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Abstract: In practical situations we often encounter semi vector spaces. Semi vector spaces are algebraic structures 

analogous to vector spaces with the base fields replaced by semifields. Semi vector spaces with an inner product are 

called inner product semi vector spaces. Metrizable inner product semi vector spaces which are complete with respect 

to the induced metric are called H-semi vector spaces. 

In this paper we discuss certain fundamental properties of adjoint maps on H-semi vector spaces. 
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1.Introduction 

 A non-empty set 𝐹 with two binary 

operations + and ∙ defined on it is called a semifield if 

the following conditions are satisfied:  

(𝐹, +) is a commutative semigroup. 

            (𝐹 − {0},∙) is a commutative group, where 0 is 

the identity element with respect to +, if it exists. 

 A semi vector space over a 

semifield F is defined to be a non-empty set X 

equipped with the operations + : X × X → X, called 

addition and  : F × X → X, called scalar multiplication, 

satisfying the following conditions: 

For each  α, β ϵ F, x, y, z ϵ X, 

                       x + (y + z) = (x + y) + z;   x + y 

= y + x 

                             (αβ) x  =  α (βx) 

                                  1x  = x, where 1 is the 

multiplicative identity of F if exists. 

 

                         α ( x + y)  = αx + αy;     (α + 

β)x  = αx + βx. 

                         

                    We shall write α x instead of α  x, for x ϵ 

X and α ϵ F. 

 Let X be a semi vector space over the 

semifield ℝ+. An inner product on 𝑋 is a function  ⟨, ] ∶

𝑋 × 𝑋 → ℝ+ satisfying the following conditions:  

                         ⟨ 𝑥, 𝑥 ] ≥ 0 for all 𝑥 ∈ 𝑋   

                          ⟨ 𝑥, 𝑥 ] = 0 if and only if 𝑥 = 0  

  ⟨ 𝑥, 𝑦 ] =  ⟨ 𝑦, 𝑥 ] for all 𝑥, 𝑦 ∈ 𝑋  

⟨ 𝛼𝑥, 𝑦 ] =  𝛼 ⟨ 𝑥, 𝑦 ] for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ ℝ+

  

                            ⟨ 𝑥 + 𝑧, 𝑦 ]  =  ⟨ 𝑥, 𝑦 ] + ⟨ 𝑧, 𝑦 ] for 

all 𝑥, 𝑦, 𝑧 ∈ 𝑋 . 

              Hence ℝ+ is the set of all non-negative real 

numbers.  

 A semi vector space with an inner product 

defined on it is called an inner product semi vector 

space. 
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 Let 𝑋 be a semi vector space over 

the semifield ℝ+. An s-norm on 𝑋 is a function ‖. | ∶

𝑋 → ℝ+ satisfying the following:     

(i) ‖𝑥| ≥ 0 for all 𝑥 ∈ 𝑋 and ‖𝑥| = 0 if and only if 𝑥 = 0 

(ii) ‖𝛼𝑥| = 𝛼‖𝑥| for all 𝑥 ∈ 𝑋 and 𝛼 ∈ ℝ+ 

(iii) ‖𝑥 + 𝑦| ≤ ‖𝑥| + ‖𝑦| for all 𝑥, 𝑦 ∈ 𝑋. 

Let (𝑋, ⟨ , ]) be an inner product semi vector 

space. 𝑋 is said to be metrizable if there exists a 

metric function 𝑑: 𝑋 × 𝑋 → ℝ such that 

 i) (𝑑(𝑥, 𝑦))
2
= 2(‖𝑥|2

+ ‖𝑦|2
) − ‖𝑥 +

𝑦|2
 for all 𝑥, 𝑦 ∈ 𝑋                 

                     and  ii) |⟨𝑥, 𝑦] − ⟨𝑥, 𝑧]| ≤ ‖𝑥| 𝑑 (𝑦, 𝑧) for 

all 𝑥, 𝑦, 𝑧 ∈ 𝑋, where ‖𝑥| = √⟨𝑥, 𝑥].          

In this case we say that 𝑑 is the induced metric of ⟨, ]. 

A Hilbert semi vector space is an inner 

product semi vector space X, which is complete with 

respect to the  induced metric. 

 Let us call a Hilbert semi vector space a H-

semi vector space. 

2.Adjoints of linear Maps 

2.1 Definition  

 A linear map between two semi vector spaces 

X and Y over ℝ+ is a map 𝐹: 𝑋 → 𝑌 satisfying   

𝐹(𝑥1 + 𝑥2) = 𝐹(𝑥1) + 𝐹(𝑥2)  for all 𝑥1, 𝑥2 ∈ 𝑋 and  

 𝐹(𝛼𝑥) = 𝛼 𝐹(𝑥) for all 𝑥 ∈ 𝑋 and 𝛼 ∈ ℝ+. 

