
International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 63–69 | 63

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-6799 www.ijisae.org Original Research Paper

Reinforcement Learning Hadoop Map Reduce Parameters Optimization

Nandita Yambem1, Rashmi S 2, A N Nandakumar 3

Submitted: 08/01/2025 Revised: 22/02/2025 Accepted: 01/03/2025

Abstract: Among the various techniques for enhancing Hadoop performance—such as intermediate data compression, in-memory

management, and parameter tuning—dynamic configuration parameter tuning proves to be the most impactful. However, existing

approaches face several challenges: limited adaptability to specific application requirements, isolated parameter tuning without

considering interdependencies, and inaccurate linear assumptions in complex environments. To address these issues, this study

introduces a reinforcement learning-based optimization framework using Q-Learning. The proposed method dynamically adjusts key

Hadoop configuration parameters by continuously learning from job execution metrics such as completion time and wait times in

map/reduce phases. It employs a reward-based feedback mechanism to minimize the gap between expected and actual performance,

ensuring more accurate, adaptive, and holistic optimization. Additionally, the framework integrates a neural network to predict optimal

parameter values, further enhancing decision-making. This approach significantly improves execution efficiency and resource

utilization, offering robust adaptability across diverse workloads and operational environments, while aligning closely with service

level agreements.

Keywords: Hadoop, reinforcement learning, q-learning, mapreduce, HDFS

1. Introduction

Many enterprise organizations are increasingly embracing big data

analytics to glean insights from vast reservoirs of digital data

housed within their data repositories, employing these insights for

diverse objectives such as marketing, advertising, and product

design. Among the prominent open-source platforms catering to big

data needs, Hadoop stands out. It is engineered to support the

execution of large-scale data applications through the map-reduce

architecture,

Hadoop serves as a cornerstone for data processing. Analytic

applications operate on data stored within the Hadoop Distributed

File System (HDFS), facilitating comprehensive data processing.

Applications running on Hadoop comprise two crucial

components: the Map and Reduce phases.

Fig. 1. MapReduce Application Execution

The input data undergoes processing by multiple Map tasks,

generating intermediate data in the form of key-value pairs.

Subsequently, multiple Reduce tasks process this intermediate

data and produce output also in key-value format. Hadoop,

functioning as a distributed platform, accommodates the

addition of numerous heterogeneous computing nodes. It

orchestrates the parallel execution of multiple maps and

reduces, ultimately furnishing the final result. The performance

of applications within the Hadoop ecosystem hinges on various

configuration parameters such as the number of maps, reduces,

sort factor, spill percentage, and runtime memory allocation,

among others. Among these parameters, setting the optimal

values for the number of maps/reduces significantly impacts

application performance, considering factors like application

nature, available resources within the Hadoop infrastructure,

and data volume. While many methods for optimizing the

number of maps/reduces rely on a linear correlation between

intermediate data volume and the number of reduce tasks, this

linear relationship proves inadequate in scenarios involving

dynamic resource availability and diverse application

characteristics. To address this, our study proposes a machine

learning-driven solution utilizing reinforcement learning to

optimize Hadoop's configuration parameters. Through a

reward/punishment mechanism, the solution continuously

learns the optimal number of maps/reduces required to achieve

desired service level agreements (SLAs), adapting to changing

resource availability and application traits until satisfactory

prediction accuracy is attained. The predicted optimal

parameter values are then configured within the Hadoop

environment for application execution, ensuring dynamic

responsiveness to current resource availability and application

nuances.

 2. Literature Review

Greeshma Lingam et al. [1] introduces the Learning Automata-

based MapReduce Scheduling (LA-MRS) algorithm to

optimize energy consumption in heterogeneous environments

while adhering to user-specified deadlines. The LA-MRS

algorithm introduces a reinforcement learning-based approach

using Learning Automata to optimize the scheduling of

MapReduce jobs by minimizing energy consumption while

meeting job deadlines. It dynamically allocates resources based

1, 2 Computer Science Engineering(Data Science)
Dayananda Sagar College of Engineering,Bangalore,
Karnataka 5600111, India, nanditayambem@gmail.com,
rashmineha.s@gmail.com
3 AMC Engineering College, Bengaluru, Karnataka 560062,
India
inandakumar53@gmail.com

http://www.ijisae.org/
mailto:rashmineha.s@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 63–69 | 64

on feedback from the system, improving efficiency over time.

