

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 730–738 | 730

.NET Core Vs. Java Spring Boot: A Review-Driven Performance

Assessment for Cloud-Native API Architectures

Karthik Sirigiri1*

Submitted:10/10/2023 Revised:22/11/2023 Accepted:02/12/2023

Abstract: The development of cloud-native APIs which allow scalability, resilience, and performance optimization will be

absolutely crucial for modern program design. Two of the most widely used frameworks, Java Spring Boot and .Net Core

both provide particular advantages for the expansion of microservices born on clouds. Choice of a proper framework

determines most importantly performance, resource economy, and scalability in deployment.

This article compares Java Spring Boot with .Net Core using industry benchmarks, historical data, and already published

experimental results. Important benchmarks including startup length, request delay, throughput, memory and CPU utilization,

containerizing's efficiency, and other security aspects are rigorously evaluated in this work. This study differs from empirical

studies by aggregating earlier paper results, so offering a logical evaluation of every paradigm.

Since .Net Core typically provides enhanced startup times, reduced memory consumption, and high throughput, the results

show that .Net Core is especially suited for high-performance applications and serverless computing. Conversely, Spring

Boot uses strong interaction with Spring Cloud and values robust community support, so showing better suited for corporate

use.

This study is to assist developers and software architects in selecting knowledge-based frameworks for cloud-native apps.

Future research should consider practical applications if we want to strengthen the theoretical commonalities.

Keywords: Cloud-Native API Development, Java Spring Boot, .NET Core, Serverless Computing, RESTful Web APIs, Cloud

Computing Frameworks, Microservices Architecture, Enterprise Software Scalability, Containerization and Kubernetes.

Introduction

Importance of Cloud-Native API Development

Modern software engineering largely depends on

the ideas of cloud-native API development to

improve the scalability, distribution, and resilience

of applications in cloud settings. Using

microservices architecture forces companies to

pursue frameworks marked by improved

performance, flexibility, and flawless interface with

cloud environments. Load balancing, fault

tolerance, and auto-scaling approaches greatly

increase the efficacy of cloud-native APIs in

enabling cloud-based applications, so improving

inter-service communication efficiency.

Three main dimensions help one to explain the

importance of cloud-native API development:

- Dynamic scalability of cloud-hosted APIs shows

in line with traffic demand, therefore improving

resource economy and cost effectiveness.

- Cloud-native apps use retry policies, auto-healing

systems, and circuit breaker implementations

among various fault tolerance strategies to achieve

high availability.

- API services efficiently maximize resource

consumption by using containerized deployments

on platforms including AWS Lambda, Azure

Functions, and Kubernetes clusters, therefore

lowering running costs.

Especially when using cloud-native architectural

frameworks, the combination of Spring Boot with

the natural CI/CD pipeline capabilities of .NET

Core effectively reduces deployment problems.

Modern security solutions improve application

security by including OAuth 2.0, JWT

authentication, and API gateways' integration with

cloud-native APIs. The rapid use of Kubernetes,

serverless computing, and hybrid cloud

environments made the choice of an API

Software Developer, Euniverse Technologies, Irving,

Texas, USA.

sirigirikarthik25@gmail.com;

mailto:sirigirikarthik25@gmail.com;

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 730–738 | 731

development framework critical in defining

application performance speed, maintainability,

and general security posture.

.NET Core and Java Spring Boot: Overview

A) .NET CORE

Designed by Microsoft, .Net Core is a robust and

efficient framework aimed to assist the

development of modern, cloud-native apps across

various platforms. This application has been

painstakingly created to run across Windows,

Linux, and macOS platforms free from error. The

lightweight and flexible nature of the system helps

initiatives targeted at microservices and API-driven

development significantly.

The essential characteristics of .NET Core are:

- The Kestrel web server generates high-

performance results by significantly improving the

request processing efficiency.

- There are clauses covering numerous platforms as

well as tools particularly for Linux operating

system-based implementations.

- Task-based Asynchronous Pattern (TAP) helps to

enhance concurrency in asynchronous

programming.

- Effective containerizing and lightweight Docker

images drastically cut both deployment time and

resource usage.

- Load balancing, auto-scaling, and integrated

dependent injection are among the characteristics

of cloud-native systems.

B) Java Spring Boot

Spring Boot is a strong framework built on top of

the Spring framework substantially facilitates Java

programming language in application development

process. The availability of a whole spectrum of

tools and functionalities significantly speeds up the

development of production-ready applications.

