

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 445–458 | 445

Enhanced Cloud Load Balancing With MPSOA- LB: A Multi-

Objective PSO Approach for Dynamic Task Allocation and

Performance Optimization

Shameer A P1*, Haseeb V V2, Minimol V K3, Reshma P K4, Aneesh Kumar K5

Submitted: 17/11/2022 Revised: 28/12/2022 Accepted: 12/01/2023

Abstract—Cloud computing is a computing environment that involves the process of accessing of services, which

includes the storage environments, various applications and servers through the Internet. Cloud is a large pool of

information, software packages, shared resources, storage and enormous applications based on user demands at any point

of time. In other words, cloud computing refers to system-oriented software, physical hardware devices, and day-to-day

applications delivered to the users through the medium of the internet as services. Cloud resources can be accessed in

diverse ways for multiple purposes, making scheduling crucial for providing optimal services to users. With data and

resource availability increasing constantly, the need for efficient scheduling algorithms becomes paramount. Effective

load-balancing techniques can significantly enhance system performance while reducing costs and energy consumption.

Various heuristic algorithms have been proposed to tackle these challenges, with intelligent approaches being widely

adopted. This paper portrays the detailed description of the MPSOA-LB scheme propounded for attaining substantial load

balancing in a cloud computing setting. The planned system model explores various factors that contribute to the

development of a fitness function, which helps evaluate the over-utilization and under-utilization in the MPSOA-LB. This

algorithm focuses on efficient load distribution among virtual machines and hosts within cloud environments. The paper

also discusses the simulation setup, and the results obtained from implementing the MPSOA-LB under varying conditions,

including the quantity of tasks, instruction finishing lengths, and increasing the quantity of virtual machines.

Keywords: quantity, simulation, techniques, algorithms

INTRODUCTION

A computing environment known as cloud computing

allows users to access services, including servers,

storage, and apps, over the Internet. It utilizes the

existing resources of various organizations as remote

services available for payment. In cloud computing,

load balancing entails allocating tasks among several

virtual machines within a data center. The workload

entering into the cloud computing environment need to

be significantly allocated to the resources, such that

each share is responsible for sharing an equivalent

quantity of loads at any particular moment. The

performance of the cloud environment completely

varies on the degree to which the resources are equally

shared since imbalance in load leads to deterioration in

the network efficiency. Further, the system needs to

follow a potential load-balancing scheme for facilitating

the promotion of resource availability that in turn leads

to the increased performance of the cloud computing

environment.

Moreover, the balancing load process consists of

complex issues for facilitating optimal resource

utilization with rapid processing time. The workload

associated with each individual VM present in the

datacenter is presented based on the cumulative sum of

the forecasted or expected computation of time

associated with respect to the assigned independent

tasks. In particular, load balancing aims in effective

resource utilization for maximizing the throughput with

reduced response time through the equal sharing of

workloads among the servers in the cloud environment.

The main objective of load balancing approach aims at

enhancing the performance based on workload

balancing phenomenon among the virtual machines. It

also concentrates towards the achievement of ideal

resource consumption, maximizing output, and

maximizing latency for preventing overloads.

WHY LOAD BALANCING IS ESSENTIAL

The following are the primary components of load

balancing in cloud computing.

i) The load balancing process are considered to be

potential in handling any sudden traffic received into the

cloud computing environment at any particular point of

time.

ii) The load balancing mechanisms are capable enough

in handling any amount of traffic burst incoming into

environment, since they distribute the load uniformly to

1*,2,3Department of Computer Science, NAM College

Kallikkandy, Kannur, Kerala, India ,670693,

shameerap@gmail.com, haseebvvs@gmail.com,

minimoldeepak@gmail.com

4Department of Computer Science, Mahatma Gandhi

College Iritty, Kannur, Kerala, India ,670703,

pkreshma@gmail.com

5Department of Statistics, Mahatma Gandhi College Iritty,

Kannur, Kerala, India ,670703. aneesh.anek@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 445–458 | 446

the available VMs of the data for maximizing the

response time.

iii) The load balancing techniques are highly flexible in

nature by distributing the workload among the number

of servers and network units even if any of the node ends

in failure.

iv) The load balancing techniques are highly scalable in

handling huge amount of traffic with robustness and

fault tolerance capability.

v) They are significant in easily managing the high-end

user data traffic with the existence of network devices

and servers.

vi) It plays an anchor role in e-commerce, since they

help the commercial websites of Flipkart and Amazon

to deal with millions of customers every single second

of time.

vii) It is helpful in e-commerce activities by managing

and distributing workloads during the offers of sale and

promotional time.

viii) They are also easily implementable and less

expensive as compared to their counterparts since they

enable the organizations to work on their clients’

applications in a rapid speed for delivering optimal

performance at a comparatively lower cost.