Evaluated using HiBench benchmarks, the algorithm achieves

around 25% energy savings compared to traditional methods,

while also ensuring deadline compliance and adaptability in

heterogeneous environments. However, it may introduce

computational overhead, faces scalability challenges in large-scale

systems, and relies heavily on accurate environmental feedback.

Prashanth et al[2] proposes DRLMOTS, a Deep Q-Learning

Network-based scheduler that dynamically assigns tasks between

cloud and fog nodes to optimize system performance. By analyzing

task characteristics and system states, it reduces makespan, lowers

energy consumption, and improves fault tolerance significantly

compared to traditional models like CNN, LSTM, and GGCN.

Experimental results show up to 39.6% energy savings and over

26% makespan reduction. However, the approach may introduce

computational overhead, relies heavily on quality training data, and

requires further testing for scalability in larger, more dynamic

environments

Zaharia et al.[5] achieves improved Hadoop performance through

scheduling, by introducing the Longest Approximate Time to End

(LATE) algorithm. This algorithm prioritizes jobs that could affect

the response time of others, thereby mitigating slowdowns and

memory inaccuracies. However, identifying such lagging jobs in a

heterogeneous environment proved challenging.

Guo et al. [7] aimed to increase speed-up in the Hadoop platform

by exploiting data locality, which reduces cross-switch network

traffic by localizing tasks with more intercommunication on the

same node. However, prior knowledge of job communication

characteristics is required to achieving efficient data locality, which

can be difficult to obtain for certain applications.

Chen et al. [] proposed an adaptive intermediate data compression

strategy to enhance Hadoop performance. This strategy, driven by

a decision algorithm, compresses data based on overhead and

application performance, also reducing power consumption by

60%.

Verma et al. [3] devised a strategy to enhance Hadoop performance

by employing a data compression approach. By compressing data,

they aimed to reduce net bandwidth and the time needed for data

transfer between Hadoop nodes. This solution, tested using a word

counting task in XSEDE resource, yielded a performance gain of

less than 5%.

Ruan et al.[13] increased application speed-up in Hadoop through

data compression, achieving a 5% increase for word counting tasks

while reducing bandwidth and energy consumption.

Moise et al.[10] improved Hadoop performance by introducing a

fast-intermediate layer optimized for concurrency and fault

tolerance, reducing overall execution time by enhancing efficiency

in read/write processes. The performance gain was improved by

10% due to the fast-intermediate layer.

Liao et al.[19] identified optimal Hadoop configuration parameters

using a genetic algorithm, though their approach did not consider

the interplay between parameters.

Bhaskar et al.[14] improved Hadoop performance by improvising

the memory model, pre-allocating memory based on past execution

profiles. While this increased application speed-up, it reduced

system throughput.

Chen et al.[12] identified parameters for optimization in Hadoop

based on the application's nature, distinguishing between CPU and

IO-intensive applications. However, they did not provide an

optimization strategy for these parameters.

Malik et al.[17] enhanced Hadoop performance by collocating

interactive applications on the same node, reducing communication

overhead and energy consumption, resulting in an 8% increase in

application speed-up.

Yu et al. [11] focused on increasing application speed-up in Hadoop

by developing an efficient data shuffling algorithm to reduce data

movement and extra data cycles. Despite achieving a 10%

performance gain, the improvement was relatively modest.

Crume et al.[9] addressed Hadoop job speed-up by compressing

intermediate data created by map jobs, reducing data shuffling

overhead. Their proposed loss compression scheme achieved

significant compression of intermediate data, but

decompression overhead offset some of the gains.

Veiga et al.[22]increased application speed-up in Hadoop by

optimizing memory allocation and increasing in-memory

operations, doubling application speed-up. However, this

optimization led to higher resource costs due to in-memory

storage usage.

