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Abstract: Among the various techniques for enhancing Hadoop performance—such as intermediate data compression, in-memory 

management, and parameter tuning—dynamic configuration parameter tuning proves to be the most impactful. However, existing 

approaches face several challenges: limited adaptability to specific application requirements, isolated parameter tuning without 

considering interdependencies, and inaccurate linear assumptions in complex environments. To address these issues, this study 

introduces a reinforcement learning-based optimization framework using Q-Learning. The proposed method dynamically adjusts key 

Hadoop configuration parameters by continuously learning from job execution metrics such as completion time and wait times in 

map/reduce phases. It employs a reward-based feedback mechanism to minimize the gap between expected and actual performance, 

ensuring more accurate, adaptive, and holistic optimization. Additionally, the framework integrates a neural network to predict optimal 

parameter values, further enhancing decision-making. This approach significantly improves execution efficiency and resource 

utilization, offering robust adaptability across diverse workloads and operational environments, while aligning closely with service 

level agreements. 
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1. Introduction 
 

Many enterprise organizations are increasingly embracing big data 

analytics to glean insights from vast reservoirs of digital data 

housed within their data repositories, employing these insights for 

diverse objectives such as marketing, advertising, and product 

design. Among the prominent open-source platforms catering to big 

data needs, Hadoop stands out. It is engineered to support the 

execution of large-scale data applications through the map-reduce 

architecture,  

Hadoop serves as a cornerstone for data processing. Analytic 

applications operate on data stored within the Hadoop Distributed 

File System (HDFS), facilitating comprehensive data processing. 

Applications running on Hadoop comprise two crucial 

components: the Map and Reduce phases. 

 
Fig. 1. MapReduce Application Execution 

 
 

 

 

The input data undergoes processing by multiple Map tasks, 

generating intermediate data in the form of key-value pairs. 

Subsequently, multiple Reduce tasks process this intermediate 

data and produce output also in key-value format. Hadoop, 

functioning as a distributed platform, accommodates the 

addition of numerous heterogeneous computing nodes. It 

orchestrates the parallel execution of multiple maps and 

reduces, ultimately furnishing the final result. The performance 

of applications within the Hadoop ecosystem hinges on various 

configuration parameters such as the number of maps, reduces, 

sort factor, spill percentage, and runtime memory allocation, 

among others. Among these parameters, setting the optimal 

values for the number of maps/reduces significantly impacts 

application performance, considering factors like application 

nature, available resources within the Hadoop infrastructure, 

and data volume. While many methods for optimizing the 

number of maps/reduces rely on a linear correlation between 

intermediate data volume and the number of reduce tasks, this 

linear relationship proves inadequate in scenarios involving 

dynamic resource availability and diverse application 

characteristics. To address this, our study proposes a machine 

learning-driven solution utilizing reinforcement learning to 

optimize Hadoop's configuration parameters. Through a 

reward/punishment mechanism, the solution continuously 

learns the optimal number of maps/reduces required to achieve 

desired service level agreements (SLAs), adapting to changing 

resource availability and application traits until satisfactory 

prediction accuracy is attained. The predicted optimal 

parameter values are then configured within the Hadoop 

environment for application execution, ensuring dynamic 

responsiveness to current resource availability and application 

nuances. 
 

     2. Literature Review 
 

Greeshma Lingam et al. [1] introduces the Learning Automata-

based MapReduce Scheduling (LA-MRS) algorithm to 

optimize energy consumption in heterogeneous environments 

while adhering to user-specified deadlines. The LA-MRS 

algorithm introduces a reinforcement learning-based approach 

using Learning Automata to optimize the scheduling of 

MapReduce jobs by minimizing energy consumption while 

meeting job deadlines. It dynamically allocates resources based 
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on feedback from the system, improving efficiency over time. 

Evaluated using HiBench benchmarks, the algorithm achieves 

around 25% energy savings compared to traditional methods,  

 

while also ensuring deadline compliance and adaptability in 

heterogeneous environments. However, it may introduce 

computational overhead, faces scalability challenges in large-scale 

systems, and relies heavily on accurate environmental feedback. 

