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Abstract: Brain tumors, characterized by the uncontrolled proliferation of abnormal cells within brain tissue,
represent a significant clinical challenge affecting individuals across all age groups. The rapid progression and
sensitive anatomical location of such tumors underscore the necessity for prompt and precise diagnostic
methodologies. Magnetic Resonance Imaging (MRI) remains the gold standard for non-invasive visualization of
intracranial abnormalities, offering high-resolution structural information critical for early tumor detection. This
study introduces a customized Convolutional Neural Network (CNN) framework specifically designed for the
automated analysis of brain MRI scans to facilitate accurate tumor identification. The proposed model comprises
five convolutional layers for deep hierarchical feature extraction, each followed by a max-pooling layer to
systematically reduce spatial complexity while retaining essential information. A subsequent Flatten layer and two
densely connected layers support robust classification, enhanced through the integration of optimized activation
functions and an improved hidden layer topology to accelerate convergence and learning stability. Empirical
validation reveals an impressive classification accuracy of 98.6% and a precision rate of 97.8%, with minimal cross-
entropy loss. Comparative benchmarking against leading architectures—including Mask R-CNN, AFPNet, Fourier
CNN, and YOLOv5—demaonstrates the superior performance of the proposed approach, affirming its efficacy for
advanced clinical decision support in brain tumor diagnostics.
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INTRODUCTION deep learning—especially Convolutional Neural
Networks (CNNs)—has emerged as a powerful

Brain tumors represent one of the most
serious and potentially fatal health issues, arising
from uncontrolled and abnormal cell growth within
the brain.Due to their aggressive progression and
the intricate structure of the brain, timely and
precise diagnosis is crucial to ensure effective
therapy and boost survival chances.Magnetic
Resonance Imaging (MRI) remains a preferred
diagnostic technique because of its excellent soft
tissue imaging and non- invasive nature.
Nevertheless, analyzing MRI scans manually is
labor-intensive and prone to variability in human
judgment.To overcome these limitations, the field of
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solution for automating brain tumor detection.In this
work, we introduce a specialized CNN architecture
tailored for brain MRI interpretation, which employs
layered  convolution and  pooling  stages.
The model leverages optimized activation
mechanisms and a refined hidden layer design to
enhance classification performance and ensure high
levels of diagnostic accuracy.Brain tumor detection
and classification from MRI images had been
significantly enhanced through in-silico approaches
leveraging deep neural networks. These methods
effectively extracted spatial and contextual features
to distinguish tumor types with improved precision
and reduced manual intervention, enabling early-
stage diagnosis through automated processes [1].
Moreover, deep learning techniques proved highly
effective in segmenting MRI-based brain tumor
images, offering a robust alternative to traditional
machine learning methods. These advanced models
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achieved high accuracy by learning hierarchical
image representations and dealing efficiently with
variability in tumor size, shape, and location [2].

Additionally, classification performance had
been further improved by integrating deep learning
with wavelet transforms, which allowed for multi-
resolution analysis of brain MRIs, thereby enhancing
tumor feature extraction and aiding in more accurate
tumor  categorization[3]. Likewise, ensemble
learning techniques such as AdaBoost were explored
to boost classification efficiency in MR image
datasets, demonstrating the ability to combine weak
learners into a strong classifier, thereby increasing
detection reliability [4].Furthermore, comprehensive
reviews highlighted the importance of MRI-based
segmentation for brain tumor analysis, emphasizing
the role of image preprocessing, model training, and
evaluation strategies in optimizing the diagnostic
process [5]. In a similar vein, several classification
methodologies were systematically analyzed,
revealing that combining feature engineering with
machine learning models vyielded considerable
improvements in predictive performance for
different tumor types [6].

Simultaneously, hybrid deep learning

architectures incorporating both patch-wise and
pixel-wise strategies had been developed to capture
both global and local tumor features, enhancing
segmentation accuracy across complex datasets [7].
In another innovative attempt, machine learning-
based systems were implemented to detect brain
tumors, showecasing effective results through
classifiers trained on image features such as texture
and intensity gradients [8].
On a broader scope, deep learning had been
extensively reviewed from the perspective of brain
cancer classification, underlining the potential of
convolutional neural networks (CNNSs), transfer
learning, and data augmentation in overcoming
limitations related to sample size and class imbalance
[9]. Correspondingly, various detection and
classification approaches were proposed for brain
structural disorders, indicating the value of
integrating imaging data with Al-based models for
comprehensive diagnosis [10].