Zhang et al.[7] tackled Hadoop performance enhancement

through phase-level scheduling, splitting jobs into multiple

phases to increase parallelism and speed-up. While this

approach increased performance by 1.3 times in a 10-node

Hadoop cluster, splitting applications into phases without

congruency posed challenges.

S. Kumar et al.[23] utilized a gradient approach for fine-tuning

Hadoop configuration parameters to increase application speed-

up, though the approach lacked adaptability to application

nature and resource availability.

Nicolae et al.[24] proposed enhancing the efficiency of Hadoop

Distributed File System (HDFS) to boost application speed-up

within the Hadoop platform. They managed the computational

overhead resulting from data access concurrency in HDFS to

achieve this aim. Validation of their solution against the Grid

5000 dataset revealed a 5% speed-up improvement over the

default HDFS configuration. However, the gain was relatively

low compared to the gains obtained through configuration

parameter tuning.

3.Research Gap

Among the various methods employed to improve performance

in Hadoop, such as intermediate data compression, in-memory

management, and configuration parameter tuning, optimizing

the configuration parameters stands out as particularly effective

in yielding higher performance gains. However, despite its

effectiveness, several challenges hinder the identification of the

optimal values for these configuration parameters in existing

solutions.

Firstly, there is often poor adaptivity to the characteristics of

specific applications. For instance, consider a scenario where

two different applications are running on the same Hadoop

cluster: one application may require more memory allocation

while the other may prioritize processing speed. Existing

solutions may struggle to adapt to these diverse application

needs.

Secondly, many existing solutions optimize each individual

parameter in isolation, without considering its influence on

other parameters. This lack of holistic optimization can

jeopardize the reliability of execution. For example, optimizing

the number of mapper tasks without considering the impact on

reducer tasks may lead to inefficient resource allocation and

suboptimal performance.

Thirdly, the assumption of a linear relationship between

configuration parameters and intermediate data volume often

falls short in heterogeneous environments and for applications

with different characteristics. For instance, the relationship

between the number of reducers and intermediate data volume

may vary significantly depending on factors such as data skew

and processing logic.

Some techniques emphasized the resource overhead introduced

by in-memory optimization, where increased speed-up came at

the cost of higher memory usage, making it unsuitable for

resource-constrained systems. This highlights a gap in

balancing performance with efficient resource utilization.

Solutions were proposed gradient-based tuning mechanism, but

it lacked adaptability to changing workloads or application

behavior, reducing its effectiveness in dynamic Hadoop

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 63–69 | 65

environments. The inability to respond to runtime variability

remains a significant limitation.

Furthermore, their solution focused solely on file system

enhancements and did not address broader MapReduce-level

optimizations or integrate with parameter tuning strategies.

To address these challenges, this work proposes a solution that

takes into account the specific characteristics and requirements of

individual applications running on Hadoop clusters. By considering

the interplay between different parameters and adapting

dynamically to changes in workload and environment, this solution

aims to achieve more robust and efficient optimization of

configuration parameters.

4.Proposed Solution

This work proposes the utilization of Q-Learning reinforcement

learning for tuning Hadoop parameters in order to tackle the

mentioned challenges.

1.1Test run

To initiate a trial run of the application, various configuration

parameters are adjusted, and job statistics are gathered. The

parameters under consideration in this study are:

• io. sort.mb (C1)

• io.file.buffer.size (C2)

• io.sort.spill.percent (C3)

• io.sort.factor (C4)

Fig. 2. Proposed Architecture

These parameters are then fine-tuned based on the collected job

statistics, which encompass:

• Job completion time (P1)

• Wait time in the map phase (P2)

• Wait time in the reduce phase (P3)

The architectural layout of the solution is illustrated in Figure 3.

A test run is conducted using the application and data, and

learning occurs based on the results to fine-tune the Hadoop

configuration parameters.

Here is the significance of each configuration parameter:

• io.sort.mb: This parameter governs the size of the in-

memory buffer utilized for storing map results. A lower

configuration value may trigger spills, leading to performance

degradation. By default, this parameter is set to 100 MB.