 

Prashanth et al[2] proposes DRLMOTS, a Deep Q-Learning 

Network-based scheduler that dynamically assigns tasks between 

cloud and fog nodes to optimize system performance. By analyzing 

task characteristics and system states, it reduces makespan, lowers 

energy consumption, and improves fault tolerance significantly 

compared to traditional models like CNN, LSTM, and GGCN. 

Experimental results show up to 39.6% energy savings and over 

26% makespan reduction. However, the approach may introduce 

computational overhead, relies heavily on quality training data, and 

requires further testing for scalability in larger, more dynamic 

environments 

 

Zaharia et al.[5] achieves improved Hadoop performance through 

scheduling, by introducing the Longest Approximate Time to End 

(LATE) algorithm. This algorithm prioritizes jobs that could affect 

the response time of others, thereby mitigating slowdowns and 

memory inaccuracies. However, identifying such lagging jobs in a 

heterogeneous environment proved challenging. 

Guo et al. [7] aimed to increase speed-up in the Hadoop platform 

by exploiting data locality, which reduces cross-switch network 

traffic by localizing tasks with more intercommunication on the 

same node. However, prior knowledge of job communication 

characteristics is required to achieving efficient data locality, which 

can be difficult to obtain for certain applications. 

Chen et al. [] proposed an adaptive intermediate data compression 

strategy to enhance Hadoop performance. This strategy, driven by 

a decision algorithm, compresses data based on overhead and 

application performance, also reducing power consumption by 

60%. 

Verma et al. [3] devised a strategy to enhance Hadoop performance 

by employing a data compression approach. By compressing data, 

they aimed to reduce net bandwidth and the time needed for data 

transfer between Hadoop nodes. This solution, tested using a word 

counting task in XSEDE resource, yielded a performance gain of 

less than 5%. 

Ruan et al.[13] increased application speed-up in Hadoop through 

data compression, achieving a 5% increase for word counting tasks 

while reducing bandwidth and energy consumption. 

Moise et al.[10] improved Hadoop performance by introducing a 

fast-intermediate layer optimized for concurrency and fault 

tolerance, reducing overall execution time by enhancing efficiency 

in read/write processes. The performance gain was improved by 

10% due to the fast-intermediate layer. 

Liao et al.[19] identified optimal Hadoop configuration parameters 

using a genetic algorithm, though their approach did not consider 

the interplay between parameters. 

Bhaskar et al.[14] improved Hadoop performance by improvising 

the memory model, pre-allocating memory based on past execution 

profiles. While this increased application speed-up, it reduced 

system throughput. 

Chen et al.[12] identified parameters for optimization in Hadoop 

based on the application's nature, distinguishing between CPU and 

IO-intensive applications. However, they did not provide an 

optimization strategy for these parameters. 

Malik et al.[17] enhanced Hadoop performance by collocating 

interactive applications on the same node, reducing communication 

overhead and energy consumption, resulting in an 8% increase in 

application speed-up. 

Yu et al. [11] focused on increasing application speed-up in Hadoop 

by developing an efficient data shuffling algorithm to reduce data 

movement and extra data cycles. Despite achieving a 10% 

performance gain, the improvement was relatively modest. 

Crume et al.[9] addressed Hadoop job speed-up by compressing 

intermediate data created by map jobs, reducing data shuffling 

overhead. Their proposed loss compression scheme achieved  

 

significant compression of intermediate data, but 

decompression overhead offset some of the gains. 

Veiga et al.[22]increased application speed-up in Hadoop by 

optimizing memory allocation and increasing in-memory 

operations, doubling application speed-up. However, this 

optimization led to higher resource costs due to in-memory 

storage usage. 

Zhang et al.[7] tackled Hadoop performance enhancement 

through phase-level scheduling, splitting jobs into multiple 

phases to increase parallelism and speed-up. While this 

approach increased performance by 1.3 times in a 10-node 

Hadoop cluster, splitting applications into phases without 

congruency posed challenges. 

 

S. Kumar et al.[23] utilized a gradient approach for fine-tuning 

Hadoop configuration parameters to increase application speed-

up, though the approach lacked adaptability to application 

nature and resource availability. 