 

2.2 Definition 

Let A be a bounded linear map on a H-semi 

space X over ℝ+. Suppose there exists a bounded linear 

map B on X such that  

 ⟨ 𝐴𝑥, 𝑦 ] = ⟨ 𝑥, 𝐵𝑦 ] for all 𝑥, 𝑦 ∈ 𝑋 

.                     (1) 

 Then, B is called an adjoint map of A. 

     It is to be noted that the existence of an adjoint map 

is not guaranteed. 

2.3 Remark 

Since X is a semi vector space over 

ℝ+, ⟨ 𝑥, 𝑦 ] = ⟨ 𝑦, 𝑥 ] for all 𝑥, 𝑦 ∈ 𝑋. So (1) becomes, 

 ⟨ 𝐴𝑥, 𝑦 ] = ⟨ 𝑥, 𝐵𝑦 ] = ⟨ 𝐵𝑦, 𝑥 ] for all 𝑥, 𝑦 ∈
𝑋.                                                               (2) 

2.4 Definition  

An inner product semi vector space ( 𝑋,

⟨, ] ) is standard if ⟨ 𝑥, 𝑧 ]  = ⟨ 𝑦, 𝑧 ] for all 𝑧 ∈ 𝑋 ⟹

𝑥 = 𝑦 .  A H-semi vector space which is standard is 

called a standard H-semi vector space or H-semi space. 

2.5 Proposition 

Let X be a standard H-semi space. Then, the 

adjoint of any bounded linear map, if it exists, is 

unique. 

Proof 

Let A be a bounded linear map on X. Suppose 

B and C are two adjoint maps of A. 

  Fix 𝑦. Then, ⟨ 𝐴𝑥, 𝑦 ] = ⟨ 𝑥 , 𝐵𝑦 ] =
⟨ 𝑥, 𝐶𝑦 ] for all 𝑥 ∈ 𝑋. 

 Since 𝑥 ∈ 𝑋 is arbitrary, and 𝑋 is 

standard, we get, 𝐵𝑦 = 𝐶𝑦. 

         Hence, since 𝑦 ∈ 𝑋 is arbitrary, 𝐵 = 𝐶. 

                                                                                                                                                  
 

Notation 

 Let us denote the adjoint map of A, if it exists, 

by 𝐴∗. Then (2) becomes, 

 

 ⟨ 𝑥, 𝐴𝑦 ] = ⟨ 𝐴∗𝑥, 𝑦 ] for all 𝑥, 𝑦 ∈ 𝑋 

.                          (3)  
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2.6 Theorem 

 Let X be a standard H-semi space over ℝ+. 

Let A and B be two bounded linear maps on X with 

adjoint operators 𝐴∗ and 𝐵∗ respectively. Then, 

i) 𝐴 + 𝐵 also has an adjoint and (𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗ 

ii) 𝛼𝐴 has an adjoint and (𝛼𝐴)∗ = 𝛼𝐴∗ for𝛼 ∈ ℝ+ 

iii) (𝐴∗)∗ = 𝐴 

iv) 𝐴𝐵 has an adjoint and (𝐴𝐵)∗ = 𝐵∗𝐴∗. 

Proof 

 The proof is similar to that in vector spaces. 

 As A and B have adjoints 𝐴∗ and 𝐵∗ 

respectively, 

we have ⟨ 𝐴𝑥, 𝑦 ] = ⟨ 𝑥, 𝐴∗𝑦 ] and ⟨ 𝐵𝑥, 𝑦 ] =
⟨ 𝑥, 𝐵∗𝑦 ] for all 𝑥, 𝑦 ∈ 𝑋. 

 

i) Since 𝐴∗ 𝑎𝑛𝑑 𝐵∗ are bounded maps on X, 𝐴∗ + 𝐵∗ 

is also a bounded map on X. 

 Now, for 𝑥, 𝑦 ∈ 𝑋, consider 

 

 ⟨ (𝐴 + 𝐵)𝑥, 𝑦 ] = ⟨ 𝐴𝑥, 𝑦 ]  + ⟨ 𝐵𝑥, 𝑦 ] =

 ⟨ 𝑥, 𝐴∗𝑦 ] + ⟨ 𝑥, 𝐵∗𝑦 ] 

 

                          = ⟨ 𝑥, 𝐴∗𝑦 + ⟨ 𝐵∗𝑦 ] = ⟨ 𝑥, (𝐴∗ +
𝐵∗)𝑦 ].                                                        (4) 

                                Hence , (𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗. 