Spring Boot is an open-source platform housed

inside the Java environment, deliberately designed

to enhance the development process of enterprise-

level microservices, therefore facilitating improved

usage. This framework enables rather remarkably

effective creation and use of RESTful APIs by

offering prescriptive defaults.

Key elements of Spring Boot are:

- A vast ecosystem painstakingly developed for

commercial use including Spring Cloud, Hibernate,

Kafka, and RabbitMQ integrated technologies.

- Embedded web servers as Tomcat, Jetty, and

Undertow provide lightweight and self-sufficient

deployments.

- Under Spring Security, OAuth can function in

line with role-based access control systems by

means of security measures.

- Modern computing environments are more

relevant for the mix of cloud-native technologies

with platforms including AWS, Azure, Google

Cloud, and Kubernetes.

- One may run resilience and service discovery

with Spring Cloud, circuit breakers, and API

gateways used sensibly.

Although Spring Boot clearly benefits large-scale

business applications needing a robust ecosystem

and seamless integration into corporate

environments, .NET Core is recognized for its

remarkable performance and efficient resource

management.

Research Objectives and Scope

This work integrates data from present literature,

industry standards, and historical experimental

results to undertake a comparative analysis of Java

Spring Boot and .NET Core in the framework of

cloud-native API development. Without

undertaking new empirical evaluations, the goal is

to evaluate how well these frameworks manage

different cloud-based workloads. Based on past

studies, this paper clearly assesses startup length,

request latency, throughput performance, memory

and CPU efficiency, containerization and

deployment methods, cost-effectiveness, and

security concerns. When choosing a framework for

their cloud-native apps, software architects and

developers must first grasp these traits to make

educated, data-driven decisions.

Technical studies, peer-reviewed academic papers,

and benchmark assessments comparing Spring

Boot with .NET Core in cloud environments—

more especially, AWS, Azure, and Google

Cloud—are analyzed in this paper. Rather than new

experimental discoveries, practical

implementations, or direct data collecting, the

study relies on secondary data sources. The

research results will help businesses using APIs

with .NET Core or Spring Boot in containerized or

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 730–738 | 732

serverless environments in grasp the trade-offs

between performance, scalability, security, and cost

effectiveness.

Background & Related Work

Overview of .NET Core and Java Spring Boot

A) .NET Core: Architecture & Cloud-Native

Capabilities

.NET Core Framework is an open-source and

cross-platform framework developed by the

Microsoft for high performance cloud-native

applications development .NET Core Framework is

an open-source and cross-platform framework

developed by the Microsoft for high performance

cloud-native applications development. Originally

the conventional .NET Framework, it developed

with modularity, lightweight execution, Linux,

Windows, and macOS. One of its most important

benefits is the built-in support for microservices

and RESTful API development, so cloud-native

solutions choose it firstly. Originally the

conventional .NET Framework, it developed with

modularity, lightweight execution, Linux,

Windows, and macOS. One of its most important

benefits is the built-in support for microservices

and RESTful API development, so cloud-native

solutions choose it firstly.

Important characteristics of .Net Core for

development of Cloud-Native APIs:

Lightweight Cross-Platform: Designed to

function effectively in Linux and Windows

platforms, unlike its predecessor, .NET Core is

ideal for containerized installations.

High Performance API Processing: Using

Kestrel, a really effective web server, high-

performance API processing speeds demand

management.

Asynchronous models of programming: Task-

based Asynchronous Pattern (TAP) permits

efficient non-blocking API execution in C#.

Cloud-native support with microservices: Built-

in gRPC, dependence injection, and reduced

runtime overhead help .NET Core to be

microservices ideal.

Security: .NET Core reduces security threats by

promoting JWT authentication, OAuth 2.0, and

API gateways.

Integration of Kubernetes with Docker:

Official .NET Core Docker images, created for

performance, simplify deployment in containerized

cloud-native environments.

Cloud Integration: .Net Core permits perfect

interaction with primary cloud platforms,

especially Microsoft Azure, which provides Azure

Functions, App Services, and Kubernetes Service

(AKS) fit for .NET-based APIs. AWS and Google

Cloud additionally support .NET Core by Lambda

functions, Kubernetes, and serverless deployment

approaches.