PROPOSED MPSOA-LB SYSTEM

The MPSOA-LB scheme focuses on three key

capabilities:

1. Classification of VMs: It categorizes virtual

machines into under-loaded and over-loaded groups to

facilitate effective load balancing.

2. Energy Minimization: It aims to reduce the overall

incurred costs by minimizing energy consumption in the

data centre.

3. Utilization Identification: This component of the

scheme identifies Virtual Machines (VMs) within the

data center that are either not being fully utilized or are

overloaded

Additionally, includes a method for defining specific

metrics that set upper and lower limits, which act as

benchmarks for recognizing when VMs are

experiencing either excessive or insufficient workloads.

These metrics are based on the volume of tasks entering

the cloud system.

ALGORITHM OF MPSOA-LB

The MPSOA-LB uses a multi-objective function to

manage how tasks are allocated and reassigned among

VMs or hosts. This process is guided by primary

constraints, which require that the load on VMs should

not exceed the upper limit after task assignment.

Deadline constraints are contemplated when there is a

substantial quantity of available VMs. Furthermore,

transferring tasks from VMs that are severely loaded to

those with lighter loads is essential, depending on the

tasks' deadlines or required completion times. In this

approach, VMs with the earliest deadlines are

prioritized for tasks that have high completion times.

Conversely, for tasks with moderate completion times,

VMs with more flexible deadlines are selected.

Additionally, VMs are categorized based on their

current load into two groups: those that are under-

loaded and those that are over-loaded.

Algorithm 1: Steps for Implementing the MPSOA

Step1: The population is initialized with Sj such that value of j satisfies the condition1:

≤j≤n //n is the number of VMs present in the data centre of clouds.

Step 2. Set the speed or velocity SVel(j) of the particle (VM) with which it could be allocated. However, the speed or

velocity SVel(j) of the particle is initially 0.

Step3. Compute the availability of each particle available in the data centres.

Step 4. Aggregate the identified non-dominated solutions in the repository (VMs that are lightly loaded) for confirming

its under-loaded conditions.

Step5. Initiate the generation of hyper cubes.

Step 6. Set the memory corresponding to each particle by aggregating information related to the stored initial positions,

in order to identify the best position of the particles identified so far, based on

Step7: Calculate and update the velocity of the particle based on

Where the value of inertial weight is set to 0.4, with the random numbers rand1 and rand2 ranging between 0 and 1.

Step 8. Manipulate the updated positions of each particle based on the equation

Sj=Sj+S_Vel(j).

Step 9. The particles that are estimated to be within the search boundaries are maintained in the repository.

Step 10. Again, estimate the fitness of each particle.

Step 11. Employ the operations of mutation over each and every particle.

Step 12. The hypercube and repositories are updated by preventing the worst particles from participating in the allocation

of virtual machines (VMs) to incoming tasks.

Step 13. Update the memory of each particle by substituting the previous best position with the newly identified best

position achieved by that particle.

Step 14. Terminate the iteration if the maximum number of iterations has been completed.

Step 15. Otherwise, iterate from Step 7 until the termination conditions are satisfied.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 445–458 | 447

In the MPSOA-LB scheme, virtual machines (VMs) in

overloaded groups are required to offload their tasks and

wait until they can find a suitable VM for real location

in the subsequent iteration. Meanwhile, VMs in

underloaded groups receive tasks that are pending or

require redistribution. This process of removing tasks

from overloaded VMs continues until all underloaded

VMs are allocated tasks. Potential allocation solutions,

represented as particles, are generated randomly to

explore possible options for task allocation. The

MPSOA-LB scheme leverages Pareto ranking to

address multi-objective optimization challenges

associated with task allocation based on VM

availability, which is assessed in terms of their

overloaded or underloaded states. It also maintains a

record of non-dominating solutions from previous

iterations, tracking the best solutions identified by the

particles. As detailed in Algorithm 1, these procedures

contribute to the effective distribution of jobs/duties to

VMs, considering constraints related to over-allocation

and under-allocation, thereby enhancing the “load-

balancing process”.

