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Abstract: Brain tumors, characterized by the uncontrolled proliferation of abnormal cells within brain tissue, 

represent a significant clinical challenge affecting individuals across all age groups. The rapid progression and 

sensitive anatomical location of such tumors underscore the necessity for prompt and precise diagnostic 

methodologies. Magnetic Resonance Imaging (MRI) remains the gold standard for non-invasive visualization of 

intracranial abnormalities, offering high-resolution structural information critical for early tumor detection. This 

study introduces a customized Convolutional Neural Network (CNN) framework specifically designed for the 

automated analysis of brain MRI scans to facilitate accurate tumor identification. The proposed model comprises 

five convolutional layers for deep hierarchical feature extraction, each followed by a max-pooling layer to 

systematically reduce spatial complexity while retaining essential information. A subsequent Flatten layer and two 

densely connected layers support robust classification, enhanced through the integration of optimized activation 

functions and an improved hidden layer topology to accelerate convergence and learning stability. Empirical 

validation reveals an impressive classification accuracy of 98.6% and a precision rate of 97.8%, with minimal cross- 

entropy loss. Comparative benchmarking against leading architectures—including Mask R-CNN, AFPNet, Fourier 

CNN, and YOLOv5—demonstrates the superior performance of the proposed approach, affirming its efficacy for 

advanced clinical decision support in brain tumor diagnostics. 
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INTRODUCTION 

 

Brain tumors represent one of the most 

serious and potentially fatal health issues, arising 

from uncontrolled and abnormal cell growth within 

the brain.Due to their aggressive progression and 

the intricate structure of the brain, timely and 

precise diagnosis is crucial to ensure effective 

therapy and boost survival chances.Magnetic 

Resonance Imaging (MRI) remains a preferred 

diagnostic technique because of its excellent soft 

tissue imaging and non- invasive nature. 

Nevertheless, analyzing MRI scans manually is 

labor-intensive and prone to variability in human 

judgment.To overcome these limitations, the field of 
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deep learning—especially Convolutional Neural 

Networks (CNNs)—has emerged as a powerful 

solution for automating brain tumor detection.In this 

work, we introduce a specialized CNN architecture 

tailored for brain MRI interpretation, which employs 

layered  convolution  and  pooling  stages. 

The model leverages optimized activation 

mechanisms and a refined hidden layer design to 

enhance classification performance and ensure high 

levels of diagnostic accuracy.Brain tumor detection 

and classification from MRI images had been 

significantly enhanced through in-silico approaches 

leveraging deep neural networks. These methods 

effectively extracted spatial and contextual features 

to distinguish tumor types with improved precision 

and reduced manual intervention, enabling early- 

stage diagnosis through automated processes [1]. 

Moreover, deep learning techniques proved highly 

effective in segmenting MRI-based brain tumor 

images, offering a robust alternative to traditional 

machine learning methods. These advanced models 
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achieved high accuracy by learning hierarchical 

image representations and dealing efficiently with 

variability in tumor size, shape, and location [2]. 

 

Additionally, classification performance had 

been further improved by integrating deep learning 

with wavelet transforms, which allowed for multi- 

resolution analysis of brain MRIs, thereby enhancing 

tumor feature extraction and aiding in more accurate 

tumor categorization[3]. Likewise, ensemble 

learning techniques such as AdaBoost were explored 

to boost classification efficiency in MR image 

datasets, demonstrating the ability to combine weak 

learners into a strong classifier, thereby increasing 

detection reliability [4].Furthermore, comprehensive 

reviews highlighted the importance of MRI-based 

segmentation for brain tumor analysis, emphasizing 

the role of image preprocessing, model training, and 

evaluation strategies in optimizing the diagnostic 

process [5]. In a similar vein, several classification 

methodologies were systematically analyzed, 

revealing that combining feature engineering with 

machine learning models yielded considerable 

improvements in predictive performance for 

different tumor types [6]. 

 

Simultaneously, hybrid deep learning 

architectures incorporating both patch-wise and 

pixel-wise strategies had been developed to capture 

both global and local tumor features, enhancing 

segmentation accuracy across complex datasets [7]. 

In another innovative attempt, machine learning-

based systems were implemented to detect brain 

tumors, showcasing effective results through 

classifiers trained on image features such as texture 

and intensity gradients [8]. 