B) Java Spring Boot: Architecture & Cloud-

Native Capabilities

Spring Boot is an open-source Java framework

intended for microservices oriented applications.

Designed on Spring Framework, it provides

dependency management, embedded web servers,

and auto-configuration, so streamlining Java

application deployment. Common in commercial

applications, it offers microservices and cloud-

native architectures much of tremendous support.

Features of Spring Boot for Cloud-Native API

Development:

Enterprise-grade Ecosystem: Easy connections

between Spring Boot and Spring Cloud allow

cloud-native API gateway solutions, distributed

tracing, and service discovery.

Microservices-oriented design: Provides built-in

support for Kafka and RabbitMQ for containerized

deployments, fault tolerance, and event-driven

communication.

Embedded web servers: Comes with Tomcat,

Jetty, and Undertow and lets you quickly deploy

without using outside setups.

Declarative Security: Supported OAuth 2.0, JWT,

and LDAP connectivity, uses Spring Security to

enforce authentication and authorization policies.

Containerization: Well-optimized for Docker and

Kubernetes, containerization \& Kubernetes

support flawless cloud deployment.

Features of Serverlessism and Cloud-Nativeism:

Ideal for serverless computing native integration

with AWS Lambda, Azure Functions, and Google

Cloud Functions is found.

Connection with Cloud Platforms: Highly

compatible with AWS, Azure, and Google Cloud,

Spring Boot is the recommended framework for

Java applications born on the cloud. For serverless

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 730–738 | 733

execution, it connects with AWS Lambda; for

containerized workloads, Kubernetes; and for

service mesh designs like Istio.

Prior Research on API Performance

For cloud-native API development, several studies

have contrasted the performance, scalability, and

cloud efficiency of Spring Boot versus .Net Core.

Mostly, these research have addressed startup time,

API request handling, memory and CPU use, and

scalability in containerized systems.

Existing Research and Performance

Benchmarks:

- Examining microservices-based systems, Dinh-

Tuan et al. (2020) found that while Spring Boot

offered superior long-term maintainability and

ecosystem support, .Net Core performed better

under high-conurrency loads.

- Joshi & Kotha (2022) investigated the scalability

of Java-based microservices in cloud-native

environments, stressing that integration of Spring

Boot with Spring Cloud helps large-scale

distributed systems.

Industry Benchmarks and Practical Reviews

- Rajput (2018) and Bakliwal (2021) shed light on

actual cloud installations, showing that whilst .Net

Core is becoming more popular because of its high

performance and lightweight execution, Spring

Boot is more generally embraced in businesses

because of its long-term reliability.

Comparison Methodology

The approach applied to compare Java Spring Boot

with .Net Core for cloud-native API development

is described in this part. This study lacks actual

implementation or benchmarking since it is based

on already published scholarly and commercial

literature. Rather, the method depends on industry

case studies, cloud provider documentation, a

disciplined evaluation and synthesis of published

results from peer-reviewed sources.

Comparison Metrics

The study assesses both systems on a set of

commonly used standardized performance and

development criteria extensively used in cloud-

native API benchmarking, therefore guaranteeing a

meaningful and unbiased comparison. Startup time,

throughput and latency, memory and CPU use,

developer productivity, security, containerizing and

deployment efficiency, and cost economy are

among these measures.

Under demand, performance is expressed in terms

of API startup time, cold-start latency, especially

pertinent on serverless platforms and request

handling throughput. These are absolutely crucial

to assess cloud deployment responsiveness. Often

connected with load balancing and autoscaling

features, scalability emphasizes on how well the

frameworks manage growing concurrent users and

requests.

Memory and CPU use expose how effectively the

frameworks consume system resources, therefore

directly affecting scalability cost and performance

consistency. While security and maintainability

investigate built-in authentication, authorization

systems, and the update frequency of the

frameworks, developer productivity is evaluated

through simplicity of setup, configuration, and

learning curve. At last, Kubernetes supports

resource-based pricing in cloud environments,

containerization and cost effectiveness center on

Docker image sizes.

Cloud Environment Assumptions (AWS, Azure,

Google Cloud)

A reasonable and consistent comparison of Spring

Boot and .Net Core has to consider the cloud

platforms where both APIs are usually used. Three

main platforms—Amazon Web features (AWS),

Microsoft Azure, and Google Cloud Platform

(GCP)—each providing special features and

optimization for the corresponding frameworks—

are taken under consideration in this paper.