SIMULATION SET UP OF THE MPSOA-LB

SCHEME

The execution of the MPSOA-LB program was assessed

through experiments conducted using CloudSim.

CloudSim proved crucial for modelling and simulating

various activities, allowing an in-depth study of how

varying resource levels affect cloud environments. The

evaluation of the MPSOA-LB scheme involved testing

across diverse hosts, data centers, and virtual machines

to gauge the impact of scalability within the cloud

infrastructure. For the simulations, the MPSOA-LB

scheme was implemented in an environment comprising

10 data centers, 50 virtual machines, and a range of tasks

from 100 to 1000. The tasks had the length of executable

instructions between 1000 and 20000 Million

Instructions (MI). Table 3.1 also outlines key simulation

parameters used in the experimentation of the MPSOA-

LB scheme.

Table 3.1: Key factors for the MPSOA-LB Scheme Execution

Category Type Setting

Tasks #Tasks 100-1000

 Task Length 2000-20000

Data Center VM-Scheduler Time-Shared

 #Hosts 02-04

 #DataCenters 10

Virtual Machine (VM) Cloudlet-Scheduler Time-Shared

 Bandwidth 500-1200

 Essential Processor Count 01-02

 Processor Speed 4000-8000MIPS

 No. of VMs 50

 Available storage area in each VM 256-2018Mb

ANALYSIS AND FINDINGS OF THE PROPOSED

WORK

The following criteria are used to assess the

effectiveness of the proposed MPSOA-LB scheme.

1. Mean Response Time: Analysed concerning

variations in the amount of work and the part of

executable instructions.

2. Performance Comparison with Traditional

Algorithms: Comparison of “mean response time,

executable instruction length, and mean execution time”

between the proposed scheme and conventional

algorithms.

3. Mean Response Time, Executable Command

Length, and Mean Execution Time are evaluated against

algorithms based on swarm intelligence.

4. Investigation of the quantity of migrated work as the

number of virtual machines (VMs) increases and the

task count remains constant.

5. Task Migration Analysis with Increasing Task

Count: Examination of the no. of migrated tasks as the

task count grows, with a fixed number of VMs.

Response Time with Different Numbers of Tasks and

Practicable Instruction Measurements

The importance of the MPSOA-LB scheme is evaluated

in this fragment through the mean response time for

varying task counts the lengths of executable

instructions in a cloud computing environment. Figure

1 plots the “MPSOA-LB scheme”, where the average

response time is measured for varying task count and

instruction length (i.e. in bytes). The mean response

time increases from 8.14 seconds to 21.24 seconds when

the task count increases from 100 to 1000, while the

executable instruction length is 2000 bytes. For

instance, when the instruction length is 8000 bytes,

increasing the number of tasks leads to the mean

response time increasing from 8.96 seconds to 45.48

seconds. As tasks increase, the mean reaction time

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 445–458 | 448

raises from 9.12 seconds to 76.42 seconds for an

instruction length of 14,000 bytes. Finally, the mean

response time increases from 8.12 seconds to 102.14

seconds as the task count increases steadily, while the

instruction length is set to 20,000 bytes. The response

time increases consistently with varying instruction

length because of the threshold parameters used to

measure the levels of over utilization and

underutilization of the system.

Figure 1: Mean Response Time Different Number of Tasks

Figure 2 shows the variation of average response time

of the MPSOA-LB program with the feasible instruction

length for different task counts. As the instruction extent

increases from 200 to 2000, the mean reaction time

increases from 23.42 to 38.76 seconds with 200 tasks.

For 400 tasks, the mean response time also rises from

31.21 seconds to 56.12 seconds when the instruction

length increases by the same amount. The response time

is observed to increase from 36.54 seconds to 64.42

seconds as the executable instruction length varies for

700 tasks. Furthermore, the mean response time rises

from 42.32 seconds to 78.18 seconds when the

instruction length increases from 200 to 2000 with 1000

tasks. The rise of response time as task count and

instruction length vary can mainly be explained by the

allocation and deallocation policies, as well as the

threshold parameters used in the MPSOA-LB scheme.