On a broader scope, deep learning had been 

extensively reviewed from the perspective of brain 

cancer classification, underlining the potential of 

convolutional neural networks (CNNs), transfer 

learning, and data augmentation in overcoming 

limitations related to sample size and class imbalance 

[9]. Correspondingly, various detection and 

classification approaches were proposed for brain 

structural disorders, indicating the value of 

integrating imaging data with AI-based models for 

comprehensive diagnosis [10]. 

 

Similarly, multiple image processing 

techniques were surveyed to detect tumors, 

emphasizing steps such as filtering, segmentation, 

and feature extraction  that  contribute  to  

the  accurate 

classification of abnormal brain tissues [11]. Also, 

recent advancements in segmentation and 

classification tasks using deep learning exhibited 

notable progress, where architectures like U-Net and 

its variants facilitated high-precision boundary 

detection [12].In addition, machine learning had 

been extended to multi-organ tumor classification, 

revealing generalizable frameworks applicable to 

various cancer types and supporting large-scale 

screening programs [13]. Another critical review 

stressed the lessons learned and practical 

implications of brain tumor diagnosis via MRI, 

pointing out the challenges and potential solutions in 

clinical integration [14]. 

 

Notably, statistical texture feature 

enhancement techniques were applied to improve 

classification performance, demonstrating better 

discrimination between tumor and non-tumor 

tissues in medical scans [15]. Along similar lines, 

feature fusion techniques combined with particle 

swarm optimization were introduced to increase 

tumor detection accuracy, enabling comprehensive 

utilization of multiple features [16].In parallel, 

classification frameworks involving deep learning 

combined with machine learning ensemble models 

were proposed, delivering robust performance for 

distinguishing cancerous tissues in MRI images [17]. 

Moreover, localization and classification of tumors 

using deep and traditional machine learning methods 

displayed promising outcomes in terms of reduced 

false positives and improved segmentation quality 

[18]. 

 

Statistical analyses provided further insights 

into brain cancer prevalence, informing researchers 

and clinicians of disease trends and reinforcing the 

urgency of efficient detection methodologies [19]. 

With the evolution of attention-based deep learning 

mechanisms, segmentation models began to leverage 

MRI multi-modalities for more nuanced feature 

representation, substantially boosting tumor 

identification accuracy [20].Consequently, image 

mining frameworks were reviewed for tumor 

detection tasks, illustrating that combining data 

mining and image analysis techniques provided a 

scalable solution for large datasets [21]. Likewise, 

semantic segmentation using fully convolutional 

networks (FCNs) allowed for end-to-end processing 

of MRI images, simplifying annotation efforts and 

reducing reliance on manual delineation [22].Finally, 

convolutional neural networks were employed for 
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tumor detection with high precision, validating their 

efficiency through real-time implementation and 

showcasing the model’s potential for future clinical 

adoption [23]. 

 

Methodology 

Data collection 

 

To train the proposed deep learning model 

effectively, a comprehensive dataset consisting of 

30,000 MRI brain images was compiled. The dataset 

was evenly distributed into two categories: 15,000 

images of healthy (tumor-free) brains and 15,000 

images exhibiting brain tumors. This balanced 

distribution  ensures  that  the  model  learns  to 

distinguish between normal and abnormal brain 

structures with high accuracy and minimal bias.For 

the testing phase, an independent dataset was curated 

to evaluate the model’s generalization ability. This 

test set included 4,400 MRI scans of healthy brains 

and 3,200 scans showing the presence of tumors, all 

of which were gathered from publicly available 

sources such as Google Images and verified medical 

repositories to ensure diversity and realism in image 

quality and variation. A representative sample from 

the dataset is illustrated in Figure 1, showcasing the 

visual differences between normal and tumor- 

affected brain scans. 

 

 

 

Figure 1. Dataset images 
 

In addition to the custom dataset, the well- 

established Brain Tumor Segmentation (BRATS) 

benchmark datasets were utilized for comparative 

analysis and validation. These datasets are widely 

recognized in the medical imaging research 

community for their multi-modal MRI scans and 

expert-labeled annotations, offering a reliable 

baseline for evaluating model performance across 

various tumor types and imaging conditions. This 

combination of custom and benchmark datasets 

enhances the robustness and credibility of the 

proposed model's evaluation. 

 

Data preprocessing 

 

The preprocessing stage is crucial for 

enhancing image quality, removing noise, and 

improving contrast to facilitate more accurate 

analysis. In this work, several preprocessing 

techniques were applied to the MRI images to 

prepare them for input into the deep learning model. 

First, the original colored MRI 

images were converted into grayscale, reducing 

computational complexity while preserving essential 

structural details. 