Widely supported on AWS, .NET Core provides

cost-effective implementation and optimal cold-

start speeds via Lambda, ECS, and EC2. Though it

often suffers somewhat longer cold starts due to the

JVM initialization, Spring Boot can also run in

AWS Lambda (custom runtime) or container

services like EKS and Fargate.

With sophisticated monitoring and performance

tweaking choices, Microsoft Azure.NET Core

gains from native support via Azure App Service,

Azure Functions, and AKS (Azure Kubernetes

Service). Meanwhile, Spring Boot is provided via

Azure Spring Apps, a managed service geared for

Spring tasks.

Both frameworks run powerfully on Google Cloud

using Cloud Run, GKE (Google Kubernetes

Engine), and Cloud Functions. While .NET Core

can be implemented simply utilizing containerized

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 730–738 | 734

processes, Spring Boot typically fits well with

GCP's support of Istio, Anthos, and microservices

federation. These presumptions offer a benchmark

for deployment that evaluates cost trade-offs

among cloud providers as well as performance.

Theoretical Framework for Performance

Comparison

This work is non-experimental, hence a theoretical

comparison framework is applied to synthesis the

current results into a coherent performance

evaluation. This method gathers under common

evaluative themes results from academic

publications, industry whitepapers, and deployment

case studies.

First, studies measuring equivalent metrics—such

as latency, startup time, and memory use—

across .NET Core and Spring Boot are found by

means of a process called literary aggregation.

These findings are triangulated from many sources

to allow for variances in hardware, setup, or

workload conditions. For instance, the conclusion

of a measure based on three independent

investigations showing that .Net Core has a shorter

startup time than Spring Boot generates this

consensus.

The results then are assessed in light of real-world

deployment patterns, especially with relation to

Kubernetes clusters, serverless environments, and

CI/CD pipelines. To reflect pragmatic deployment

considerations, the study considers cloud-specific

configurations including auto-scaling thresholds,

container image sizes, and payment structures.

This approach allows a fair, evidence-based

evaluation of both technologies, therefore offering

a complete, literature-based comparison to guide

the choice of frameworks in cloud-native API

development situations.

Performance Comparison

Building responsive, scalable, and reasonably

priced APIs requires cloud-native frameworks

acting as they should. Java Spring Boot is

compared on six primary criteria— Startup Time,

Throughput & Latency, Memory & CPU

Utilization, Containerization & Deployment, Cost

Efficiency, and Security & Maintainability

with .Net Core. The basis of the research is the

aggregated results from peer-reviewed sources and

current benchmarks.

Startup Time

Startup time is especially important in serverless

configurations and auto-scaling systems, where

cold-start latency can seriously impair user

experience and billing efficiency. .Net Core begins

considerably faster than Java Spring Boot,

according to several benchmark studies. Reduced

runtime footprint of .Net Core and its more

efficient compiled native execution architecture

than Java's JVM-based bootstrapping produce this

advantage.

Spring boot programs can ask for more time to start

depending on JVM startup cost, classpath scanning,

and dependency injection approaches. Cold-start

scenarios like AWS Lambda or Azure Functions

expose this latency. The discrepancy closes,

nevertheless, in warm-start systems (like

containerized APIs behind load balancers).

Figure 1. Startup time (ms) comparison

between .NET Core and Spring Boot,

illustrating cold-start and warm-start

differences for cloud-native deployment

scenarios.

Throughput & Latency

Scalability of APIs directly depends on throughput

and latency under demand. Under some test

conditions, .NET Core often shows less latency and

better request throughput than Spring Boot. Great

concurrency is provided by the Kestrel web server

included in ASP.NET Core, built for performance

and with asynchronous I/O methods.

Under such conditions, Spring Boot often shows

significantly higher latency and poorer throughput,

even if it is highly capable. Larger dependency

trees, runtime abstraction layers, and the JVM trash

collecting process can all cause somewhat

performance issues. JVM tinkering and reactive

programming models with Spring WebFlux,

however more challenging, can help Spring Boot

operate as best it can.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 730–738 | 735

Figure 2. Average throughput (requests per

second) of RESTful APIs implemented

using .NET Core and Spring Boot under

standard load.

Memory & CPU Utilization

Especially with pay-as-you-go models like AWS

Fargate or Google Cloud Run, a major factor

influencing cloud efficiency is resource utilization.

