

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING

ISSN:2147-6799 www.ijisae.org Original Research Paper

Adjoint Maps on H-Semi Vector Spaces

J. Arul Joy¹, J. R. V. Edward²

Submitted:05/09/2024 **Revised:**20/10/2024 **Accepted:**28/10/2024

Abstract: In practical situations we often encounter semi vector spaces. Semi vector spaces are algebraic structures analogous to vector spaces with the base fields replaced by semifields. Semi vector spaces with an inner product are called inner product semi vector spaces. Metrizable inner product semi vector spaces which are complete with respect to the induced metric are called *H*-semi vector spaces.

In this paper we discuss certain fundamental properties of adjoint maps on H-semi vector spaces.

Keywords: vector, encounter, situations

1.Introduction

A non-empty set F with two binary operations + and \cdot defined on it is called a **semifield** if the following conditions are satisfied:

(F, +) is a commutative semigroup.

 $(F - \{0\}, \cdot)$ is a commutative group, where 0 is the identity element with respect to +, if it exists.

A **semi vector space** over a semifield F is defined to be a non-empty set X equipped with the operations $+: X \times X \to X$, called addition and $\cdot: F \times X \to X$, called scalar multiplication, satisfying the following conditions:

For each
$$\alpha, \beta \in F, x, y, z \in X,$$

$$x + (y + z) = (x + y) + z; x + y$$
$$= y + x$$

1Research Scholar, Reg. No: 19213162092011, Department of Mathematics, Scott Christian College (Autonomus), Nagercoil-629003, Tamil Nadu, India. 2Associate Professor (Retd), Department of Mathematics, Scott Christian College (Autonomus)

Nagercoil 629003, Tamil Nadu, India. Affliated to Manonmaniam Sundaranar University, Abishekapatti,

Tirunelveli 627 012, Tamil Nadu, India)

email: 1cathychristo2010@gmail.com,

2jrvedward@gmail.com

$$(\alpha\beta) x = \alpha (\beta x)$$

1x = x, where 1 is the multiplicative identity of F if exists.

$$\beta(x + y) = \alpha x + \alpha y; \quad (\alpha + y) = \alpha x + \beta x.$$

We shall write α x instead of $\alpha \cdot x$, for $x \in X$ and $\alpha \in F$.

Let X be a semi vector space over the semifield \mathbb{R}_+ . An inner product on X is a function \langle , \rangle : $X \times X \to \mathbb{R}_+$ satisfying the following conditions:

$$\langle x, x \rangle \ge 0$$
 for all $x \in X$

$$\langle x, x \rangle = 0$$
 if and only if $x = 0$

$$\langle x, y \rangle = \langle y, x \rangle$$
 for all $x, y \in X$
 $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ for all $x, y \in X$ and $\alpha \in \mathbb{R}_+$

$$\left\langle\, x+z,y\,\right] \;=\; \left\langle\, x,y\,\right] \,+\, \left\langle\, z,y\,\right] \, {\rm for}$$
 all $x,y,z\in X$.

Hence \mathbb{R}_+ is the set of all non-negative real numbers.

A semi vector space with an inner product defined on it is called an inner product semi vector space.

Let X be a semi vector space over the semifield \mathbb{R}_+ . An s-norm on X is a function $\|.\|: X \to \mathbb{R}_+$ satisfying the following:

- (i) $||x| \ge 0$ for all $x \in X$ and ||x| = 0 if and only if x = 0
- (ii) $\|\alpha x\| = \alpha \|x\|$ for all $x \in X$ and $\alpha \in \mathbb{R}_+$
- (iii) $||x + y| \le ||x| + ||y|$ for all $x, y \in X$.

Let $(X, \langle ,])$ be an inner product semi vector space. X is said to be metrizable if there exists a metric function $d: X \times X \to \mathbb{R}$ such that

i)
$$(d(x,y))^2 = 2(||x|^2 + ||y|^2) - ||x + y|^2$$
 for all $x, y \in X$

and ii)
$$|\langle x,y]-\langle x,z]|\leq ||x|\;d\;(y,z)$$
 for all $x,y,z\in X$, where $||x|=\sqrt{\langle x,x]}.$

In this case we say that d is the induced metric of \langle , \rangle .

A Hilbert semi vector space is an inner product semi vector space X, which is complete with respect to the induced metric.

Let us call a Hilbert semi vector space a *H*-semi vector space.

2.Adjoints of linear Maps

2.1 Definition

A linear map between two semi vector spaces X and Y over \mathbb{R}_+ is a map $F: X \to Y$ satisfying $F(x_1 + x_2) = F(x_1) + F(x_2)$ for all $x_1, x_2 \in X$ and $F(\alpha x) = \alpha F(x)$ for all $x \in X$ and $\alpha \in \mathbb{R}_+$.