To address the issue of noise commonly 

present in medical imaging, a 3×3 median filter was 

employed. Median filtering is a nonlinear noise 

reduction technique particularly effective in 

preserving edges and fine details—essential features 

in brain MRI scans. Unlike linear filters, the median 

filter replaces each pixel’s value with the median of 

the neighboring pixel values, effectively 

suppressing impulsive noise while maintaining the 

integrity of anatomical structures. This 

preprocessing pipeline significantly improved image 

clarity and consistency, as expressed 

mathematically in Equation (1), and laid the 

foundation for more robust feature extraction in the 

subsequent stages of the model. 

(𝑥,𝑦)=𝑚𝑒𝑑𝑖𝑎(𝑠,𝑡)𝑒𝑆𝑥𝑦{𝑔(𝑠,𝑡)}(1) 
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To further enhance the MRI images and 

emphasize important structural details, a high-pass 

filter was applied. This filtering technique 

effectively detects sharp intensity transitions, 

enabling the identification of edges within the MRI 

scans. The resulting edge- detected image was then 

superimposed onto the original grayscale image, 

producing a visually enhanced version that retained 

both spatial context and prominent features. This 

step was particularly beneficial for improving the 

visibility of tumor boundaries, which are crucial for 

accurate classification. 

To reduce the risk of overfitting and improve 

the generalization capability of the deep learning 

model, data augmentation techniques were 

employed to artificially expand the training dataset. 

These transformations preserved the underlying 

anatomical structure while introducing variability in 

orientation, helping the model learn invariant 

features. This augmentation process effectively 

increased the diversity of the dataset, allowing the 

network to perform better on unseen data and 

reducing its dependency on the original dataset's 

distribution. 

CNN model architecture 

 

In this study, a CNN was employed for the 

detection of brain tumors using MRI data. CNNs, a 

specialized form of Artificial Neural Networks 

(ANNs), are particularly adept at processing visual 

information by learning spatial hierarchies of 

features directly from raw image pixels. Widely 

used in image and video recognition tasks, CNNs 

are also gaining traction in medical diagnostics due 

to their ability to extract complex patterns with 

minimal preprocessing. 

The proposed CNN architecture consists of an 

input layer, followed by five convolutional layers, 

each succeeded by a max-pooling layer, then a 

flatten layer, and finally, a series of fully connected 

layers, including two dense layers for classification. 

The overall architecture is illustrated in Fig. 

2.Subsequent convolutional layers follow a similar 

structure, each extracting progressively more 

abstract features. To reduce dimensionality and 

retain essential features such as edges and contours, 

max-pooling is applied after every convolutional 

layer using a 2×2 pooling window. This helps 

reduce computation while preserving key spatial 

relationships. 

 

 

 

 

Figure 2. CNN model architecture 
 

After the final convolution and pooling 

stages, the multi-dimensional output is passed 

through a flattening layer, which transforms the data 

into a one- dimensional vector suitable for the fully 

connected neural network layers. This vector feeds 

into a modified hidden layer structure, which is 

followed by two dense layers responsible for 

generating the final classification output. 

A notable feature of this work is the use of a recto- 

triangular design in the hidden layers—an 

architectural variation that aims to improve learning 

efficiency and probability distribution compared to 

conventional triangular and rectangular designs. The 

performance of these three designs is evaluated and 

compared, as shown in Figures 3(a) through 3(c), 

demonstrating the effectiveness of the recto- 

triangular configuration in enhancing classification 

accuracy. 
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Figure 3. Structures of Hidden Layer Designs 

 

 

Triangular Architecture 

The triangular architecture is designed with a 

symmetrical pattern in mind, where the number of 

nodes increases initially and then gradually 

decreases, forming a triangular shape when 

visualized. From the third layer onward, the node 

count decreases progressively across five additional 

layers, with the following configuration: 256, 128, 

64, 32, and 16 nodes, respectively—resulting in a 

total of seven hidden layers. Each of these layers 

utilizes the ReLU activation function to introduce 

non-linearity and improve learning performance. For 

the final classification, a SoftMax activation function 

is employed in the output layer to model the class 

probabilities effectively. The overall structure is 

illustrated in Figure 3(a). 

 

Rectangular Architecture 

The rectangular architecture maintains a 

consistent structure across all hidden layers. This 

configuration is composed of six hidden layers, 

each containing 256 neurons, thus forming a 

uniform, rectangular layout. The uniform depth of 

each layer ensures steady information flow and 

learning behavior 

 

throughout the network. Similar to the triangular 

design, ReLU activation is applied to each hidden 

layer to maintain training efficiency. The final output 

layer is activated using the SoftMax function, which 

facilitates multi-class classification by representing 

normalized probability values. A visual 

representation of this architecture can be found in 

Figure 3(b). 