Benchmarks reveal that .Net Core uses less CPU

and memory than Spring Boot for managing like

workloads. .Net Core apps utilize 30–50% less

average memory, so running costs are reduced and

scaling behavior is enhanced.

Figure 3. Memory usage (in MB) under load,

highlighting the resource efficiency difference

between the two frameworks.

Spring Boot apps exhibit more memory footprint

due to the JVM and other runtime libraries. CPU

consumption is also more in some circumstances

under great demand concurrency and especially

during application boot. When set up, nevertheless,

Spring Boot offers robust JVM profiling and trash

collecting management tools to help to minimize

these issues.

Containerization & Deployment (Docker &

Kubernetes)

Although both technologies allow modern

containerized systems, their image size and

orchestration efficiency vary. Typically starting at

20–50MB using optimal runtime images, .Net Core

Docker images are smaller. From this follows

faster container pull times, faster starting in

Kubernetes clusters, and better portability in CI/CD

pipelines.

Though with tools like jlink or native GraalVM

images optimizing them, generally speaking, spring

boot programs produce larger containers (100MB–

300MB). Particularly when using Eureka, Consul,

or service meshes like Istio, deployment using

Spring Boot occasionally requires more

configuration. On a corporate level, however,

Spring's deep ties to Spring Cloud and Kubernetes

ecosystems make it rather flexible and fit.

Figure 4. Container image size comparison

showing deployment footprint of .NET Core and

Spring Boot applications.

Cost Efficiency

Cost is an indirect but critical performance factor

especially in cloud-native programs because billing

is linked to execution time, memory use, and

scaling behavior. Sometimes .net core is more cost-

effective in lower memory utilization, faster startup,

and smaller image size in serverless or

containerized pay-per-use models.

Although spring boot apps have greater features,

slower cold starts, larger container images, and

higher memory utilization could generate more

running costs. In corporate systems, the cost

difference is less significant as cold starts are

infrequent and uptime is continuous; nevertheless,

if Spring's strong connectors reduce outside service

needs, it could even reverse.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 730–738 | 736

Figure 5. Estimated cost per one million API

calls across AWS, Azure, and GCP for each

framework, assuming equivalent workloads.

Security & Maintainability

While both models have created security

ecosystems, their methods and tools vary. Directly

into the ASP.NET Core pipeline, .NET Core

aggregates identity providers, JWT authentication,

and authorization middleware security components.

Consolidated support through Microsoft helps with

consistent patching and long-term support (LTS)

cycles.

On the other hand, Spring Boot offers Spring

Security—one of the most robust and flexible

security solutions found inside the Java

environment. It supports advanced multi-tenancy,

RBAC, OAuth2, Open ID Connect, and CSRF

protection. Its configuration can be more complex,

though, and the community-based support model

asks developers to keep current with security notes

and releases.

In terms of maintainability, Spring Boot boasts

extensive documentation, a larger developer

community, and more third-party integrations.

Visual Studio, Rider, and the .NET CLI all of

which also offer robust tooling support are driving

quick acceptance of .NET Core.

Table. Comparison of various metrics(.NET

Core Vs Java SpringBoot)

METRIC .NET

CORE

JAVA

SPRING

BOOT

Startup Time Fast (esp.

cold starts)

Slower due

to JVM

startup

Throughput &

Latency

Higher

throughput,

low latency

Moderate

throughput,

higher

latency

Memory & CPU

Usage

Low

memory and

CPU usage

Higher

memory and

CPU

consumption

Docker Image

Size

Small (20–

50MB)

Larger (100–

300MB)

Serverless/CI/CD

Friendly

Highly

optimized

Requires

tuning

Security Features Integrated,

simpler setup

Rich but

complex

configuration

Maintainability

& Ecosystem

Strong

IDE/tooling,

growing

Mature

ecosystem,

large

community

Cost Efficiency More

efficient at

scale

Costlier in

pay-per-use

models

Discussion & Analysis

While both architectures are suitable for cloud-

native API development, a comparison of Java

Spring Boot and .Net Core exposes variations in

terms of design philosophy, runtime efficiency,

developer experience, and cloud ready capability.

This section explores the effects of these variances

across three dimensions: trade-offs between the

two technologies, best-fit scenarios for each, and

industry acceptance patterns.

Trade-offs Between the Two Technologies

Choosing between .NET Core and Spring Boot

means major trade-offs depending on performance

criteria, project complexity, developer knowledge,

and organizational preferences.