Figure 2: Mean Response Time under Different Executable Instruction Length

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 445–458 | 449

Performance Evaluation Over Benchmarked Swarm

Intelligent Schemes

This section compares the MPSOA-LB scheme with

three swarm intelligence-based approaches: ACO-LB,

ABC-LB and PSO-LB. The evaluation is done by

changing the quantity of tasks from 100 to 1000 and the

executable command length from 2000 to 20,000 for a

upper limit value of 0.1. The average response period of

the MPSOA-LB system is compared with ACO-LB,

ABC-LB, and PSO-LB across different task counts as

shown in Figure 3. The results show that the MPSOA-

LB scheme reduces the mean response time by 8.12%,

9.84% and 10.21% as compared to ACO-LB, ABC-LB

and PSO-LB respectively. The multi-objective

optimization function in the task allocation process is

the reason for the improvement in response time as the

process of assigning tasks to virtual machines (VMs) is

more efficient

.

Figure 3: Mean Response Time under Number of Tasks

Figure 4: Mean Response Time under Different Executable Instruction Length

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 445–458 | 450

Figure 5: Mean Execution Time under Number of Tasks

The mean response time of the MPSOA-LB, ACO-LB,

ABC-LB, and PSO-LB schemes is presented in Figure

4, for feasible instruction length of 2000 to 20,000. The

results show that the MPSOA-LB program reduces

response time by 6.68%, 7.26% and 8.56% compared to

ACO-LB, ABC-LB and PSO-LB respectively. The

reason for this improvement is that the scheme’s

objective function effectively reduces the standard

deviation in load distribution among virtual machines

(VMs). Figure 5 also shows the mean execution time of

these schemes as the no. of tasks is varied from 100 to

1000. The projected outline shows a good efficiency,

reducing the execution time by 6.13%, 7.85%, and

8.94% compared to ACO-LB, ABC-LB, and PSO-LB,

respectively. The reason for this decrease is mainly

because of the scheme’s use of dynamic upper and

lower threshold values, which help to keep the load

balance across the system optimal.

Performance of Migrated Tasks with Varying No. of

VMs

The execution of the aimed program has been estimated

by analyzing the number of migrated tasks as the no. of

VMs increases. Figures 6 and 7 exhibit the efficiency of

the scheme by assessing the number of migrated tasks

with VM counts for task sets of 200 and 400. The results

indicate a significant decrease in the quantity of

transferred tasks using the MPSOA-LB scheme,

regardless of the number of VMs. This reduction is

primarily due to the scheme's flexible allocation and

deallocation strategies, governed by the upper and lower

availability limits of VMs and hosts, which optimize

load balancing. For 200 tasks, the MPSOA-LB scheme

reduces migrated tasks by 5.68%, 6.59%, and 7.56%

associated to the ACO-LB, ABC-LB, and PSO-LB

schemes, respectively.

Figure 6: Migrated Tasks Under Increasing No. of VMs

(Tasks-200)

Figure 7: Migrated Task under Increasing Number of VMs (Tasks-400)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 445–458 | 451

Figure 8: Migrated Task under Increasing Number of VMs (Tasks-600)

Figure 9: Migrated Task under Increasing Number of VMs (Tasks=800)

Figure 10: Migrated Task under Increasing Number of VMs (Tasks=1000)

The MPSOA-LB scheme shows a significant decrease

in the number of migrated tasks across various VM

configurations. When the number of tasks is set to 400,

the scheme reduces task migration by 4.86%, 5.68%,

and 6.32% equated to the ACO-LB, ABC-LB, and PSO-

LB schemes, respectively. Figures 3.8 and 3.9 further

demonstrate the efficiency of the MPSOA-LB scheme

by evaluating the number of migrated tasks for task

counts of 600 and 800, under different VM settings. The

MPSOA-LB consistently reduces task migration,

irrespective of the VM count, which can be attributed to

the multi-objective PSO algorithm's ability to balance

exploration and exploitation while considering the

accessibility of VMs and hosts in the cloud

environment. With 600 tasks, the scheme achieves

reductions of 4.12%, 5.68%, and 6.82% compared to

ACO-LB, ABC-LB, and PSO-LB, respectively. For 800

tasks, the reductions are 4.32%, 5.94%, and 6.28%

compared to the baseline methods. Furthermore, Figure

10 demonstrates that the MPSOA-LB program is still

able to minimize the amount of migrated tasks with

1000 tasks and different VM configurations. The

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 445–458 | 452

reductions are 4.58%, 5.32%, and 6.58% for 1000 tasks

compared to ACO-LB, ABC-LB, and PSO-LB,

respectively, which further verifies the effectiveness of

the scheme in optimizing load balancing for a growing

task load.