Similarly, multiple image processing
techniques were surveyed to detect tumors,
emphasizing steps such as filtering, segmentation,
and feature extraction  that  contribute  to
the accurate

classification of abnormal brain tissues [11]. Also,
recent advancements in  segmentation and
classification tasks using deep learning exhibited
notable progress, where architectures like U-Net and
its variants facilitated high-precision boundary
detection [12].In addition, machine learning had
been extended to multi-organ tumor classification,
revealing generalizable frameworks applicable to
various cancer types and supporting large-scale
screening programs [13]. Another critical review
stressed the lessons learned and practical
implications of brain tumor diagnosis via MRI,
pointing out the challenges and potential solutions in
clinical integration [14].

Notably, statistical texture  feature
enhancement techniques were applied to improve
classification performance, demonstrating better
discrimination between tumor and non-tumor
tissues in medical scans [15]. Along similar lines,
feature fusion techniques combined with particle
swarm optimization were introduced to increase
tumor detection accuracy, enabling comprehensive
utilization of multiple features [16].In parallel,
classification frameworks involving deep learning
combined with machine learning ensemble models
were proposed, delivering robust performance for
distinguishing cancerous tissues in MRI images [17].
Moreover, localization and classification of tumors
using deep and traditional machine learning methods
displayed promising outcomes in terms of reduced
false positives and improved segmentation quality
[18].

Statistical analyses provided further insights
into brain cancer prevalence, informing researchers
and clinicians of disease trends and reinforcing the
urgency of efficient detection methodologies [19].
With the evolution of attention-based deep learning
mechanisms, segmentation models began to leverage
MRI multi-modalities for more nuanced feature
representation,  substantially  boosting  tumor
identification accuracy [20].Consequently, image
mining frameworks were reviewed for tumor
detection tasks, illustrating that combining data
mining and image analysis techniques provided a
scalable solution for large datasets [21]. Likewise,
semantic segmentation using fully convolutional
networks (FCNs) allowed for end-to-end processing
of MRI images, simplifying annotation efforts and
reducing reliance on manual delineation [22].Finally,
convolutional neural networks were employed for
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tumor detection with high precision, validating their
efficiency through real-time implementation and
showcasing the model’s potential for future clinical
adoption [23].

Methodology
Data collection

To train the proposed deep learning model
effectively, a comprehensive dataset consisting of
30,000 MRI brain images was compiled. The dataset
was evenly distributed into two categories: 15,000
images of healthy (tumor-free) brains and 15,000
images exhibiting brain tumors. This balanced
distribution ensures that the model learns to

distinguish between normal and abnormal brain
structures with high accuracy and minimal bias.For
the testing phase, an independent dataset was curated
to evaluate the model’s generalization ability. This
test set included 4,400 MRI scans of healthy brains
and 3,200 scans showing the presence of tumors, all
of which were gathered from publicly available
sources such as Google Images and verified medical
repositories to ensure diversity and realism in image
quality and variation. A representative sample from
the dataset is illustrated in Figure 1, showcasing the
visual differences between normal and tumor-
affected brain scans.

Figure 1. Dataset images

In addition to the custom dataset, the well-
established Brain Tumor Segmentation (BRATS)
benchmark datasets were utilized for comparative
analysis and validation. These datasets are widely
recognized in the medical imaging research
community for their multi-modal MRI scans and
expert-labeled annotations, offering a reliable
baseline for evaluating model performance across
various tumor types and imaging conditions. This
combination of custom and benchmark datasets
enhances the robustness and credibility of the
proposed model's evaluation.

Data preprocessing

The preprocessing stage is crucial for
enhancing image quality, removing noise, and
improving contrast to facilitate more accurate
analysis. In this work, several preprocessing
techniques were applied to the MRI images to
prepare them for input into the deep learning model.
First, the original colored MRI

images were converted into grayscale, reducing
computational complexity while preserving essential
structural details.