.Net Core is lighter, starts faster, consumes less

memory and CPU for performance-critical apps

hosted in serverless or resource-constrained

environments. It also works really neatly with

modern DevOps techniques and containerized

processes. Though firms highly dedicated in non-

Microsoft technologies could face a more steep

integration curve, its ecosystem is less developed in

terms of enterprise-grade libraries.

On the other hand, Java Spring Boot provides, from

the start, a more complete feature set, particularly

for systems of corporate grade. Its intimate link

with Spring Cloud, config servers, and distributed

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 730–738 | 737

tracing tools gives architectural advantages for

complex systems. Having said that, these

features—which may impact performance and

deployment speed in lightweight or microservice-

oriented applications—come at the penalty of more

configuration complexity, longer startup times, and

higher resource usage.

Eventually the decision reveals a compromise

between performance optimization (.NET Core)

and ecosystem diversification (Spring Boot).

Best Use Cases for Each

Knowing when to apply each framework will help

one to match technical decisions with architectural

and corporate goals. Drawing on the results:

.NET CORE:

- Create lightweight APIs with high throughput

demand using .NET Core.

- Working in models of serverless or containerized

microservices.

- Maximizing cold-start performance and resource

economy.

- Either working on Microsoft stack or aiming at

Azure-native installations.

JAVA SPRINGBOOT:

- Create large-scale commercial apps with complex

connectivity using Java Spring Boot.

- Strong skills in APIs, circuit breakers, and service

discovery are needed.

- Either working with an experienced Java

development team or with present Java

infrastructure.

- Emphasizing hybrid-cloud or multi-cloud

implementations using advanced orchestrating

layers.

Generally speaking, Spring Boot is chosen in

financial services, telecoms, and corporate backend

systems where consistency, security, and vendor

neutrality are very essential. .NET Core is

increasingly evident in startups, product

engineering, and cloud-optimized environments

where performance, containerization, and cost

control rank highest.

Industry Adoption Trends

Industry trends show increasing acceptance of both

approaches; the decision usually comes from team

experience, corporate history, and cloud provider

alignment.

Spring Boot still governs enterprise Java systems

especially in firms with past Spring investments. It

is supported by a sizable open-source community,

extensive documentation, and consistent

developments in cloud integration like Spring

Cloud, Sleuth, and Resilience4J. Still the preferred

paradigm in banking, healthcare, and

telecommunications is this one.

On-demand .NET Core has grown very popular, on

the other hand, thanks to its open-source attitude,

cross-platform portability, and modern architecture.

Companies already running Microsoft Azure find it

especially tempting; e-commerce, education, and

real-time systems are just beginning to gather

momentum. Growing support from Linux

environments and robust tools like Visual Studio

Code and GitHub Actions helps it to become a

major participant in cloud-first development.

Both approaches are rapidly evolving to meet

serverless, containerized, and cloud-native

computing even if they differ. Companies are

applying polyglot designs, leveraging the benefits

of both technologies as appropriate.

Conclusion

This paper presents Java Spring Boot in a relative

perspective. .Net Core for cloud-native API

development grounded only on contemporary

literature and benchmark results. Especially for

lightweight, serverless, and high-performance

programs, .Net Core offers better startup speed,

memory economy, and cost-effectiveness when

compared to substitutes. Conversely, Spring Boot

extensive ecosystem, ability for corporate

integration, and support of cloud-native

technologies help it to be most appropriate for

long-term projects and large-scale distributed

systems. Which of the two cloud-compatible

models best fits a specific scenario will depend on

particular project requirements, current

infrastructure, and organizational objectives. This

literature-based study provides builders and

designers with a framework for matching

performance goals and cloud deployment

methodologies with chosen framework.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 730–738 | 738

References

[1] Dinh-Tuan, H., Mora-Martinez, M., & Beierle,

F. (2020). Development Frameworks for

Microservice-Based Applications: Evaluation and

Comparison. International Conference on Cloud

Computing and Services Science.

[2] Joshi, P.K., & Kotha, R. (2022). Architecting

Resilient Online Transaction Platforms with Java in

a Cloud-Native World. ResearchGate.

[3] Rajput, D. (2018). Mastering Spring Boot 2.0.

Packt Publishing.

[4] Marchioni, F. (2019). Hands-on Cloud-Native

Applications with Java and Quarkus.