Nicolae et al.[24] proposed enhancing the efficiency of Hadoop 

Distributed File System (HDFS) to boost application speed-up 

within the Hadoop platform. They managed the computational 

overhead resulting from data access concurrency in HDFS to 

achieve this aim. Validation of their solution against the Grid 

5000 dataset revealed a 5% speed-up improvement over the 

default HDFS configuration. However, the gain was relatively 

low compared to the gains obtained through configuration 

parameter tuning. 

 

3.Research Gap 
 

Among the various methods employed to improve performance 

in Hadoop, such as intermediate data compression, in-memory 

management, and configuration parameter tuning, optimizing 

the configuration parameters stands out as particularly effective 

in yielding higher performance gains. However, despite its 

effectiveness, several challenges hinder the identification of the 

optimal values for these configuration parameters in existing 

solutions. 

Firstly, there is often poor adaptivity to the characteristics of 

specific applications. For instance, consider a scenario where 

two different applications are running on the same Hadoop 

cluster: one application may require more memory allocation 

while the other may prioritize processing speed. Existing 

solutions may struggle to adapt to these diverse application 

needs. 

Secondly, many existing solutions optimize each individual 

parameter in isolation, without considering its influence on 

other parameters. This lack of holistic optimization can 

jeopardize the reliability of execution. For example, optimizing 

the number of mapper tasks without considering the impact on 

reducer tasks may lead to inefficient resource allocation and 

suboptimal performance. 

Thirdly, the assumption of a linear relationship between 

configuration parameters and intermediate data volume often 

falls short in heterogeneous environments and for applications 

with different characteristics. For instance, the relationship 

between the number of reducers and intermediate data volume 

may vary significantly depending on factors such as data skew 

and processing logic. 

Some techniques emphasized the resource overhead introduced 

by in-memory optimization, where increased speed-up came at 

the cost of higher memory usage, making it unsuitable for 

resource-constrained systems. This highlights a gap in 

balancing performance with efficient resource utilization. 

Solutions were proposed gradient-based tuning mechanism, but 

it lacked adaptability to changing workloads or application 

behavior, reducing its effectiveness in dynamic Hadoop 
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environments. The inability to respond to runtime variability 

remains a significant limitation. 

Furthermore, their solution focused solely on file system 

enhancements and did not address broader MapReduce-level 

optimizations or integrate with parameter tuning strategies. 

To address these challenges, this work proposes a solution that 

takes into account the specific characteristics and requirements of 

individual applications running on Hadoop clusters. By considering 

the interplay between different parameters and adapting 

dynamically to changes in workload and environment, this solution 

aims to achieve more robust and efficient optimization of 

configuration parameters. 

 

4.Proposed Solution 

 
This work proposes the utilization of Q-Learning reinforcement 

learning for tuning Hadoop parameters in order to tackle the 

mentioned challenges. 

1.1Test run 

 

To initiate a trial run of the application, various configuration 

parameters are adjusted, and job statistics are gathered. The 

parameters under consideration in this study are: 

• io. sort.mb (C1) 

• io.file.buffer.size (C2) 

• io.sort.spill.percent (C3) 

• io.sort.factor (C4) 

 
 

Fig. 2. Proposed Architecture 

 
These parameters are then fine-tuned based on the collected job 

statistics, which encompass: 

• Job completion time (P1) 

• Wait time in the map phase (P2) 

• Wait time in the reduce phase (P3) 

The architectural layout of the solution is illustrated in Figure 3.  

 

 

A test run is conducted using the application and data, and 

learning occurs based on the results to fine-tune the Hadoop 

configuration parameters. 

Here is the significance of each configuration parameter: 

• io.sort.mb: This parameter governs the size of the in-

memory buffer utilized for storing map results. A lower 

configuration value may trigger spills, leading to performance 

degradation. By default, this parameter is set to 100 MB. 

• io.file.buffer. size: Control over the size of buffers 

allocated  

• for I/O operations is determined by this parameter. 

Opting for a smaller value may result in application slowdowns, 

particularly for applications with a high volume of I/O 

operations. 