 

ii) Let 𝛼 ∈ ℝ+. 

 

 Then for 𝑥, 𝑦 ∈ 𝑋, 

 

          ⟨(𝛼𝐴)𝑥, 𝑦 ] = 𝛼 ⟨ 𝐴𝑥, 𝑦 ] = 𝛼⟨ 𝑥, 𝐴∗𝑦 ] 

 

   = ⟨ 𝑥, 𝛼𝐴∗𝑦 ]. 

 

              So, (𝛼𝐴)∗= 𝛼𝐴∗. 

iii) Consider  

 ⟨ 𝐴∗𝑥, 𝑦 ] = ⟨ 𝑦, 𝐴∗𝑥 ] = ⟨ 𝐴𝑦, 𝑥 ] = ⟨ 𝑥, 𝐴𝑦 ] for all 

𝑥, 𝑦 ∈ 𝑋. 

 Hence A is the adjoint operator of 𝐴∗. That is, 

(𝐴∗)∗ = 𝐴. 

iv)  AB and 𝐵∗𝐴∗ are bounded maps on X. 

Now consider, for 𝑥, 𝑦 ∈ 𝑋, 

 ⟨ 𝑥, (𝐴𝐵)𝑦 ] = ⟨ 𝑥, 𝐴(𝐵𝑦)]  = ⟨ 𝐴∗𝑥, 𝐵𝑦 ] = 
⟨ 𝐵∗𝐴∗𝑥, 𝑦 ]. 

 

   Hence , (𝐴𝐵)∗ = 𝐵∗𝐴∗.                                                                                       
 

2.7 Theorem 

Let A be a bounded linear map on a standard H-

semi vector space X over ℝ+ with adjoint 𝐴∗. Then, 

(i) ‖𝐴∗| = ‖𝐴| 

(ii) ‖𝐴∗𝐴| = ‖𝐴𝑥|
2
 

(iii) 𝐴∗𝐴 = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴 = 0. 

Proof 

For  𝑥 ∈ 𝑋, Consider ‖𝐴𝑥|
2
= ⟨ 𝐴𝑥, 𝐴𝑥 ] = 

⟨ 𝐴∗𝐴𝑥, 𝑥 ] 

 

      ≤  ‖𝐴∗𝐴𝑥|‖𝑥|, using 

Schwarz inequality 

 

      ≤ ‖𝐴∗𝐴|‖𝑥|
2

. 

 

                So,     ‖𝐴𝑥|  ≤ √‖𝐴∗𝐴| ‖𝑥| for all 𝑥 ∈ 𝑋. 

 

              Hence ‖𝐴| ≤ √‖𝐴∗𝐴| .  So,   ‖𝐴2|  ≤ ‖𝐴∗𝐴|.
                                                     

(5) 

(5) implies, 

 

 ‖𝐴|
2

≤ ‖𝐴∗𝐴| ≤ ‖𝐴∗|‖𝐴|.  Hence, ‖𝐴| ≤
‖𝐴∗| for 𝐴 ≠ 0.                                        (6) 

 

For 𝐴 = 0, (6) is obvious. 
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 Hence ‖𝐴| ≤ ‖𝐴∗| 
                       (7) 

Replacing 𝐴 by 𝐴∗, we get, 

 ‖𝐴∗| ≤ ‖(𝐴∗)∗| = ‖𝐴|, since 𝐴∗∗ = 𝐴. 

                        (8) 

From  (7) and (8), 

 

  ‖𝐴∗| = ‖𝐴|.  

Now (5) implies, 

 

‖𝐴|
2

= ‖𝐴∗𝐴| ≤ ‖𝐴∗|‖𝐴| = ‖𝐴|
2
 since ‖𝐴∗| = ‖𝐴|. 

 

Hence all the terms in the above chain are equal.  

 

 So ‖𝐴∗𝐴| = ‖𝐴|
2

. 

 

Again,  𝐴∗𝐴 = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  ‖𝐴∗𝐴| = 0, 

 

  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  ‖𝐴|
2

= 0 

 

                          𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  𝐴 = 0.                                                                                
 

2.8 Example  

 0∗ = 0 and 𝐼∗ = 𝐼, where I is the identity 

operator. 