• io.file.buffer. size: Control over the size of buffers

allocated

• for I/O operations is determined by this parameter.

Opting for a smaller value may result in application slowdowns,

particularly for applications with a high volume of I/O

operations.

• io.sort.spill. percent: Once the data in the in-memory

buffer surpasses the value specified by this parameter, it is

spilled to the hard disk. Excessive spilling can negatively

impact application performance.

• io.sort.factor: This parameter dictates the number of files

(streams) to be merged during the sorting process of map tasks.

While the default value is 10, increasing it enhances the

utilization of physical memory and reduces overhead in I/O

operations.

Fig. 3. Proposed implementation with Reinforcement Learning

1.2Reinforcement Learning

The process of reinforcement learning (RL) is outlined below:

Fig. 4. Process of RL

Fig 4. illustrates the RL process, which revolves around four

fundamental concepts. The agent controls the three key

concepts of state, action, and reward. An objective function is

formulated based on the minimization of deviation between

expected and actual execution times.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 63–69 | 66

Continuously, the agent makes decisions during each profile run

and evaluates the result of the objective function. Based on these

outcomes, it refines its decision-making process for subsequent

iterations. The objective function for this study is computed as:

 𝐹 =
1

𝐸𝑇−𝑂𝑇
 (1)

Where 𝑂𝑇 is the actual execution time and 𝐸𝑇 denotes the expected

completion time of the application. When the disparity between the

expected and actual execution times is zero, the objective function

reaches its maximum value. Thus, the agent continuously strives to

maximize the objective function.

States represent the decision-making factors that influence the

execution time of the application, while actions denote the

decisions made by the agent, such as increasing or decreasing the

number of maps/reduces. These actions can yield positive or

negative rewards. Positive rewards are assigned when an action

maximizes the objective function, whereas negative rewards are

given when an action leads to a reduction in the objective function.

Over time, the agent learns to prioritize actions that consistently

yield positive rewards.

In this study, four Q-Learning models are employed, with each

model corresponding to one of the configuration parameters

considered. The number of states utilized for the Q-Learning model

is four: start, stop, favor, and de-favor. Within each state, there are

four actions available:

• Increase the value of the configuration parameter.

• Decrease the value of the configuration parameter.

The degree of increment or decrement for each parameter is

determined based on the observed values of profile parameters (P1,

P2, P3). Predictions for the values of configuration parameters (C1,

C2, C3, C4) are generated using a neural network with the

following configuration:

Inputs: P1, P2, P3

Outputs: C1 | C2 | C3 | C4

Number of layers: 3

Number of neurons in layer 1: 3

Number of neurons in layer 2: 9

Number of neurons in layer 3: 1

Activation function: Relu

The neural network is trained using past profile history. At each

stage, the agent selects one action and observes the resulting

response, which is the value of the objective function. Positive

rewards are assigned if the objective function is maximized, while

negative rewards are given otherwise. The Boltzmann distribution

function is employed to select one action among the

four available actions in a given state. This function calculates the

probability of selecting each action based on the quality of choosing

that action at the current state.

𝑝(𝑠𝑘 , 𝑎𝑘 = 𝑖) =
𝑒𝑄(𝑠𝑘,𝑎𝑘=𝑖)/𝑡𝑛

∑ 𝑒𝑄(𝑘,𝑎𝑗)/𝑡𝑛𝑁𝑎

𝑗=1

 𝑖 = 1, … 𝑁𝑎

 (2)

Where 𝑄(𝑠𝑘 , 𝑎𝑘 = 𝑖)/𝑡𝑛is the state-action value function that

evaluates the quality of choosing action 𝑎𝑘 = 𝑖 at state 𝑠𝑘.

𝑁𝑎 is the number of actions.

𝑡𝑛 is the time varying parameter controlling the degree of

exploration versus exploitation.

Reinforcement learning is executed for all job profile data, and

eventually stabilizes in the state that maximizes the reward. The

number of maps and reduces at this state represents the optimal

configuration setting for achieving the desired completion time

of the application.