• io.sort.spill. percent: Once the data in the in-memory 

buffer surpasses the value specified by this parameter, it is 

spilled to the hard disk. Excessive spilling can negatively 

impact application performance. 

• io.sort.factor: This parameter dictates the number of files 

(streams) to be merged during the sorting process of map tasks. 

While the default value is 10, increasing it enhances the 

utilization of physical memory and reduces overhead in I/O 

operations. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Proposed implementation with Reinforcement Learning 

 

1.2Reinforcement Learning 

 
The process of reinforcement learning (RL) is outlined below: 

 
Fig. 4.  Process of RL 

 

Fig 4. illustrates the RL process, which revolves around four 

fundamental concepts. The agent controls the three key 

concepts of state, action, and reward. An objective function is 

formulated based on the minimization of deviation between 

expected and actual execution times. 
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Continuously, the agent makes decisions during each profile run 

and evaluates the result of the objective function. Based on these 

outcomes, it refines its decision-making process for subsequent 

iterations. The objective function for this study is computed as: 

 

      𝐹 =  
1

𝐸𝑇−𝑂𝑇
                                               (1)                                                           

 

Where 𝑂𝑇 is the actual execution time and 𝐸𝑇 denotes the expected 

completion time of the application. When the disparity between the 

expected and actual execution times is zero, the objective function 

reaches its maximum value. Thus, the agent continuously strives to 

maximize the objective function. 

States represent the decision-making factors that influence the 

execution time of the application, while actions denote the 

decisions made by the agent, such as increasing or decreasing the 

number of maps/reduces. These actions can yield positive or 

negative rewards. Positive rewards are assigned when an action 

maximizes the objective function, whereas negative rewards are 

given when an action leads to a reduction in the objective function. 

Over time, the agent learns to prioritize actions that consistently 

yield positive rewards. 

 

In this study, four Q-Learning models are employed, with each 

model corresponding to one of the configuration parameters 

considered. The number of states utilized for the Q-Learning model 

is four: start, stop, favor, and de-favor. Within each state, there are 

four actions available: 

 

• Increase the value of the configuration parameter. 

• Decrease the value of the configuration parameter. 

The degree of increment or decrement for each parameter is 

determined based on the observed values of profile parameters (P1, 

P2, P3). Predictions for the values of configuration parameters (C1, 

C2, C3, C4) are generated using a neural network with the 

following configuration: 

Inputs: P1, P2, P3 

Outputs: C1 | C2 | C3 | C4 

Number of layers: 3 

Number of neurons in layer 1: 3 

Number of neurons in layer 2: 9 

Number of neurons in layer 3: 1 

Activation function: Relu 

The neural network is trained using past profile history. At each 

stage, the agent selects one action and observes the resulting 

response, which is the value of the objective function. Positive 

rewards are assigned if the objective function is maximized, while 

negative rewards are given otherwise. The Boltzmann distribution 

function is employed to select one action among the  

four available actions in a given state. This function calculates the 

probability of selecting each action based on the quality of choosing 

that action at the current state. 

 

𝑝(𝑠𝑘 , 𝑎𝑘 = 𝑖) =
𝑒𝑄(𝑠𝑘,𝑎𝑘=𝑖)/𝑡𝑛

∑ 𝑒𝑄(𝑘,𝑎𝑗)/𝑡𝑛𝑁𝑎

𝑗=1

  𝑖 = 1, … 𝑁𝑎 

                                 (2) 

 

Where 𝑄(𝑠𝑘 , 𝑎𝑘 = 𝑖)/𝑡𝑛is the state-action value function that 

evaluates the quality of choosing action 𝑎𝑘 = 𝑖 at state 𝑠𝑘. 

𝑁𝑎 is the number of actions. 

𝑡𝑛 is the time varying parameter controlling the degree of 

exploration versus exploitation. 

Reinforcement learning is executed for all job profile data, and 

eventually stabilizes in the state that maximizes the reward. The 

number of maps and reduces at this state represents the optimal 

configuration setting for achieving the desired completion time 

of the application. 

