of migrated tasks as the no. of 

VMs increases. Figures 6 and 7 exhibit the efficiency of 

the scheme by assessing the number of migrated tasks 

with VM counts for task sets of 200 and 400. The results 

indicate a significant decrease in the quantity of 

transferred tasks using the MPSOA-LB scheme, 

regardless of the number of VMs. This reduction is 

primarily due to the scheme's flexible allocation and 

deallocation strategies, governed by the upper and lower 

availability limits of VMs and hosts, which optimize 

load balancing. For 200 tasks, the MPSOA-LB scheme 

reduces migrated tasks by 5.68%, 6.59%, and 7.56% 

associated to the ACO-LB, ABC-LB, and PSO-LB 

schemes, respectively. 

 

Figure 6: Migrated Tasks Under Increasing No. of VMs 

(Tasks-200) 

 

 
Figure 7: Migrated Task under Increasing Number of VMs (Tasks-400) 
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Figure 8: Migrated Task under Increasing Number of VMs (Tasks-600) 

 

 
Figure 9: Migrated Task under Increasing Number of VMs (Tasks=800) 

 

 
Figure 10: Migrated Task under Increasing Number of VMs (Tasks=1000) 

 

The MPSOA-LB scheme shows a significant decrease 

in the number of migrated tasks across various VM 

configurations. When the number of tasks is set to 400, 

the scheme reduces task migration by 4.86%, 5.68%, 

and 6.32% equated to the ACO-LB, ABC-LB, and PSO-

LB schemes, respectively. Figures 3.8 and 3.9 further 

demonstrate the efficiency of the MPSOA-LB scheme 

by evaluating the number of migrated tasks for task 

counts of 600 and 800, under different VM settings. The 

MPSOA-LB consistently reduces task migration, 

irrespective of the VM count, which can be attributed to 

the multi-objective PSO algorithm's ability to balance 

exploration and exploitation while considering the 

accessibility of VMs and hosts in the cloud 

environment. With 600 tasks, the scheme achieves 

reductions of 4.12%, 5.68%, and 6.82% compared to 

ACO-LB, ABC-LB, and PSO-LB, respectively. For 800 

tasks, the reductions are 4.32%, 5.94%, and 6.28% 

compared to the baseline methods. Furthermore, Figure 

10 demonstrates that the MPSOA-LB program is still 

able to minimize the amount of migrated tasks with 

1000 tasks and different VM configurations. The 
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reductions are 4.58%, 5.32%, and 6.58% for 1000 tasks 

compared to ACO-LB, ABC-LB, and PSO-LB, 

respectively, which further verifies the effectiveness of 

the scheme in optimizing load balancing for a growing 

task load. 

 

Impact of Increasing Tasks on the No. Of Migrated 

Tasks 

To assess the efficiency of the MPSOA-LB structure, 

the amount of migrated tasks is analyzed as the total task 

count increases. The scheme is capable of reducing task 

migration as shown in figures 11 and 12 when the 

number of Virtual Machines (VMs) is set to 2 and 4 

respectively. In both cases, the quantity of migrated 

tasks decreases significantly with the total quantity of 

tasks. The adaptive allocation and deallocation 

mechanism of the MPSOA-LB scheme contributes a lot 

to this improvement, which adapts to the load balancing 

threshold dynamically. In particular, the MPSOA-LB 

scheme reduces the number of migrated tasks by 3.12%, 

5.32%, and 6.65% compared to ACO-LB, ABC-LB, 

and PSO-LB, respectively, when there are 2 VMs. Also, 

when 4 VMs are used, the scheme shows a considerable 

decrease of 5.24%, 6.04%, and 7.28% in migrated tasks 

for the ACO-LB, ABC-LB, and PSO-LB methods. 