 

Proposed Recto-Triangular Architecture 

 

To address the limitations of both triangular 

and rectangular configurations, a hybrid 

architecture— recto-triangular—is proposed. This 

model combines the stability of a rectangular 

structure with the feature-scaling behavior of a 

triangular layout. The six-layer hidden architecture 

is defined as follows: the first layer begins with 512 

nodes, followed by a gradual reduction to 256, then 

128 nodes in the second and third layers. The 

structure maintains 128 nodes in the fourth layer, 

then expands symmetrically to 256 and finally 512 

nodes in the fifth and sixth layers. This 

descending–ascending 
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pattern encourages diverse feature representation 

while minimizing information bottlenecks.All six 

hidden layers utilize the ReLU activation function for 

efficient training and non-linear feature extraction. 

This adaptive architecture, depicted in Figure 3(c), 

demonstrated superior performance in our 

experimental analysis by effectively balancing 

complexity and depth. 

 

RESULTS 

Model training 

This section ensured that the training set for 

each fold contained data from multiple participants, 

allowing the model to generalize better to new 

subjects. This strategy is particularly important in 

clinical settings, as it simulates real-world scenarios 

where a model needs to predict diagnoses for new 

patients based on data from previous ones. The 

ability of the network to generalize in this context is 

crucial, as it reflects how well the model can adapt 

to unseen subjects without overfitting to the training 

data. 

To address the issue of class imbalance, we 

employed the focal loss function (2), which helps 

mitigate the dominance of the majority class (healthy 

brain images) over the minority class (brain tumor 

images) during training. Focal loss is particularly 

effective in focusing the model's attention on hard- 

to-classify examples, improving the accuracy of 

tumor detection despite the class imbalance. 

 

Performance metrics 

 

The performance of our proposed model was 

evaluated using four key metrics, calculated with the 

following equations:Accuracy reflects how often the 

model makes the right predictions across all 

classes.It serves as a general indicator of model 

performance by measuring correct classifications.It 

takes into account both true positives and true 

negatives to give a holistic view of effectiveness.The 

formula for accuracy is expressed as: 

 

This score is frequently employed in medical 

image analysis to assess how well the predicted 

region matches the actual region.It quantifies the 

spatial overlap between the segmented tumor and 

the annotated ground truth.The metric is especially 

useful in evaluating the performance of image 

segmentation  models  in  identifying  tumor 

boundaries. 

Mathematically, the Dice score is derived using the 

formula 

 

Recall evaluates the model’s effectiveness in 

capturing all actual positive instances within the 

dataset, such as tumor images. It indicates how well 

the model can detect true positives among all the real 

positive cases. This metric reflects the model’s 

sensitivity to identifying relevant conditions. A 

higher recall signifies fewer false negatives and 

better identification of the actual positives. 
 

Precision is a performance metric that 

assesses the reliability of a model’s positive 

predictions. It focuses on how many of the instances 

identified as positive by the model are actually 

correct. In essence, it measures the model’s ability 

to minimize false positives, ensuring that when it 

predicts a positive outcome, it is likely to be 

accurate. A high precision value indicates that most 

of the predicted positive cases are indeed true 

positives. From a mathematical perspective, it is 

calculated by dividing the count of true positive 

outcomes by the total of true positives and false 

positives. 

 

 

These metrics work together to evaluate the model's 

competence in accurately classifying brain tumors 

and differentiating them from healthy brain images, 

guaranteeing an optimal balance . 

Performance measurement 

 

The MRI dataset was partitioned into three 

independent sets designated for validation, testing 

andtraining purposes. During model training, a batch 

size of 16 was maintained to ensure stable learning, 

while the Adam optimization algorithm was applied 

with a predefined learning rate of 0.001 to facilitate 

efficient convergence. To promote generalization 

and minimize overfitting, the dataset was reshuffled 

at the start of every epoch. The entire training process 

was completed in 31.53 minutes, with each epoch 
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averaging a computation time of 47.82 seconds. 

 

 

 

Figure 4. Comparison between validation and training: (a) Accuracy trends and (b) Loss progression 
 

Figures 4(a) and 4(b) depict the model's 

performance dynamics during the training phase. 