5.Novelty in the Proposed Solution

The key contributions of this work are

• The parameter tuning approach in this study considers

multiple attributes of job completion time and wait times for

map/reduce tasks. Unlike previous methods that solely rely on

intermediate data volume, this approach offers a more

comprehensive perspective on performance optimization. By

incorporating various metrics related to job execution, such as

completion time and wait times, the tuning process becomes

more refined and aligned with the specific requirements of the

application. This approach enhances the effectiveness of

parameter optimization, leading to improved overall

performance in Hadoop environments.

• One significant aspect of this solution is its adaptability

to both resource availability and application characteristics.

Traditional approaches often lack flexibility and struggle to

accommodate dynamic changes in resource availability or

variations in application requirements. However, in this work,

the parameter tuning methodology is designed to dynamically

adjust to fluctuations in resource availability and adapt to the

unique characteristics of different applications. This

adaptability ensures that the tuning process remains responsive

and relevant in diverse operational scenarios, thereby

enhancing its practical utility and effectiveness.

• Another noteworthy contribution of this work is the

adoption of reinforcement learning (RL) techniques for

modelling the relationship between Hadoop configuration

parameters and job execution times. Unlike conventional

methods that rely on simplistic linear models, RL offers a more

sophisticated and dynamic approach to parameter optimization.

By leveraging RL algorithms, the model can capture complex

interactions and dependencies between configuration

parameters and job performance. This enables more accurate

and nuanced adjustments to be made, leading to optimized

configurations that better align with the specific requirements

and constraints of the Hadoop environment. As a result, the

overall efficiency and effectiveness of the parameter tuning

process are significantly enhanced, contributing to improved

performance outcomes in Hadoop-based systems.

6.Results

The efficacy of the proposed parameter tuning approach based

on reinforcement learning is evaluated using the following

configuration.

Table 1. Testing Parameters

Dataset PUMA (Wikipedia and Movies-

database) [21]

Applications
tested

Word count, K-means

Solutions

compared

Default Hadoop,

Selective parameter tuning
proposed by Chen et al[12]

Performance
parameters

Execution time

The performance of the proposed solution is compared against

parameter optimization method introduced by Chen et al [12].

Execution times are measured across various dataset volumes,

focusing on the word count and K-means application.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 63–69 | 67

The result for work count application is given below.

Table 2. Execution Time for Different Volume for Word Count

Data

volume

(MB)

Default

Hadoop

[12] Reinforcement

Learning

128 100 60 46

256 170 100 77.3

512 240 150 103.04
1024 430 270 186

2048 840 510 432

The proposed reinforcement learning framework has achieved a

29% decrease in execution time compared to the solution given in

[12] and an impressive 110% decrease compared to default

Hadoop. This improvement is attributed to reinforcement learning's

ability to optimize the number of maps and reduce execution time.

The experiment, conducted with a constant data volume of 128MB,

measured execution time for varying numbers of iterations,

yielding the results presented below for the word count application.

Fig. 5. Execution time for word count

Table 3. Execution Time For Different Iteration For Word Count

Iterations Default

Hadoop

[12] Reinforcement

Learning

1 100 60 46

2 107 62 43
3 105 60 40

4 104 61 39

5 100 62 35

Fig. 6. Execution time over iterations for word count

The proposed reinforcement learning algorithm demonstrates

superior capability in learning optimal performance parameters

compared to the solution in [12]. Over time, the execution time

exhibits a standard deviation of 3.84 minutes, whereas solution in

[12] shows a standard deviation of 2.34 minutes. Notably, the

proposed solution adapts dynamically in learning execution

times, as opposed to solution [12]. Across five iterations, the

ensemble-based solution in the proposed method exhibits a

standard deviation of 6.05 minutes, in contrast to the 2.34

minutes seen in solution [12]. This indicates a 40% increase

in adaptability in the proposed reinforcement solution

compared to the solution in [12]. Below are the results for the

K-means clustering application.