[5] Gutierrez, Felipe. (2019). Pro Spring Boot 2:

An Authoritative Guide to Building Microservices,

Web and Enterprise Applications, and Best

Practices. 10.1007/978-1-4842-3676-5.

[6] Vitale, T. (2022). Cloud Native Spring in

Action: With Spring Boot and Kubernetes.

Manning Publications.

[7] Sangapu, S. S., Panyam, D., & Marston, J.

(2022). The Definitive Guide to Modernizing

Applications on Google Cloud. O'Reilly Media.

[8] Dhalla, Hardeep Kaur. "A performance

comparison of restful applications implemented in

spring boot java and ms. net core." Journal of

Physics: Conference Series. Vol. 1933. No. 1. IOP

Publishing, 2021.

[9] Zentner, Andrej, and Robert Kudelic.

"Multithreading in. Net and Java: A Reality

Check." J. Comput. 13.4 (2018): 426-441.

[10] Arif, M. A., Hossain, M. S., Nahar, N., &

Khatun, M. D. (2014). An Empirical Analysis of

C#, PHP, JAVA, JSP and ASP. Net regarding

performance analysis based on CPU

utilization. Banglavision Research Journal, 14(1),

173-187.

[11] Tillotson, R. Web Applications With Java

Server Pages and Microsoft .NET Web Forms.

[12] Paguay-Soxo, P., & Vivanco, M. (2018).

Comparative Analysis of File Transfer

Performance Between Java and. NET Using a

Hybrid Encryption Protocol with AES and

RSA. KnE Engineering, 161-177.

[13] Kronis, K., & Uhanova, M. (2018).

Performance Comparison of Java EE and ASP.

NET Core Technologies for Web API

Development. Appl. Comput. Syst., 23(1), 37-44.

[14] Munonye, K., & Martinek, P. (2018,

September). Performance analysis of the microsoft.

Net-and java-based implementation of REST web

services. In 2018 IEEE 16th International

Symposium on Intelligent Systems and Informatics

(SISY) (pp. 000191-000196). IEEE.

[15] Selakovic, M., & Pradel, M. (2016, May).

Performance issues and optimizations in javascript:

an empirical study. In Proceedings of the 38th

International Conference on Software

Engineering (pp. 61-72).

[16] Soni, A., & Ranga, V. (2019). API features

individualizing of web services: REST and

SOAP. International Journal of Innovative

Technology and Exploring Engineering, 8(9), 664-

671.

[17] Roy, A. C., Al Mamun, M. A., Khairat Hossin,

M. A. I., Uddin, M. P., Afjal, M. I., & Sohrawordi,

M. (2017). Developing Operating System

Simulation Software for Windows Based System

by C# .NET Framework and an Android

Application by JAVA and XML. Journal of

Operating Systems Development & Trends, 4(1),

9-18.

[18] Goldshtein, S., Zurbalev, D., & Flatow, I.

(2012). Pro .NET Performance: Optimize Your C#

Applications.

[19] Bayya, Anil Kumar. (2023). Building Robust

Fintech Reporting Systems Using JPA with

Embedded SQL for Real-Time Data Accuracy and

Consistency. The Eastasouth Journal of

Information System and Computer Science. 1. 119-

131. 10.58812/esiscs.v1i01.480.

[20] Rozaliuk, T., Kopyl, P., & Smołka, J. (2022).

Comparison of ASP.NET Core and Spring Boot

ecosystems. Journal of Computer Sciences

Institute, 22, 40–45.

https://doi.org/10.35784/jcsi.2794.

[21] Mohan, J. S. S., & Goswami, K. (2023).

Performance Analysis and Comparison of Node.Js

and Java Spring Boot in Implementation of Restful

Applications.

https://doi.org/10.22541/au.169655403.34118093/v

1

[22] Kafri, N., & Hamed, O. (2009). Performance

Prediction of Web Based Application Architectures

Case Study: .NET vs. Java EE. 1, 146–156.

http://www.dirf.org/ijwa/v1n30609.pdf

[23] Munonye, K., & Martinek, P. (2018).

Performance Analysis of the Microsoft. Net- and

Java-Based Implementation of REST Web Services.

International Symposium on Intelligent Systems

and Informatics, 191–196.

https://doi.org/10.1109/SISY.2018.8524705

https://doi.org/10.35784/jcsi.2794