Figure 4(a) captures the upward trajectory of both 

training and validation accuracy across successive 

epochs. In contrast, Figure 4(b) presents the decline 

in training and validation loss as learning advances. 

These visualizations indicate the model’s capacity 

to effectively extract meaningful features from 

MRI 

. 

data. To assess generalization, an independent test 

dataset comprising 7,600 MRI scans was utilized, 

enabling the calculation of key metrics such as 

precision, recall, and F1-score. Furthermore, Figure 

5 showcases selected outputs from the tumor 

detection pipeline, highlighting the proposed 

approach’s capability in accurately locating brain 

tumors. 

 

 

 

 

Comparative analysis 

Figure 5. Detection of tumors using the proposed model 

 

it comes to recall, Mask RCNN and FCNN top the 

Figure 6 illustrates the performance 

comparison of four different modelsacross four key 

evaluation metrics. In terms of accuracy, all models 

perform closely, with AFPNet, Mask RCNN, and 

FCNN achieving nearly identical values around 

99%, and YOLOv5 slightly trailing at approximately 

98%. For the F1-score, FCNN leads with the highest 

value, followed by YOLOv5 and AFPNet, while 

Mask RCNN records the lowest at just above 90%. 

When 

chart with values near 100%, closely followed by 

AFPNet and YOLOv5, both around 98%. In the 

precision metric, FCNN again outperforms the 

others, reaching close to 93%, whereas YOLOv5 

shows a moderate score near 90%, and AFPNet and 

Mask RCNN lag behind with lower values, 

especially Mask RCNN, which dips below 85%. 

Overall, FCNN demonstrates the most balanced and 

robust performance across all metrics. 
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Figure 6: Comparison among architectures 

 

However, the triangular architecture 

outperformed the rectangular one in precision by 

2.6%. The recto- triangular architecture, as 

illustrated in Figure 6, exhibited remarkable 

efficiency, attaining a training exactness of 98.6% 

and a accuracy of 97.8%. This result confirms that 

the suggested architecture outperforms the other two 

architectures, delivering superior results in brain 

tumor detection. 

Comparison with Existing Approaches and 

Datasets 

In order to evaluate the capability of the 

proposed model, it was benchmarked against well-

known techniques such as FCNN, Mask RCNN, 

YOLOv5, and AFPNet.A detailed breakdown of 

performance indicators for these models is provided 

in Table 1. The proposed system outperforms the 

conventional models, as shown by the comparative 

analysis. Notably, the model exhibits enhanced 

outcomes, exceeding the leading methods in key 

evaluation criteria.Its dominance in accuracy and 

precision metrics highlights its advancement beyond 

current state-of-the-art solutions.. 

 

 
Figure 7: Performance of the proposed model on the BRATS dataset 
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As outlined in Table 2, the outcomes 

highlight the model's strong accuracy across all 

three datasets.These findings underline the model's 

capacity to generalize well over multiple benchmark 

datasets.Its performance stability across different 

data sources affirms its adaptability and 

precision.Such consistent results reinforce the 

system's dependability for accurately detecting brain 

tumors. 

 

CONCLUSION 

 

The proposed deep learning model 

demonstrates significant potential in accurately 

detecting brain tumors from MRI images, 

outperforming existing approaches and 

architectures. The results indicate that the recto-

triangular architecture, combining elements of both 

triangular and rectangular designs, achieved the 

highest performance, with a training accuracy of 

98.6% and a precision score of 97.8%. This 

suggests that the recto-triangular architecture is 

particularly effective in capturing complex features 

within MRI images, enabling superior tumor 

detection. Furthermore, by employing cross- 

validation methods such as k-fold and subject-wise 

cross-validation, we confirmed that the model's 

efficiency was reliable and generalized effectively to 

new, unseen data. The class imbalance problems 

were effectively dealt with by the focal loss function, 

which enhanced the model's tumor detection 

capability even though healthy brain images were 

predominant in the dataset. 

 

When the proposed model was compared to 

established state-of-the-art architectures, it was 

found to significantly exceed these methods in 

accuracy, precision, and other important metrics. 

Furthermore, the model's efficacy on well- 

established benchmark datasets like BRATS 2018, 

2019, and 2020 confirmed its robustness and 

dependability in detecting brain tumors. To sum up, 

the suggested model constitutes a major progress in 

brain tumor detection, providing an effective tool for 

use in clinical settings. With its high accuracy and 

precision, it holds promise for enhancing diagnostic 

mechanisms and patient results in medical imaging. 
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