Impact of Increasing Tasks on the No. Of Migrated

Tasks

To assess the efficiency of the MPSOA-LB structure,

the amount of migrated tasks is analyzed as the total task

count increases. The scheme is capable of reducing task

migration as shown in figures 11 and 12 when the

number of Virtual Machines (VMs) is set to 2 and 4

respectively. In both cases, the quantity of migrated

tasks decreases significantly with the total quantity of

tasks. The adaptive allocation and deallocation

mechanism of the MPSOA-LB scheme contributes a lot

to this improvement, which adapts to the load balancing

threshold dynamically. In particular, the MPSOA-LB

scheme reduces the number of migrated tasks by 3.12%,

5.32%, and 6.65% compared to ACO-LB, ABC-LB,

and PSO-LB, respectively, when there are 2 VMs. Also,

when 4 VMs are used, the scheme shows a considerable

decrease of 5.24%, 6.04%, and 7.28% in migrated tasks

for the ACO-LB, ABC-LB, and PSO-LB methods.

Figure 11: Migrated Tasks under Increasing Number of Tasks (VMs=2)

Figure12: Migrated Tasks under Increasing No. of Tasks (VMs=4)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 445–458 | 453

Figure 13: Migrated Tasks under Increasing Number of Tasks (VMs=6)

Figure 14: Migrated Tasks under Increasing Number of Tasks (VMs=8)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 445–458 | 454

Figure 15: Migrated Tasks under Increasing Number of Tasks (VMs=10)

The efficiency of the MPSOA-LB scheme in

minimizing task migration with varying task counts for

6 and 8 virtual machines (VMs) is shown in Figures 13

and 14, respectively. The results show a significant

reduction in task migration across all task counts,

regardless of the quantity of VMs, when contrasted to

the baseline methods. This improvement is attributed to

the multi-perspective PSO mechanism, which

effectively evaluates the accessibility of VMs and hosts

within the cloud environment. For 6 VMs, the MPSOA-

LB scheme achieves a reduction in migrated tasks by

5.36%, 6.86%, and 7.12% equated to the ACO-LB,

ABC-LB, and PSO-LB schemes, respectively. With 8

VMs, the reductions are 3.92%, 4.65%, and 5.32%

compared to the same baselines. Similarly, Figure 15

highlights the functioning of the MPSOA-LB scheme

with 10 VMs. The scheme continues to effectively

reduce the quantity of migrated tasks even with an

increased quantity of VMs, leveraging its ability to

accurately detect overloaded VMs in the cloud setting.

With 10 VMs, the no. of migrated responsibilities is

reduced by 4.21%, 5.28%, and 6.54% when equated to

the ACO-LB, ABC-LB, and PSO-LB approaches.

STATISTICAL ANALYSIS OF THEMPSOA-LB

APPROACH

Tables 2-4 provide a statistical evaluation of the

MPSOA-LB scheme, considering key metrics such as

make-span, system imbalance degree, and the quantity

of migrated tasks before and after load balancing. The

analysis assesses the performance of MPSOA-LB

concerning the baseline ACO-LB, ABC-LB, and PSO-

LB schemes, demonstrating its effectiveness and overall

performance improvements across all metrics.