 

 
Figure 11: Migrated Tasks under Increasing Number of Tasks (VMs=2) 

 

 
Figure12: Migrated Tasks under Increasing No. of Tasks (VMs=4) 
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Figure 13: Migrated Tasks under Increasing Number of Tasks (VMs=6) 

 

 
Figure 14: Migrated Tasks under Increasing Number of Tasks (VMs=8) 
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Figure 15: Migrated Tasks under Increasing Number of Tasks (VMs=10) 

 

The efficiency of the MPSOA-LB scheme in 

minimizing task migration with varying task counts for 

6 and 8 virtual machines (VMs) is shown in Figures 13 

and 14, respectively. The results show a significant 

reduction in task migration across all task counts, 

regardless of the quantity of VMs, when contrasted to 

the baseline methods. This improvement is attributed to 

the multi-perspective PSO mechanism, which 

effectively evaluates the accessibility of VMs and hosts 

within the cloud environment. For 6 VMs, the MPSOA-

LB scheme achieves a reduction in migrated tasks by 

5.36%, 6.86%, and 7.12% equated to the ACO-LB, 

ABC-LB, and PSO-LB schemes, respectively. With 8 

VMs, the reductions are 3.92%, 4.65%, and 5.32% 

compared to the same baselines. Similarly, Figure 15 

highlights the functioning of the MPSOA-LB scheme 

with 10 VMs. The scheme continues to effectively 

reduce the quantity of migrated tasks even with an 

increased quantity of VMs, leveraging its ability to 

accurately detect overloaded VMs in the cloud setting. 

With 10 VMs, the no. of migrated responsibilities is 

reduced by 4.21%, 5.28%, and 6.54% when equated to 

the ACO-LB, ABC-LB, and PSO-LB approaches. 

 

STATISTICAL ANALYSIS OF THEMPSOA-LB 

APPROACH 

Tables 2-4 provide a statistical evaluation of the 

MPSOA-LB scheme, considering key metrics such as 

make-span, system imbalance degree, and the quantity 

of migrated tasks before and after load balancing. The 

analysis assesses the performance of MPSOA-LB 

concerning the baseline ACO-LB, ABC-LB, and PSO-

LB schemes, demonstrating its effectiveness and overall 

performance improvements across all metrics. 

 

Table: Make span (Seconds) of the MPSOA-LB Before and After Load Balancing 

Tasks MPSOA-LB ACO-LB ABC-LB PSO-LB 

 Before After Before After Before After Before After 

100 12.65 6.79 18.23 9.45 21.38 10.15 23.34 11.65 

200 21.56 8.28 23.45 11.35 25.68 12.12 26.78 13.36 

300 23.48 9.56 25.46 12.12 29.78 13.46 31.24 14.68 

400 29.46 10.76 28.56 12.82 30.24 13.48 32.56 14.98 

500 39.42 12.36 30.62 13.12 32.86 14.78 34.68 15.68 

600 45.68 14.13 34.42 15.62 36.76 16.78 38.94 17.24 

700 59.84 15.14 35.18 16.86 38.82 17.12 39.12 18.92 

800 68.74 17.14 36.18 18.12 40.64 17.86 41.34 19.78 

900 74.58 20.46 38.92 21.56 41.72 18.36 43.86 19.98 

1000 79.84 22.42 38.98 26.65 42.84 18.45 44.18 20.12 
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Table: Degree of Imbalance in the MPSOA-LB Before and after load balancing 

Tasks MPSOA-LB ACO-LB ABC-LB PSO-LB 

 Before After Before After Before After Before After 

100 1.63 0.34 1.78 0.38 1.88 0.44 1.98 0.45 

200 1.67 0.37 1.83 0.45 1.96 0.52 2.25 0.56 

300 1.69 0.39 1.89 0.48 2.12 0.59 2.36 0.69 

400 1.72 0.43 1.97 0.54 2.18 0.65 2.42 0.74 

500 1.78 0.47 2.12 0.58 2.23 0.72 2.46 0.78 

600 1.84 0.49 2.19 0.63 2.28 0.78 2.32 0.83 

700 1.89 0.52 2.24 0.67 2.32 0.83 2.38 0.87 

800 1.94 0.57 2.36 0.69 2.38 0.87 2.42 0.92 

900 1.98 0.62 2.42 0.74 2.42 0.92 2.46 1.12 

1000 2.12 0.65 2.46 0.78 2.46 1.12 2.32 0.83 

 

The results authorise that the MPSOA-LB program 

demonstrates superior performance in relations of 

make-span system inequity, and the number of migrated 

tasks, both before and after the load-balancing process, 

when compared to the baseline ACO-LB, ABC-LB, and 

PSO-LB schemes. This underscores the improved 

efficiency and effectiveness of the MPSOA-LB 

approach in optimizing load balancing and resource 

allocation. 