3.Convergence of Linear Maps 

3.1 Definition  

For 𝐴 and 𝐵 ∈ 𝐵(𝑋), 𝐷(𝐴, 𝐵) is defined by 

𝐷(𝐴, 𝐵) = 𝑠𝑢𝑝{𝑑(𝐴(𝑥), 𝐵(𝑥))/ 𝑥 ∈ 𝑋, ‖𝑥| ≤ 1}, 

where ‖𝑥| =  √ ⟨ 𝑥, 𝑥 ] . 

Then D is a metric on 𝐵(𝑋). Here 𝑑(𝑥, 𝑦) =

2‖𝑥|
2

+ 2‖𝑦|
2

− ‖𝑥 + 𝑦|
2
                     (9) 

3.2 Proposition  

Let 𝐴, 𝐵 ∈ 𝐵∗(𝑋). 

Then 𝐷(𝐴, 𝐵) = 𝐷(𝐴∗, 𝐵∗) 

Notation 

Let X be a H-semi space over ℝ+. The set of 

all bounded maps 𝐴: 𝑋 → 𝑋 is denoted by 𝐵(𝑋). Let us 

denote the set of all bounded maps 𝐴: 𝑋 → 𝑋 for which 

𝐴∗exists , by 𝐵∗(𝑋). 

3.3 Remark 

(a) 0 and 𝐼 ∈ 𝐵∗(𝑋). Thus, 𝐵∗(𝑋) is non empty. 

(b) 𝐵∗(𝑋) is a subspace of 𝐵(𝑋). 

3.4 Definition  

X is said to have the weak convergence 

property if (⟨ 𝑥, 𝑦𝑛 ]) convergent for all 𝑥 ∈ 𝑋 implies 

(𝑦𝑛) is convergent. 

3.5 Definition  

 X is said to have the convergence property if 

⟨ 𝑥, 𝑦𝑛 ] → ⟨ 𝑥, 𝑦 ] 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 implies 𝑦𝑛 → 𝑦. 

3.6 Theorem 

Suppose X has the weak convergence 

property. Then, 𝐵∗(𝑋) is a closed subspace of 𝐵(𝑋). 

Proof 

 Let (𝑇𝑛) be a sequence in 𝐵∗(𝑋) such that 

𝑇𝑛 → 𝑇 in 𝐵(𝑋). 

 Consider,  for 𝑥, 𝑦 ∈ 𝑋, 

⟨ 𝑇𝑥, 𝑦 ] = ⟨ lim
𝑛→∞

𝑇𝑛𝑥, 𝑦 ] = lim
𝑛→∞

⟨ 𝑇𝑛𝑥, 𝑦 ] 

= lim
𝑛→∞

⟨ 𝑥, 𝑇𝑛
∗𝑦 ].                         (10) 

 So lim
𝑛→∞

⟨ 𝑥, 𝑇𝑛
∗𝑦 ] exists for all 𝑥 ∈ 𝑋. 

 As X has the weak convergence property,  

(𝑇𝑛
∗𝑦) is convergent. 

Define 𝑆𝑦 = lim
𝑛→∞

𝑇𝑛
∗𝑦 for all 𝑦 ∈ 𝑋 . Then S is linear.

      

                  (11) 

Since (𝑇𝑛) is convergent, (𝑇𝑛) is bounded. 

So, there exists 𝑐 < ∞ such that 

 ‖𝑇𝑛| < +𝑐 ∀𝑛.

                        (12) 
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Now,  ‖𝑇𝑛
∗| = ‖𝑇𝑛| ≤ 𝑐 ∀𝑛. 

      

                  (13) 

From (11) we get, 

 ‖𝑆𝑦| = ‖ lim
𝑛→∞

𝑇𝑛
∗𝑦|     =

 lim
𝑛→∞

‖𝑇𝑛
∗𝑦| 

   ≤ lim
𝑛→∞

‖𝑇𝑛
∗|‖𝑦|    ≤

 𝑐‖𝑦| for all 𝑦 ∈ 𝑋. 𝑢sing (13). 

Hence S is bounded. 

So (10) becomes, 

 ⟨ 𝑇𝑥, 𝑦 ] = ⟨ 𝑥, 𝑆𝑦 ].     Hence 𝑆 = 𝑇∗, since 

𝑦 ∈ 𝑋 is arbitrary. 

Thus, 𝑇∗𝑦 = lim
𝑛→∞

𝑇𝑛
∗𝑦 for all 𝑦 ∈ 𝑋. 

Now 𝐷(𝑇𝑛
∗, 𝑇∗) = 𝐷(𝑇𝑛, 𝑇) → 0 as 𝑛 → ∞. 

Hence (𝑇𝑛
∗) → 𝑇∗ and hence 𝐵∗(𝑋) is closed in 𝐵(𝑋). 

                                                                                                                                                
 
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