Table: Make span (Seconds) of the MPSOA-LB Before and After Load Balancing

Tasks MPSOA-LB ACO-LB ABC-LB PSO-LB

 Before After Before After Before After Before After

100 12.65 6.79 18.23 9.45 21.38 10.15 23.34 11.65

200 21.56 8.28 23.45 11.35 25.68 12.12 26.78 13.36

300 23.48 9.56 25.46 12.12 29.78 13.46 31.24 14.68

400 29.46 10.76 28.56 12.82 30.24 13.48 32.56 14.98

500 39.42 12.36 30.62 13.12 32.86 14.78 34.68 15.68

600 45.68 14.13 34.42 15.62 36.76 16.78 38.94 17.24

700 59.84 15.14 35.18 16.86 38.82 17.12 39.12 18.92

800 68.74 17.14 36.18 18.12 40.64 17.86 41.34 19.78

900 74.58 20.46 38.92 21.56 41.72 18.36 43.86 19.98

1000 79.84 22.42 38.98 26.65 42.84 18.45 44.18 20.12

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 445–458 | 455

Table: Degree of Imbalance in the MPSOA-LB Before and after load balancing

Tasks MPSOA-LB ACO-LB ABC-LB PSO-LB

 Before After Before After Before After Before After

100 1.63 0.34 1.78 0.38 1.88 0.44 1.98 0.45

200 1.67 0.37 1.83 0.45 1.96 0.52 2.25 0.56

300 1.69 0.39 1.89 0.48 2.12 0.59 2.36 0.69

400 1.72 0.43 1.97 0.54 2.18 0.65 2.42 0.74

500 1.78 0.47 2.12 0.58 2.23 0.72 2.46 0.78

600 1.84 0.49 2.19 0.63 2.28 0.78 2.32 0.83

700 1.89 0.52 2.24 0.67 2.32 0.83 2.38 0.87

800 1.94 0.57 2.36 0.69 2.38 0.87 2.42 0.92

900 1.98 0.62 2.42 0.74 2.42 0.92 2.46 1.12

1000 2.12 0.65 2.46 0.78 2.46 1.12 2.32 0.83

The results authorise that the MPSOA-LB program

demonstrates superior performance in relations of

make-span system inequity, and the number of migrated

tasks, both before and after the load-balancing process,

when compared to the baseline ACO-LB, ABC-LB, and

PSO-LB schemes. This underscores the improved

efficiency and effectiveness of the MPSOA-LB

approach in optimizing load balancing and resource

allocation.

Table 4: Tasks Migrated in MPSOA-LB Before and After Load Balancing

Tasks MPSOA-LB ACO-LB ABC-LB PSO-LB

 Before After Before After Before After Before After

100 7.34 3.21 8.21 3.98 8.88 4.24 9.34 4.78

200 7.38 3.26 8.28 4.04 9.02 4.56 9.46 4.84

300 7.45 3.39 8.38 4.08 9.12 4.58 9.54 4.92

400 7.54 3.45 8.46 4.14 9.19 4.64 9.58 4.95

500 7.59 3.48 8.56 4.19 9.28 4.69 9.65 4.98

600 7.64 3.56 8.64 4.24 9.34 4.78 9.78 5.12

700 7.68 3.68 8.78 4.28 9.46 4.84 9.86 5.19

800 7.76 3.79 8.89 4.34 9.54 4.92 9.94 5.24

900 7.84 3.88 8.96 4.39 9.58 4.95 9.96 5.29

1000 7.89 3.94 8.98 4.45 9.65 4.98 9.98 5.34

The results reveal that the average improvement of the

make-span achieved using the MPSOA-LB load

balancing scheme before and after the balancing process

is 4.12%, 4.98%, and 5.42% when compared to ACO-

LB, ABC-LB, and PSO-LB schemes, respectively. The

system imbalance was also reduced by an average of

4.16%, 4.86%, and 5.42% after applying the MPSOA-

LB scheme compared to the same benchmarks. In

addition, the amount of work migrated during load

balancing was drop off by an mean of 5.21%, 5.98%,

and 6.36% compared to the ACO-LB, ABC-LB, and

PSO-LB approaches, respectively. The results of this

study show that the MPSOA-LB scheme can improve

resource allocation, reduce system imbalance, and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 445–458 | 456

increase system performance. From Table 5-9, it can be

observed that the MPSOA-LB scheme outperforms the

other schemes in terms of execution cost, energy

consumption, communication time, performance time,

and resource consumption across multiple iterations of

implementation. The results clearly show that the

MPSOA-LB scheme is superior to the benchmarked

ACO-LB, ABC-LB, and PSO-LB. In particular, the

execution cost under different iterations in the MPSOA-

LB scheme is reduced significantly with an average

reduction of 3.21%, 4.38%, and 5.62%, compared with

the benchmark approaches.