To address the issue of noise commonly
present in medical imaging, a 3x3 median filter was
employed. Median filtering is a nonlinear noise
reduction technique particularly effective in
preserving edges and fine details—essential features
in brain MRI scans. Unlike linear filters, the median
filter replaces each pixel’s value with the median of
the neighboring  pixel values, effectively
suppressing impulsive noise while maintaining the
integrity  of  anatomical  structures.  This
preprocessing pipeline significantly improved image
clarity and consistency, as expressed
mathematically in Equation (1), and laid the
foundation for more robust feature extraction in the
subsequent stages of the model.

(x,y)=medias,t)eSxy{g(s,t)}(1)
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To further enhance the MRI images and
emphasize important structural details, a high-pass
filter was applied. This filtering technique
effectively detects sharp intensity transitions,
enabling the identification of edges within the MRI
scans. The resulting edge- detected image was then
superimposed onto the original grayscale image,
producing a visually enhanced version that retained
both spatial context and prominent features. This
step was particularly beneficial for improving the
visibility of tumor boundaries, which are crucial for
accurate classification.

To reduce the risk of overfitting and improve
the generalization capability of the deep learning
model, data augmentation techniques were
employed to artificially expand the training dataset.
These transformations preserved the underlying
anatomical structure while introducing variability in
orientation, helping the model learn invariant
features. This augmentation process effectively
increased the diversity of the dataset, allowing the
network to perform better on unseen data and
reducing its dependency on the original dataset's
distribution.

CNN model architecture

In this study, a CNN was employed for the
detection of brain tumors using MRI data. CNNs, a
specialized form of Artificial Neural Networks
(ANNSs), are particularly adept at processing visual
information by learning spatial hierarchies of
features directly from raw image pixels. Widely
used in image and video recognition tasks, CNNs
are also gaining traction in medical diagnostics due
to their ability to extract complex patterns with
minimal preprocessing.

The proposed CNN architecture consists of an
input layer, followed by five convolutional layers,
each succeeded by a max-pooling layer, then a
flatten layer, and finally, a series of fully connected
layers, including two dense layers for classification.
The overall architecture is illustrated in Fig.
2.Subsequent convolutional layers follow a similar
structure, each extracting progressively more
abstract features. To reduce dimensionality and
retain essential features such as edges and contours,
max-pooling is applied after every convolutional
layer using a 2x2 pooling window. This helps
reduce computation while preserving key spatial
relationships.

Image CONVOLUTION MAX POOLING CONVOLUTION MAX POOLING CONVOLUTION MAX POOLING
300%300%1 ™ 16-3a 2x2 I - R 2x2 — g 2x2
CONVOLUTION MAX POOLING CONVOLUTION MAX POOLING EERFTEN HIDDEN LAYER

-3 [N 2x2 ™ cmsa ™ 7% = 512 NEURON

DENSE (OUTPUT)
FAYFR 2 LINIT
Figure 2. CNN model architecture
After the final convolution and pooling triangular design in the hidden layers—an

stages, the multi-dimensional output is passed
through a flattening layer, which transforms the data
into a one- dimensional vector suitable for the fully
connected neural network layers. This vector feeds
into a modified hidden layer structure, which is
followed by two dense layers responsible for
generating the final classification output.

A notable feature of this work is the use of a recto-

architectural variation that aims to improve learning
efficiency and probability distribution compared to
conventional triangular and rectangular designs. The
performance of these three designs is evaluated and
compared, as shown in Figures 3(a) through 3(c),
demonstrating the effectiveness of the recto-
triangular configuration in enhancing classification
accuracy.
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Figure 3. Structures of Hidden Layer Designs

Triangular Architecture

The triangular architecture is designed with a
symmetrical pattern in mind, where the number of
nodes increases initially and then gradually
decreases, forming a triangular shape when
visualized. From the third layer onward, the node
count decreases progressively across five additional
layers, with the following configuration: 256, 128,
64, 32, and 16 nodes, respectively—resulting in a
total of seven hidden layers. Each of these layers
utilizes the ReLU activation function to introduce
non-linearity and improve learning performance. For
the final classification, a SoftMax activation function
is employed in the output layer to model the class
probabilities effectively. The overall structure is
illustrated in Figure 3(a).

Rectangular Architecture

The rectangular architecture maintains a
consistent structure across all hidden layers. This
configuration is composed of six hidden layers,
each containing 256 neurons, thus forming a
uniform, rectangular layout. The uniform depth of
each layer ensures steady information flow and
learning behavior

throughout the network. Similar to the triangular
design, ReLU activation is applied to each hidden
layer to maintain training efficiency. The final output
layer is activated using the SoftMax function, which
facilitates multi-class classification by representing
normalized  probability  values. A  visual
representation of this architecture can be found in
Figure 3(b).