Table 4. Execution Time for Different Volume for K-Means

Data

volume

(MB

 Default

Hadoop

[12] Reinforcement

Learning

128 73.6 96 160

256 123.68 160 272

512 164.86 240 384
1024 297.6 432 688

2048 691 816 144

Fig. 7. Execution time for K means clustering

The proposed reinforcement learning framework has achieved

a significant improvement, with a 30% decrease in execution

time compared to solution [12], and an even more impressive

105% decrease compared to the default Hadoop configuration.

This notable enhancement can be attributed to reinforcement

learning's capacity to determine the optimal number of maps,

thus effectively reducing execution time in the proposed

solution.

Furthermore, to gauge the effectiveness of the proposed

approach, execution time was measured across various

iterations for K-means clustering, with a fixed value of k set to

3. The results of these measurements are detailed below.

Table 5. Execution Time for Different Iterations for K-Means

Iterations Default

Hadoop

[12] Reinforcement

Learning

1 160 96 73.6

2 161 96.2 70.3
3 162 97 67.2

4 162.3 96 68.6

5 167.4 96.2 64.7

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 63–69 | 68

Fig. 8. Execution time over iteration for K-mean clustering

The proposed reinforcement learning algorithm demonstrates

superior capability in learning optimal performance parameters

compared to solution [12]. As the algorithm iterates, it refines its

understanding of the system, resulting in a gradual decrease in

execution time by over 12% over the course of the iterations.

Moreover, to comprehensively assess the algorithm's effectiveness,

execution time was measured for various values of K, yielding the

results provided below.

The relationship between execution time and the value of K

exhibits a linear trend, wherein an increase in K leads to a

proportional increase in execution time.

Table 6. Execution Time Varying K Value In K Means

K value Default

Hadoop

[12] Reinforcement

Learning

3 160 96 73.6

4 170 104.
2

78.3

5 183 108.

5

84.2

6 201 121 88.7

Fig. 9. Execution time with varying k value

However, it's noteworthy that the rise in execution time for K-

means clustering from a K value of 3 to 6 is merely 17%, a notably

lower increase compared to the 20% observed in solution [12], and

even lower than the 20.39% observed in default Hadoop

configurations.

Furthermore, to provide a comprehensive understanding of system

performance, the percentage of system utilization was measured

across various applications, including word count and K-means

clustering with different values of K. The detailed results are

presented below.

Table 7. System Utilization (%)

Applications Default

Hadoop

[12] Reinforcement

Learning

Word count 74 78 81

K means
(K=3)

76 85 87

K means

(K=4)

77 86 89

K means

(K=5)

78 87 91

K means
(K=6)

78 88 92

The average system utilization in the proposed setup

consistently surpasses that of solution [12] by a minimum

margin of 3.2%. In comparison to the default Hadoop

configuration, this improvement is even more significant, with

the proposed system achieving an average utilization rate that

is 11.4% higher. This indicates a marked enhancement in

resource utilization efficiency in the proposed framework when

compared to both solution [12] and the default Hadoop setup

Fig. 10. Utilization for different applications

7.Conclusion

This work introduces a novel approach to Hadoop configuration

parameter tuning, leveraging reinforcement learning

techniques. Diverging from conventional methods, our

approach involves learning the optimal parameter values based

on multiple attributes. By considering these diverse attributes,

our proposed solution demonstrates a remarkable ability to

accurately predict the optimal configuration parameters for

Hadoop. As a result, our solution achieves a notable 110%

increase in speed compared to the default Hadoop

configuration. This advancement underscores the efficacy of

our approach in significantly enhancing the performance of

Hadoop systems.

References

[1] Greeshma Lingam , “Reinforcement learning based
energy efficient resource allocation strategy of
MapReduce jobs with deadline constraint”, Cluster
Computing ,2023, 26:2719–2735, Springer

[2] Prashant Choppara and Sudheer Mangalampalli, “ An
efficient deep reinforcement learning based task
scheduler in cloud-fog environment”, Cluster Computing
,2025,28:67, Springer.

[3] A. Verma, L. Cherkasova, and R. Campbell. Resource
Provisioning Framework for MapReduce Jobs with
Performance Goals. ACM/IFIP/USENIX Middleware,
pages 165–186, 2011.