 

Table 4: Tasks Migrated in MPSOA-LB Before and After Load Balancing 

Tasks MPSOA-LB ACO-LB ABC-LB PSO-LB 

 Before After Before After Before After Before After 

100 7.34 3.21 8.21 3.98 8.88 4.24 9.34 4.78 

200 7.38 3.26 8.28 4.04 9.02 4.56 9.46 4.84 

300 7.45 3.39 8.38 4.08 9.12 4.58 9.54 4.92 

400 7.54 3.45 8.46 4.14 9.19 4.64 9.58 4.95 

500 7.59 3.48 8.56 4.19 9.28 4.69 9.65 4.98 

600 7.64 3.56 8.64 4.24 9.34 4.78 9.78 5.12 

700 7.68 3.68 8.78 4.28 9.46 4.84 9.86 5.19 

800 7.76 3.79 8.89 4.34 9.54 4.92 9.94 5.24 

900 7.84 3.88 8.96 4.39 9.58 4.95 9.96 5.29 

1000 7.89 3.94 8.98 4.45 9.65 4.98 9.98 5.34 

 

The results reveal that the average improvement of the 

make-span achieved using the MPSOA-LB load 

balancing scheme before and after the balancing process 

is 4.12%, 4.98%, and 5.42% when compared to ACO-

LB, ABC-LB, and PSO-LB schemes, respectively. The 

system imbalance was also reduced by an average of 

4.16%, 4.86%, and 5.42% after applying the MPSOA-

LB scheme compared to the same benchmarks. In 

addition, the amount of work migrated during load 

balancing was drop off by an mean of 5.21%, 5.98%, 

and 6.36% compared to the ACO-LB, ABC-LB, and 

PSO-LB approaches, respectively. The results of this 

study show that the MPSOA-LB scheme can improve 

resource allocation, reduce system imbalance, and 
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increase system performance. From Table 5-9, it can be 

observed that the MPSOA-LB scheme outperforms the 

other schemes in terms of execution cost, energy 

consumption, communication time, performance time, 

and resource consumption across multiple iterations of 

implementation. The results clearly show that the 

MPSOA-LB scheme is superior to the benchmarked 

ACO-LB, ABC-LB, and PSO-LB. In particular, the 

execution cost under different iterations in the MPSOA-

LB scheme is reduced significantly with an average 

reduction of 3.21%, 4.38%, and 5.62%, compared with 

the benchmark approaches. 

 

Table5: Execution Cost of the MPSOA-LB Scheme for Various Tasks 

Task MPSOA-LB ACO-LB ABC-LB PSO-LB 

100 0.0812 0.0887 0.0896 0.0821 

200 0.0814 0.0892 0.0898 0.0824 

300 0.0816 0.0894 0.0913 0.0927 

400 0.0819 0.0895 0.0916 0.0929 

500 0.0821 0.0898 0.0919 0.0933 

600 0.0824 0.0899 0.0922 0.0936 

700 0.0826 0.0913 0.0928 0.0939 

800 0.0829 0.0916 0.0932 0.0942 

900 0.0832 0.0925 0.0938 0.0946 

1000 0.0835 0.0928 0.0945 0.0949 

 

Table 6: Energy Consumption (Joules) of the MPSOA-LB for Various Tasks 

Task MPSOA-LB ACO-LB ABC-LB PSO-LB 

100 0.1713 0.1967 0.2134 0.2232 

200 0.1719 0.1976 0.2138 0.2238 

300 0.1723 0.1978 0.2142 0.2245 

400 0.1728 0.1981 0.2145 0.2254 

500 0.1732 0.1983 0.2154 0.2259 

600 0.1735 0.1986 0.2158 0.2265 

700 0.1738 0.1989 0.2162 0.2269 

800 0.1742 0.1992 0.2165 0.2273 

900 0.1746 0.1995 0.2168 0.2278 

1000 0.1756 0.1998 0.2175 0.2287 

 

Table 7: Communication Time (Seconds) of the MPSOA-LB for Various Tasks 

Task MPSOA-LB ACO-LB ABC-LB PSO-LB 

100 0.2212 0.2476 0.2712 0.2934 

200 0.2218 0.2479 0.2724 0.2945 

300 0.2221 0.2484 0.2729 0.2954 
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400 0.2227 0.2487 0.2734 0.2965 