Proposed Recto-Triangular Architecture

To address the limitations of both triangular
and rectangular  configurations, a hybrid
architecture— recto-triangular—is proposed. This
model combines the stability of a rectangular
structure with the feature-scaling behavior of a
triangular layout. The six-layer hidden architecture
is defined as follows: the first layer begins with 512
nodes, followed by a gradual reduction to 256, then
128 nodes in the second and third layers. The
structure maintains 128 nodes in the fourth layer,
then expands symmetrically to 256 and finally 512
nodes in the fifth and sixth layers. This
descending—ascending
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pattern encourages diverse feature representation
while minimizing information bottlenecks.All six
hidden layers utilize the ReL U activation function for
efficient training and non-linear feature extraction.
This adaptive architecture, depicted in Figure 3(c),
demonstrated  superior  performance in  our
experimental analysis by effectively balancing
complexity and depth.

RESULTS
Model training

This section ensured that the training set for
each fold contained data from multiple participants,
allowing the model to generalize better to new
subjects. This strategy is particularly important in
clinical settings, as it simulates real-world scenarios
where a model needs to predict diagnoses for new
patients based on data from previous ones. The
ability of the network to generalize in this context is
crucial, as it reflects how well the model can adapt
to unseen subjects without overfitting to the training
data.

To address the issue of class imbalance, we
employed the focal loss function (2), which helps
mitigate the dominance of the majority class (healthy
brain images) over the minority class (brain tumor
images) during training. Focal loss is particularly
effective in focusing the model's attention on hard-
to-classify examples, improving the accuracy of
tumor detection despite the class imbalance.

Performance metrics

The performance of our proposed model was
evaluated using four key metrics, calculated with the
following equations:Accuracy reflects how often the
model makes the right predictions across all
classes.It serves as a general indicator of model
performance by measuring correct classifications.It
takes into account both true positives and true
negatives to give a holistic view of effectiveness.The
formula for accuracy is expressed as:

TP+IN

Accuracy = —————
© TP+IN+FP+EN

&)
This score is frequently employed in medical
image analysis to assess how well the predicted
region matches the actual region.It quantifies the
spatial overlap between the segmented tumor and
the annotated ground truth.The metric is especially
useful in evaluating the performance of image
segmentation _models in identifying tumor

boundaries.
Mathematically, the Dice score is derived using the
formula

'™
Dice Score = XiTP t)
2xTP+FP 4N

Recall evaluates the model’s effectiveness in
capturing all actual positive instances within the
dataset, such as tumor images. It indicates how well
the model can detect true positives among all the real
positive cases. This metric reflects the model’s
sensitivity to identifying relevant conditions. A
higher recall signifies fewer false negatives and
better identification of the actual positives.

TP
Recal oI (5)

Precision is a performance metric that
assesses the reliability of a model’s positive
predictions. It focuses on how many of the instances
identified as positive by the model are actually
correct. In essence, it measures the model’s ability
to minimize false positives, ensuring that when it
predicts a positive outcome, it is likely to be
accurate. A high precision value indicates that most
of the predicted positive cases are indeed true
positives. From a mathematical perspective, it is
calculated by dividing the count of true positive
outcomes by the total of true positives and false
positives.

TP
Precision = ——— 6
recision P 1P (6)

These metrics work together to evaluate the model's
competence in accurately classifying brain tumors
and differentiating them from healthy brain images,
guaranteeing an optimal balance .

Performance measurement

The MRI dataset was partitioned into three
independent sets designated for validation, testing
andtraining purposes. During model training, a batch
size of 16 was maintained to ensure stable learning,
while the Adam optimization algorithm was applied
with a predefined learning rate of 0.001 to facilitate
efficient convergence. To promote generalization
and minimize overfitting, the dataset was reshuffled
at the start of every epoch. The entire training process
was completed in 31.53 minutes, with each epoch
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averaging a computation time of 47.82 seconds.