2.2 Definition

Let A be a bounded linear map on a H-semi space X over \mathbb{R}_+ . Suppose there exists a bounded linear map B on X such that

$$\langle Ax, y \rangle = \langle x, By \rangle$$
 for all $x, y \in X$

Then, B is called an adjoint map of A.

It is to be noted that the existence of an adjoint map is not guaranteed.

2.3 Remark

Since X is a semi vector space over \mathbb{R}_+ , $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in X$. So (1) becomes,

$$\langle Ax, y \rangle = \langle x, By \rangle = \langle By, x \rangle$$
 for all $x, y \in X$.

2.4 Definition

An inner product semi vector space $(X, \langle,])$ is standard if $\langle x, z \rangle = \langle y, z \rangle$ for all $z \in X \Rightarrow x = y$. A *H*-semi vector space which is standard is called a standard *H*-semi vector space or *H*-semi space.

2.5 Proposition

Let X be a standard H-semi space. Then, the adjoint of any bounded linear map, if it exists, is unique.

Proof

Let *A* be a bounded linear map on *X*. Suppose *B* and *C* are two adjoint maps of *A*.

Fix y. Then,
$$\langle Ax, y \rangle = \langle x, By \rangle = \langle x, Cy \rangle$$
 for all $x \in X$.

Since $x \in X$ is arbitrary, and X is standard, we get, By = Cy.

Hence, since $y \in X$ is arbitrary, B = C.

Notation

Let us denote the adjoint map of A, if it exists, by A^* . Then (2) becomes,

$$\langle x, Ay \rangle = \langle A^*x, y \rangle$$
 for all $x, y \in X$

2.6 Theorem

Let X be a standard H-semi space over \mathbb{R}_+ . Let A and B be two bounded linear maps on X with adjoint operators A^* and B^* respectively. Then,

- i) A + B also has an adjoint and $(A + B)^* = A^* + B^*$
- ii) αA has an adjoint and $(\alpha A)^* = \alpha A^*$ for $\alpha \in \mathbb{R}_+$
- iii) $(A^*)^* = A$
- iv) AB has an adjoint and $(AB)^* = B^*A^*$.

Proof

The proof is similar to that in vector spaces.

As A and B have adjoints A^* and B^* respectively,

we have $\langle Ax, y \rangle = \langle x, A^*y \rangle$ and $\langle Bx, y \rangle = \langle x, B^*y \rangle$ for all $x, y \in X$.

i) Since A^* and B^* are bounded maps on X, $A^* + B^*$ is also a bounded map on X.

Now, for $x, y \in X$, consider

$$\langle (A+B)x,y \rangle = \langle Ax,y \rangle + \langle Bx,y \rangle = \langle x,A^*y \rangle + \langle x,B^*y \rangle$$

$$= \langle x, A^*y + \langle B^*y \rangle = \langle x, (A^* + B^*)y \rangle.$$

$$(4)$$
Hence, $(A + B)^* = A^* + B^*$.

ii) Let $\alpha \in \mathbb{R}_+$.

Then for $x, y \in X$,

$$\langle (\alpha A)x, y]$$
 = $\alpha \langle Ax, y] = \alpha \langle x, A^*y]$
= $\langle x, \alpha A^*y]$.

So,
$$(\alpha A)^* = \alpha A^*$$
.

iii) Consider

$$\langle A^*x, y \rangle = \langle y, A^*x \rangle = \langle Ay, x \rangle = \langle x, Ay \rangle$$
 for all $x, y \in X$.

Hence A is the adjoint operator of A^* . That is, $(A^*)^* = A$.

iv) AB and B^*A^* are bounded maps on X.

Now consider, for $x, y \in X$,

$$\langle x, (AB)y \rangle = \langle x, A(By) \rangle = \langle A^*x, By \rangle = \langle B^*A^*x, y \rangle.$$

Hence ,
$$(AB)^* = B^*A^*$$
.

2.7 Theorem

Let A be a bounded linear map on a standard Hsemi vector space X over \mathbb{R}_+ with adjoint A^* . Then,

$$||A^*| = ||A|$$

- (ii) $||A^*A| = ||Ax|^2$
- (iii) $A^*A = 0$ if and only if A = 0.

Proof

For $x \in X$, Consider $||Ax|^2 = \langle Ax, Ax \rangle = \langle A^*Ax, x \rangle$

 $\leq ||A^*Ax|||x|,$ using Schwarz inequality

$$\leq \|A^*A\|\|x\|^2.$$

So, $||Ax|| \le \sqrt{||A^*A||} ||x||$ for all $x \in X$.

Hence $||A| \le \sqrt{||A^*A|}$. So, $||A^2| \le ||A^*A|$.

- (5)
- (5) implies,

$$||A|^2 \le ||A^*A| \le ||A^*|||A|$$
. Hence, $||A| \le ||A^*|$ for $A \ne 0$. (6)

For A = 0, (6) is obvious.