 

5.Novelty in the Proposed Solution 
 

The key contributions of this work are  

• The parameter tuning approach in this study considers 

multiple attributes of job completion time and wait times for 

map/reduce tasks. Unlike previous methods that solely rely on 

intermediate data volume, this approach offers a more 

comprehensive perspective on performance optimization. By 

incorporating various metrics related to job execution, such as 

completion time and wait times, the tuning process becomes 

more refined and aligned with the specific requirements of the 

application. This approach enhances the effectiveness of 

parameter optimization, leading to improved overall 

performance in Hadoop environments. 

• One significant aspect of this solution is its adaptability 

to both resource availability and application characteristics. 

Traditional approaches often lack flexibility and struggle to 

accommodate dynamic changes in resource availability or 

variations in application requirements. However, in this work, 

the parameter tuning methodology is designed to dynamically 

adjust to fluctuations in resource availability and adapt to the 

unique characteristics of different applications. This 

adaptability ensures that the tuning process remains responsive 

and relevant in diverse operational scenarios, thereby 

enhancing its practical utility and effectiveness. 

• Another noteworthy contribution of this work is the 

adoption of reinforcement learning (RL) techniques for 

modelling the relationship between Hadoop configuration 

parameters and job execution times. Unlike conventional 

methods that rely on simplistic linear models, RL offers a more 

sophisticated and dynamic approach to parameter optimization. 

By leveraging RL algorithms, the model can capture complex 

interactions and dependencies between configuration 

parameters and job performance. This enables more accurate 

and nuanced adjustments to be made, leading to optimized 

configurations that better align with the specific requirements 

and constraints of the Hadoop environment. As a result, the 

overall efficiency and effectiveness of the parameter tuning 

process are significantly enhanced, contributing to improved 

performance outcomes in Hadoop-based systems. 

6.Results 

The efficacy of the proposed parameter tuning approach based 

on reinforcement learning is evaluated using the following 

configuration. 

Table 1. Testing Parameters 
 

Dataset PUMA (Wikipedia and Movies-

database) [21] 

Applications 
tested 

Word count, K-means 

Solutions 

compared 

Default Hadoop, 

Selective parameter tuning 
proposed by Chen et al[12] 

Performance 
parameters 

Execution time 

 

The performance of the proposed solution is compared against 

parameter optimization method introduced by Chen et al [12]. 

Execution times are measured across various dataset volumes, 

focusing on the word count and K-means application. 
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The result for work count application is given below. 

 
Table 2. Execution Time for Different Volume for Word Count 

 
Data 

volume 

(MB) 

Default 

Hadoop  

[12] Reinforcement 

Learning  

128 100 60 46 

256 170 100 77.3 

512 240 150 103.04 
1024 430 270 186 

2048 840 510 432 

 

The proposed reinforcement learning framework has achieved a 

29% decrease in execution time compared to the solution given in 

[12] and an impressive 110% decrease compared to default 

Hadoop. This improvement is attributed to reinforcement learning's 

ability to optimize the number of maps and reduce execution time. 

The experiment, conducted with a constant data volume of 128MB, 

measured execution time for varying numbers of iterations, 

yielding the results presented below for the word count application. 

 

 
Fig. 5.  Execution time for word count 

 
Table 3. Execution Time For Different Iteration For Word Count 

 
Iterations Default 

Hadoop 

  

[12] Reinforcement 

Learning 

1 100 60 46 

2 107 62 43 
3 105 60 40 

4 104 61 39 

5 100 62 35 

 

 
Fig. 6. Execution time over iterations for word count 

The proposed reinforcement learning algorithm demonstrates 

superior capability in learning optimal performance parameters 

compared to the solution in [12]. Over time, the execution time 

exhibits a standard deviation of 3.84 minutes, whereas solution in 

[12] shows a standard deviation of 2.34 minutes. Notably, the 

proposed solution adapts dynamically in learning execution 

times, as opposed to solution [12]. Across five iterations, the 

ensemble-based solution in the proposed method exhibits a 

standard deviation of 6.05 minutes, in contrast to the 2.34 

minutes seen in solution [12]. This indicates a 40% increase 

in adaptability in the proposed reinforcement solution 

compared to the solution in [12]. Below are the results for the 

K-means clustering application. 