Training and validation accuracy
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Figure 4. Comparison between validation and training: (a) Accuracy trends and (b) Loss progression

Figures 4(a) and 4(b) depict the model's
performance dynamics during the training phase.
Figure 4(a) captures the upward trajectory of both
training and validation accuracy across successive
epochs. In contrast, Figure 4(b) presents the decline
in training and validation loss as learning advances.
These visualizations indicate the model’s capacity
to effectively extract meaningful features from
MRI

data. To assess generalization, an independent test
dataset comprising 7,600 MRI scans was utilized,
enabling the calculation of key metrics such as
precision, recall, and F1-score. Furthermore, Figure
5 showcases selected outputs from the tumor
detection pipeline, highlighting the proposed

approach’s capability in accurately locating brain
tumors.

Figure 5. Detection of tumors using the proposed model

Comparative analysis

Figure 6 illustrates the performance
comparison of four different modelsacross four key
evaluation metrics. In terms of accuracy, all models
perform closely, with AFPNet, Mask RCNN, and
FCNN achieving nearly identical values around
99%, and YOLOVS5 slightly trailing at approximately
98%. For the F1-score, FCNN leads with the highest
value, followed by YOLOvV5 and AFPNet, while
Mask RCNN records the lowest at just above 90%.
When

it comes to recall, Mask RCNN and FCNN top the
chart with values near 100%, closely followed by
AFPNet and YOLOV5, both around 98%. In the
precision metric, FCNN again outperforms the
others, reaching close to 93%, whereas YOLOv5
shows a moderate score near 90%, and AFPNet and
Mask RCNN lag behind with lower values,
especially Mask RCNN, which dips below 85%.
Overall, FCNN demonstrates the most balanced and
robust performance across all metrics.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 26942703 | 2700



Performance comparison of several approaches
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Figure 6: Comparison among architectures

However, the triangular  architecture
outperformed the rectangular one in precision by
2.6%. The recto- triangular architecture, as
illustrated in Figure 6, exhibited remarkable
efficiency, attaining a training exactness of 98.6%
and a accuracy of 97.8%. This result confirms that
the suggested architecture outperforms the other two
architectures, delivering superior results in brain
tumor detection.

Comparison with Existing Approaches and
Datasets

In order to evaluate the capability of the
proposed model, it was benchmarked against well-
known techniques such as FCNN, Mask RCNN,
YOLOvV5, and AFPNet.A detailed breakdown of
performance indicators for these models is provided
in Table 1. The proposed system outperforms the
conventional models, as shown by the comparative
analysis. Notably, the model exhibits enhanced
outcomes, exceeding the leading methods in key
evaluation criteria.lts dominance in accuracy and
precision metrics highlights its advancement beyond
current state-of-the-art solutions..

BRATS_2018

Figure 7: Performance of the proposed model on the BRATS dataset
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As outlined in Table 2, the outcomes
highlight the model's strong accuracy across all
three datasets.These findings underline the model's
capacity to generalize well over multiple benchmark
datasets.Its performance stability across different
data sources affirms its adaptability and
precision.Such consistent results reinforce the
system's dependability for accurately detecting brain
tumors.

CONCLUSION

The proposed deep learning model
demonstrates significant potential in accurately
detecting brain tumors from MRI images,
outperforming existing approaches and
architectures. The results indicate that the recto-
triangular architecture, combining elements of both
triangular and rectangular designs, achieved the
highest performance, with a training accuracy of
98.6% and a precision score of 97.8%. This
suggests that the recto-triangular architecture is
particularly effective in capturing complex features
within MRI images, enabling superior tumor
detection. Furthermore, by employing cross-
validation methods such as k-fold and subject-wise
cross-validation, we confirmed that the model's
efficiency was reliable and generalized effectively to
new, unseen data. The class imbalance problems
were effectively dealt with by the focal loss function,
which enhanced the model's tumor detection
capability even though healthy brain images were
predominant in the dataset.

When the proposed model was compared to
established state-of-the-art architectures, it was
found to significantly exceed these methods in
accuracy, precision, and other important metrics.
Furthermore, the model's efficacy on well-
established benchmark datasets like BRATS 2018,
2019, and 2020 confirmed its robustness and
dependability in detecting brain tumors. To sum up,
the suggested model constitutes a major progress in
brain tumor detection, providing an effective tool for
use in clinical settings. With its high accuracy and
precision, it holds promise for enhancing diagnostic
mechanisms and patient results in medical imaging.
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