Hence
$$||A| \le ||A^*|$$
 (7)

Replacing A by A^* , we get,

$$||A^*| \le ||(A^*)^*| = ||A|, \quad \text{since} \quad A^{**} = A.$$
(8)

From (7) and (8),

$$||A^*| = ||A|.$$

Now (5) implies,

$$||A|^2 = ||A^*A| \le ||A^*|||A| = ||A|^2$$
 since $||A^*| = ||A|$.

Hence all the terms in the above chain are equal.

So
$$||A^*A| = ||A|^2$$
.

Again, $A^*A = 0$ if and only if $||A^*A| = 0$,

if and only if
$$||A|^2 = 0$$

if and only if A = 0.

2.8 Example

 $0^* = 0$ and $I^* = I$, where I is the identity operator.

3. Convergence of Linear Maps

3.1 Definition

For A and $B \in B(X)$, D(A, B) is defined by $D(A, B) = \sup\{d(A(x), B(x)) / x \in X, ||x| \le 1\},\$ where $||x| = \sqrt{\langle x, x \rangle}$.

Then *D* is a metric on B(X). Here d(x, y) = $2||x|^2 + 2||y|^2 - ||x + y|^2$

3.2 Proposition

Let
$$A, B \in B^*(X)$$
.

Then
$$D(A, B) = D(A^*, B^*)$$

Notation

Let *X* be a *H*-semi space over \mathbb{R}_+ . The set of all bounded maps $A: X \to X$ is denoted by B(X). Let us denote the set of all bounded maps $A: X \to X$ for which A^* exists, by $B^*(X)$.

3.3 Remark

- 0 and $I \in B^*(X)$. Thus, $B^*(X)$ is non empty. (a)
- $B^*(X)$ is a subspace of B(X). (b)

3.4 Definition

X is said to have the weak convergence property if $(\langle x, y_n \rangle)$ convergent for all $x \in X$ implies (y_n) is convergent.

3.5 Definition

X is said to have the convergence property if $\langle x, y_n \rangle \rightarrow \langle x, y \rangle$ for all x implies $y_n \rightarrow y$.

3.6 Theorem

Suppose X has the weak convergence property. Then, $B^*(X)$ is a closed subspace of B(X).

Proof

Let (T_n) be a sequence in $B^*(X)$ such that $T_n \to T$ in B(X).

Consider, for $x, y \in X$,

$$\langle Tx, y] = \left\{ \lim_{n \to \infty} T_n x, y \right\} = \lim_{n \to \infty} \langle T_n x, y \right\}$$
$$= \lim_{n \to \infty} \langle x, T_n^* y \right\}. \tag{10}$$

So $\lim_{n\to\infty} \langle x, T_n^* y \rangle$ exists for all $x \in X$.

As X has the weak convergence property, (T_n^*y) is convergent.

Define $Sy = \lim_{n \to \infty} T_n^* y$ for all $y \in X$. Then S is linear.

(11)

Since (T_n) is convergent, (T_n) is bounded.

So, there exists $c < \infty$ such that

$$||T_n| < +c \ \forall n. \tag{12}$$

Now,

$$||T_n^*| = ||T_n| \le c \ \forall n.$$

(13)

From (11) we get,

$$||Sy| = \left| \lim_{n \to \infty} T_n^* y \right| = \lim_{n \to \infty} ||T_n^* y|| \leq \lim_{n \to \infty} ||T_n^*|| ||y|| \leq c||y| \text{ for all } y \in X. \text{ using (13)}.$$

Hence S is bounded.

So (10) becomes,

$$\langle Tx, y \rangle = \langle x, Sy \rangle$$
. Hence $S = T^*$, since $y \in X$ is arbitrary.

Thus,
$$T^*y = \lim_{n \to \infty} T_n^*y$$
 for all $y \in X$.

Now
$$D(T_n^*, T^*) = D(T_n, T) \to 0$$
 as $n \to \infty$.

Hence $(T_n^*) \to T^*$ and hence $B^*(X)$ is closed in B(X).

References

- [1] I.N. Herstein- Topics in Algebra. Wiley Eastern Limited,(1975).
- [2] Kaplemsky, Irving Fields and Rings.University of Chicago , (1972).

- [3] Walter Rudin Functional Analysis. Tata McGraw Hill (New Delhi), (2011).
- [4] K. Chandrasekara Rao Functional Analysis.
 Norosa Publishing House, New Delhi (2009).
- [5] E. Kreyszig- Introductory Functional Analysis with Applications. John Wiley and Sons, New York, (1978).
- [6] B.V. Limaye Functional Analysis. New Age International Publishes, New Delhi, (1996).
- [7] Vasantha Kandasamy W.B., Smarandache Semirings, Semifields and Semivector spaces. American Research Press, Rehoboth, (2002).
- [8] Josef Jany ska, Marco Modugno, Raffaele Vitolo – Semi Vector Spaces and Units of Measurement. (2007).