 
Table 4. Execution Time for Different Volume for K-Means 

 

Data 

volume 

(MB 

 Default 

Hadoop  

[12] Reinforcement 

Learning 

128  73.6 96 160 

256  123.68 160 272 

512  164.86 240 384 
1024  297.6 432 688 

2048  691 816 144 

 

 

 

 

Fig. 7. Execution time for K means clustering 

 

The proposed reinforcement learning framework has achieved 

a significant improvement, with a 30% decrease in execution 

time compared to solution [12], and an even more impressive 

105% decrease compared to the default Hadoop configuration. 

This notable enhancement can be attributed to reinforcement 

learning's capacity to determine the optimal number of maps, 

thus effectively reducing execution time in the proposed 

solution. 

Furthermore, to gauge the effectiveness of the proposed 

approach, execution time was measured across various 

iterations for K-means clustering, with a fixed value of k set to 

3. The results of these measurements are detailed below. 

 
Table 5. Execution Time for Different Iterations for K-Means 

 

Iterations Default 

Hadoop  

[12] Reinforcement 

Learning 

1 160 96 73.6 

2 161 96.2 70.3 
3 162 97 67.2 

4 162.3 96 68.6 

5 167.4 96.2 64.7 
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Fig. 8. Execution time over iteration for K-mean clustering 

The proposed reinforcement learning algorithm demonstrates 

superior capability in learning optimal performance parameters 

compared to solution [12]. As the algorithm iterates, it refines its 

understanding of the system, resulting in a gradual decrease in 

execution time by over 12% over the course of the iterations. 

Moreover, to comprehensively assess the algorithm's effectiveness, 

execution time was measured for various values of K, yielding the 

results provided below. 

 

The relationship between execution time and the value of K 

exhibits a linear trend, wherein an increase in K leads to a 

proportional increase in execution time. 

 
Table 6. Execution Time Varying K Value In K Means 

 
K value Default 

Hadoop  

[12] Reinforcement 

Learning 

3 160 96 73.6 

4 170 104.
2 

78.3 

5 183 108.

5 

84.2 

6 201 121 88.7 

 
 

Fig. 9. Execution time with varying k value 

 

However, it's noteworthy that the rise in execution time for K-

means clustering from a K value of 3 to 6 is merely 17%, a notably 

lower increase compared to the 20% observed in solution [12], and 

even lower than the 20.39% observed in default Hadoop 

configurations. 

Furthermore, to provide a comprehensive understanding of system 

performance, the percentage of system utilization was measured 

across various applications, including word count and K-means 

clustering with different values of K. The detailed results are 

presented below. 

 

 

Table 7. System Utilization (%) 

 

Applications Default 

Hadoop 

 

[12] Reinforcement 

Learning 

Word count 74 78 81 

K means 
(K=3) 

76 85 87 

K means 

(K=4) 

77 86 89 

K means 

(K=5) 

78 87 91 

K means 
(K=6) 

78 88 92 

 

The average system utilization in the proposed setup 

consistently surpasses that of solution [12] by a minimum 

margin of 3.2%. In comparison to the default Hadoop 

configuration, this improvement is even more significant, with 

the proposed system achieving an average utilization rate that 

is 11.4% higher. This indicates a marked enhancement in 

resource utilization efficiency in the proposed framework when 

compared to both solution [12] and the default Hadoop setup 

 

Fig. 10. Utilization for different applications 

 

 

7.Conclusion 

This work introduces a novel approach to Hadoop configuration 

parameter tuning, leveraging reinforcement learning 

techniques. Diverging from conventional methods, our 

approach involves learning the optimal parameter values based 

on multiple attributes. By considering these diverse attributes, 

our proposed solution demonstrates a remarkable ability to 

accurately predict the optimal configuration parameters for 

Hadoop. As a result, our solution achieves a notable 110% 

increase in speed compared to the default Hadoop 

configuration. This advancement underscores the efficacy of 

our approach in significantly enhancing the performance of 

Hadoop systems. 
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