[4] Y. Chen, A. Ganapathi, and R. H. Katz, “To compress or

not to compress-compute vs. io tradeoffs for mapreduce
energy efficiency,” in Proceedings of the first ACM

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13 (1), 63–69 | 69

SIGCOMM workshop on Green networking. ACM, 2010, pp.
23–28.

[5] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I.
Stoica. Improving mapreduce performance in heterogeneous
environments. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), volume 8, page
7, 2008

[6] Y Chen, S Alspaugh, R Katz, “Interactive analytical
processing in big data systems: A cross-industry study of
mapreduce workloads”,2012, arXiv preprint
arXiv:1208.4174

[7] Qi Zhang, “PRISM: Fine-Grained Resource-Aware
Scheduling for MapReduce”, 2015 IEEE

[8] Zhenhua Guo , Geoffrey Fox , Mo Zhou, Investigation of
Data Locality in MapReduce, Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (ccgrid 2012), p.419-426, May 13-16,
2012 [doi>10.1109/CCGrid.2012.42]

[9] Adam Crume , Joe Buck , Carlos Maltzahn , Scott Brandt,
Compressing Intermediate Keys between Mappers and
Reducers in SciHadoop, Proceedings of the 2012 SC
Companion: High Performance Computing, Networking
Storage and Analysis, p.7-12, November 10-16,
2012 [doi>10.1109/SC.Companion.2012.12]

[10] Nandita Yambem, AN Nandakumar, “AMPO: Algorithm for
MapReduce Performance Optimization for enhancing big
data analytics”, IEEE,2017

[11] W. Yu, Y. Wang, X. Que, and C. Xu, “Virtual shuffling for
efficient data movement in mapreduce,” IEEE Transactions
on Computers, vol. 64, no. 2, pp. 556–568, 2015

[10] D. Moise, T.-T.-L. Trieu, L. Boug´e, and G. Antoniu,
“Optimizing intermediate data management in mapreduce
computations,” in Proceedings of the first international
workshop on cloud computing platforms. ACM, 2011, pp. 1–
7 .

[11] B. Nicolae, D. Moise, G. Antoniu, and al. BlobSeer: Bringing
high throughput under heavy concurrency to Hadoop
Map/Reduce applications. In Procs of the 24th IPDPS 2010,
2010. In press

[12] Chen, Xiang & Liang, Yi & Li, Guang-Rui & Chen, Cheng
& Liu,Si-Yu. (2017). Optimizing Performance of Hadoop
with Parameter Tuning. ITM Web of Conferences. 12. 03040.
10.1051/itmconf/20171203040.

[13] G. Ruan, H. Zhang, and B. Plale, “Exploiting mapreduce and
data compression for data-intensive applications,” in
Proceedings of the Conference on Extreme Science and
Engineering Discovery Environment: Gateway to Discovery.
ACM, 2013, pp. 1–8

[14] Bhaskar, Archana & Ranjan, Rajeev. (2019). Optimized
memory model for hadoop map reduce framework.
International Journal of Electrical and Computer Engineering
(IJECE). 9. 4396. 10.11591/ijece.v9i5.pp4396-4407.

[15] Nandita Yambem A. N. Nandakumar, “Enhanced
Performance of Hadoop Parameters Using Hybrid Meta
Heuristics Optimization Techniques”, International Journal
of Intelligent Systems and Applications in Engineering,2024,
Volume 12,Issue No.3 , 1508-1513

[16] Veiga, Jorge & Expósito, Roberto & Taboada, Guillermo &
Touriño, Juan. (2018). Enhancing in-memory efficiency for
MapReduce-based data processing. Journal of Parallel and
Distributed Computing. 120. 10.1016/j.jpdc.2018.04.001.

[17] Maria Malik, Hassan Ghasemzadeh, Tinoosh Mohsenin,
Rosario Cammarota, Liang Zhao, Avesta Sasan, Houman
Homayoun, and Setareh Rafatirad. 2019. ECoST: Energy-
Efficient Co-Locating and Self-Tuning MapReduce
Applications. In Proceedings of the 48th International
Conference on Parallel Processing (ICPP 2019).