500 0.2229 0.2488 0.2745 0.2976 

600 0.2232 0.249 0.2756 0.2984 

700 0.2238 0.2494 0.2764 0.2992 

800 0.2245 0.2496 0.2775 0.2998 

900 0.2268 0.2497 0.2779 0.3012 

1000 0.2278 0.2499 0.2785 0.3042 

 

Table 8: Execution Time (Seconds) of the MPSOA-LB for Various Tasks 

Task MPSOA-LB ACO-LB ABC-LB PSO-LB 

100 0.3121 0.3345 0.3632 0.3894 

200 0.3126 0.3412 0.3645 0.3865 

300 0.3129 0.3421 0.3654 0.3869 

400 0.3132 0.3428 0.3659 0.3874 

500 0.3138 0.3438 0.3665 0.3886 

600 0.3143 0.3448 0.3672 0.3892 

700 0.3147 0.3512 0.3678 0.3895 

800 0.3154 0.3528 0.3682 0.3897 

900 0.3158 0.3556 0.3698 0.3898 

1000 0.3321 0.3675 0.3689 0.3899 

 

It is shown that the MPSOA-LB scheme outperforms 

the benchmarked ACO-LB, ABC-LB, and PSO-LB 

schemes in terms of communication time, 

implementation time, and resource utilization for 

fluctuating iterations. The communication time is 

reduced by 4.04%, 4.86%, and 4.58% on average. It also 

minimizes the execution time by 4.86%, 5.86%, and 

6.54% respectively, and resource utilization by 5.21%, 

6.12%, and 6.86% respectively to the above-mentioned 

methods. 

 

Table 9: Resource Utilization (in%) of the MPSOA-LB for Various Tasks 

Tasks MPSOA-LB ACO-LB ABC-LB PSO-LB 

100 0.2124 0.1986 0.1786 0.1612 

200 0.2458 0.1975 0.1972 0.161 

300 0.2465 0.1968 0.1962 0.1604 

400 0.2469 0.1956 0.1942 0.1602 

500 0.2474 0.1948 0.1934 0.1589 

600 0.2479 0.1932 0.1912 0.1574 

700 0.2564 0.1922 0.1902 0.1565 

800 0.2568 0.1912 0.1814 0.1554 

900 0.2570 0.1904 0.1812 0.1548 
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1000 0.2589 0.1902 0.1806 0.1542 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       
        
 
        
         
 
      
       
        
      
        
 
       
         
      
 
 
 
 
         
 
  
          
        
 
          
 
        

 
       
     
    
     
 

     
      
      
    

CONCLUSIONS

The proposed work has thoroughly described the 
MPSOA LB load balancing scheme that utilizes the 
advantages of multi-objective PSO to provide a robust 
solution for dynamic and flexible task allocation to 
hosts and VMs. It reduces mean response times and 
execution times and achieves this across task loads and 
instruction lengths. More specifically, the scheme 
demonstrated better performance in terms of mean 
response time reduction of 8.12%, 8.54%, and 9.65% 
compared to ACO-LB, ABC-LB, and PSO-LB, 
respectively, for task volumes varying from 100 to 
1000. For practicable instruction lengths between 2000 
and 20000, the MPSOA-LB scheme also improved 
response time by 7.14%, 8.21%, and 9.32% over the 
same baseline schemes. The MPSOA-LB always 
performed better in terms of execution time. For 1000 
task volumes, the execution time was reduced by 7.82%, 
8.43%, and 9.42% as compared to ACO-LB, ABC-LB, 
and PSO-LB, respectively. A second important feature 
of the MPSOA-LB approach is that it reduces the 
number of migrated tasks by 4.21%, 5.32%, and 6.65% 
as the number of VMs increases from 2 to 10. Moreover, 
as the task numbers increased from 100 to 1000, the 
scheme decreased the number of migrated tasks by 
3.24%, 4.21%, and 5.42% relative to the same baseline 
schemes. From these findings it is clear that the task 
allocation using the MPSOA-LB load balancing scheme 
is more efficient and yields an overall better system

performance.
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