Table5: Execution Cost of the MPSOA-LB Scheme for Various Tasks

Task MPSOA-LB ACO-LB ABC-LB PSO-LB

100 0.0812 0.0887 0.0896 0.0821

200 0.0814 0.0892 0.0898 0.0824

300 0.0816 0.0894 0.0913 0.0927

400 0.0819 0.0895 0.0916 0.0929

500 0.0821 0.0898 0.0919 0.0933

600 0.0824 0.0899 0.0922 0.0936

700 0.0826 0.0913 0.0928 0.0939

800 0.0829 0.0916 0.0932 0.0942

900 0.0832 0.0925 0.0938 0.0946

1000 0.0835 0.0928 0.0945 0.0949

Table 6: Energy Consumption (Joules) of the MPSOA-LB for Various Tasks

Task MPSOA-LB ACO-LB ABC-LB PSO-LB

100 0.1713 0.1967 0.2134 0.2232

200 0.1719 0.1976 0.2138 0.2238

300 0.1723 0.1978 0.2142 0.2245

400 0.1728 0.1981 0.2145 0.2254

500 0.1732 0.1983 0.2154 0.2259

600 0.1735 0.1986 0.2158 0.2265

700 0.1738 0.1989 0.2162 0.2269

800 0.1742 0.1992 0.2165 0.2273

900 0.1746 0.1995 0.2168 0.2278

1000 0.1756 0.1998 0.2175 0.2287

Table 7: Communication Time (Seconds) of the MPSOA-LB for Various Tasks

Task MPSOA-LB ACO-LB ABC-LB PSO-LB

100 0.2212 0.2476 0.2712 0.2934

200 0.2218 0.2479 0.2724 0.2945

300 0.2221 0.2484 0.2729 0.2954

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 445–458 | 457

400 0.2227 0.2487 0.2734 0.2965

500 0.2229 0.2488 0.2745 0.2976

600 0.2232 0.249 0.2756 0.2984

700 0.2238 0.2494 0.2764 0.2992

800 0.2245 0.2496 0.2775 0.2998

900 0.2268 0.2497 0.2779 0.3012

1000 0.2278 0.2499 0.2785 0.3042

Table 8: Execution Time (Seconds) of the MPSOA-LB for Various Tasks

Task MPSOA-LB ACO-LB ABC-LB PSO-LB

100 0.3121 0.3345 0.3632 0.3894

200 0.3126 0.3412 0.3645 0.3865

300 0.3129 0.3421 0.3654 0.3869

400 0.3132 0.3428 0.3659 0.3874

500 0.3138 0.3438 0.3665 0.3886

600 0.3143 0.3448 0.3672 0.3892

700 0.3147 0.3512 0.3678 0.3895

800 0.3154 0.3528 0.3682 0.3897

900 0.3158 0.3556 0.3698 0.3898

1000 0.3321 0.3675 0.3689 0.3899

It is shown that the MPSOA-LB scheme outperforms

the benchmarked ACO-LB, ABC-LB, and PSO-LB

schemes in terms of communication time,

implementation time, and resource utilization for

fluctuating iterations. The communication time is

reduced by 4.04%, 4.86%, and 4.58% on average. It also

minimizes the execution time by 4.86%, 5.86%, and

6.54% respectively, and resource utilization by 5.21%,

6.12%, and 6.86% respectively to the above-mentioned

methods.