[18] C, K. and X, A. (2020), Task failure resilience technique for
improving the performance of MapReduce in Hadoop. ETRI
Journal, 42: 748-760. https://doi.org/10.4218/etrij.2018-0265

[19] Liao G., Datta K., Willke T.L. (2013) Gunther: Search-Based
Auto-Tuning of MapReduce. In: Wolf F., Mohr B., an Mey

D. (eds) Euro-Par 2013 Parallel Processing. Euro-Par
2013. Lecture Notes in Computer Science, vol 8097.
Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-40047-6_42

[20] S. Kumar, S. Padakandla, L. Chandrashekar, P. Parihar,
K. Gopinath and S. Bhatnagar, "Scalable Performance
Tuning of Hadoop MapReduce: A Noisy Gradient
Approach," 2017 IEEE 10th International Conference on
Cloud Computing (CLOUD), Honolulu, CA, 2017, pp.
375-382, doi: 10.1109/CLOUD.2017.55

[21] https://engineering.purdue.edu/~puma/datasets.htm
[22] J Veiga, RR Expósito, GL Taboada, J Touriño,

“Enhancing in-memory efficiency for MapReduce-based
data processing”, Journal of Parallel and Distributed
Computing , April 2018, 323-338

[23] S. Kumar, S Padakandla, L Chandrashekar, P Parihar, K
Gopinath , “Scalable performance tuning of hadoop
mapreduce: a noisy gradient approach”,IEEE,2017

[24] B Nicolae, D Moise, G Antoniu, L Bougé, M Dorier,
“BlobSeer: Bringing high throughput under heavy
concurrency to Hadoop Map-Reduce
applications”,IEEE,2010

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=BOGdPa8AAAAJ&citation_for_view=BOGdPa8AAAAJ:zYLM7Y9cAGgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=BOGdPa8AAAAJ&citation_for_view=BOGdPa8AAAAJ:zYLM7Y9cAGgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=BOGdPa8AAAAJ&citation_for_view=BOGdPa8AAAAJ:zYLM7Y9cAGgC
http://dl.acm.org/citation.cfm?id=2310222&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2310222&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2310222&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2310222&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2310222&CFID=932394217&CFTOKEN=12115692
http://dx.doi.org/10.1109/CCGrid.2012.42
http://dl.acm.org/citation.cfm?id=2477058&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2477058&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2477058&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2477058&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2477058&CFID=932394217&CFTOKEN=12115692
http://dl.acm.org/citation.cfm?id=2477058&CFID=932394217&CFTOKEN=12115692
http://dx.doi.org/10.1109/SC.Companion.2012.12
https://ieeexplore.ieee.org/abstract/document/8284597/
https://ieeexplore.ieee.org/abstract/document/8284597/
https://ieeexplore.ieee.org/abstract/document/8284597/
https://doi.org/10.4218/etrij.2018-0265
https://doi.org/10.1007/978-3-642-40047-6_42
https://engineering.purdue.edu/~puma/datasets.htm
https://scholar-google-com-443.webvpn.hdu.edu.cn/citations?view_op=view_citation&hl=nl&user=47GFFNYAAAAJ&citation_for_view=47GFFNYAAAAJ:r0BpntZqJG4C
https://scholar-google-com-443.webvpn.hdu.edu.cn/citations?view_op=view_citation&hl=nl&user=47GFFNYAAAAJ&citation_for_view=47GFFNYAAAAJ:r0BpntZqJG4C
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=2Ge6tWwAAAAJ&citation_for_view=2Ge6tWwAAAAJ:u5HHmVD_uO8C
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=2Ge6tWwAAAAJ&citation_for_view=2Ge6tWwAAAAJ:u5HHmVD_uO8C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=HMNY1JIAAAAJ&citation_for_view=HMNY1JIAAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=HMNY1JIAAAAJ&citation_for_view=HMNY1JIAAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=HMNY1JIAAAAJ&citation_for_view=HMNY1JIAAAAJ:u-x6o8ySG0sC