Table 9: Resource Utilization (in%) of the MPSOA-LB for Various Tasks

Tasks MPSOA-LB ACO-LB ABC-LB PSO-LB

100 0.2124 0.1986 0.1786 0.1612

200 0.2458 0.1975 0.1972 0.161

300 0.2465 0.1968 0.1962 0.1604

400 0.2469 0.1956 0.1942 0.1602

500 0.2474 0.1948 0.1934 0.1589

600 0.2479 0.1932 0.1912 0.1574

700 0.2564 0.1922 0.1902 0.1565

800 0.2568 0.1912 0.1814 0.1554

900 0.2570 0.1904 0.1812 0.1548

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 445–458 | 458

1000 0.2589 0.1902 0.1806 0.1542

CONCLUSIONS

The proposed work has thoroughly described the
MPSOA LB load balancing scheme that utilizes the
advantages of multi-objective PSO to provide a robust
solution for dynamic and flexible task allocation to
hosts and VMs. It reduces mean response times and
execution times and achieves this across task loads and
instruction lengths. More specifically, the scheme
demonstrated better performance in terms of mean
response time reduction of 8.12%, 8.54%, and 9.65%
compared to ACO-LB, ABC-LB, and PSO-LB,
respectively, for task volumes varying from 100 to
1000. For practicable instruction lengths between 2000
and 20000, the MPSOA-LB scheme also improved
response time by 7.14%, 8.21%, and 9.32% over the
same baseline schemes. The MPSOA-LB always
performed better in terms of execution time. For 1000
task volumes, the execution time was reduced by 7.82%,
8.43%, and 9.42% as compared to ACO-LB, ABC-LB,
and PSO-LB, respectively. A second important feature
of the MPSOA-LB approach is that it reduces the
number of migrated tasks by 4.21%, 5.32%, and 6.65%
as the number of VMs increases from 2 to 10. Moreover,
as the task numbers increased from 100 to 1000, the
scheme decreased the number of migrated tasks by
3.24%, 4.21%, and 5.42% relative to the same baseline
schemes. From these findings it is clear that the task
allocation using the MPSOA-LB load balancing scheme
is more efficient and yields an overall better system

performance.

REFERENCES

[1] S. K. Gorva and L. C. Anandachar, "Effective Load

Balancing and Security in Cloud Using Modified
Particle Swarm Optimization Technique and
Enhanced Elliptic Curve Cryptography
Algorithm," International Journal of Intelligent
Engineering & Systems, vol. 15, no. 1, pp. 78–88,
2022.

[2] W. Kimpan, "Multi-Objective Task Scheduling

Optimization for Load Balancing in Cloud
Computing Using Hybrid Artificial Bee Colony
Algorithm with Reinforcement Learning," IEEE

Access, vol. 10, pp. 28987–29002, 2022

a. Pradhan and S. K. Bisoy, "A Novel Load

Balancing Technique for Cloud Computing

Platform Based on QMPSO Algorithm,"

Journal of King Saud University– Computer and
Information Sciences,vol. 34, no. 2, pp. 182–191,
2022.

[3] S. H. Fattahiand M. G. Sadiq. (2020)."Multi-

Objective Load Balancing in Cloud Computing

using Improved Particle Swarm Optimization."

International Journal of Cloud Computing and

Services Science(IJ-CLOSER), 9(1), 23-34.

[4] P. Vanathi and R. P. Srivastava. (2021). "Dynamic

Load Balancing in Cloud Computing using Multi-
Objective Particle Swarm Optimization." Journal
of King Saud University - Computer and
Information Sciences.

[5] Ahmed, E., & Abdelrahman, S. (2019). "Optimal

CloudforPSOonBasedBalancingLoad

Computing Environment." International Journal of

Cloud Computing and Services Science , 8(1), 1-16.

 B.H.andPatel,B.R.Agarwal,K.[6]

S.

Raghuwanshi.

(2019). "A Multi-Objective Particle

Swarm Optimization Approach for Load Balancing

in

Cloud

Computing."

Journal

of

Information

Processing Systems, 15(4), 896-906.

[7]

Ali,

O.

H.,

&

Khan,

F.

(2018).

"A

Hybrid

Load

Balancing

Algorithm

Based

on

Multi-Objective

Particle

Swarm

Optimization

for

Cloud

Computing."

The

Computer

Journal,

61(6),

813-

825.

[8]

A.P.

Shameer

and

A.C.

Subhajini

(2017)

Optimization Task Scheduling Techniques on Load

Balancing

in

Cloud

Using

Intelligent

Bee

Colony

Algorithm.”

International

Journal

of

Pure

and

Applied Mathematics “, Volume 116 No. 22 2017,

341-352

 [9]

A.P. Shameer and A.C. Subhajini (2019) Quality

UsingAllocationResourceAwareServiceof

Hybrid Opposition -Based Learning-Artificial Bee

Colony Algorithm. “Journal of Computational and

Theoretical Nanoscience Vol. 16, 588–594, 2019

