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Abstract: Explainability in phishing detection models can enhance phishing assault mitigation by fostering confidence and elucidating the 

detection process. The essential requirements for facilitating human comprehension and assessment of the reasons a specific URL is deemed 

insecure for visitation. The aims of this study are to investigate some machine learning models in phishing detection which have abilities 

to fulfil the critical needs of explanation using explainability metric. This study applies a methodology starting with dataset collection of 

phishing and legitimate URL as the sources of various features. Then the models selected, which are often known have good quality in 

classification between phishing or legitimate label. The modeling results are processed using an explainer method to generate a 

comprehensive understanding of feature behaviors that influence model predictions. Instead of present accuracy metric results only, this 

study discusses how explainability metric shows how the features contribute to the model.  The conclusion shows that some features have 

abilities to influence the model decision in general or specifically, then how the features contribute to the model in terms of stability and 

distribution behaviors. The study shows that some features that may be identified as key features of model behavior then can be applied 

practically to phishing detection systems such as firewall or SIEM (Security Information and Event Management). 
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1. Introduction 

 Detecting phishing attempts has become a vital task in 

cybersecurity, as these misleading tactics change and represent 

major hazards to individuals and companies. A practical 

alternative has emerged in the form of machine learning models to 

address this difficulty. Improving the precision and consistency of 

phishing detection, researchers are exploring different approaches 

[1].  

 One important part of this project is being able to explain the 

model's findings, which is especially important in areas where 

safety is paramount, like cybersecurity. Explainable AI has 

garnered significant attention as a solution to the "black box" issue 

prevalent in many machine learning models, which is the difficulty 

in understanding their decision-making process[2].  

 New studies have compared and contrasted white-box and 

black-box machine learning algorithms for phishing detection, 

highlighting their respective benefits and drawbacks[3]. In safety-

critical domains like cybersecurity, explaining the model's 

predictions helps boost detection system trust and 

responsibility.[4]. Explainable artificial intelligence has attracted 

interest for addressing the "black box" nature of many machine 

learning models, in which the internal decision-making process is 

unclear. Generating explanations enhances the comprehension of 

the variables influencing the model's decisions, which is essential 

for validating its behavior, particularly in high-stakes applications 

such as phishing detection[5]. 

 Previous studies have raised questions regarding the necessity 

of generating explanations in phishing detection. Charmet et.al, [6] 

in his work describe how to explain phishing attempts? This topic 

emphasizes the necessity for systems that can detect phishing 

attempts and explain attacker strategies. The key question is how 

to produce consistent and thorough natural language explanations 

for anti-phishing system judgments. [7]. These addresses Users 

disregarding warnings owing to insufficient information. 

Researchers are studying methods to provide insights into 

algorithm predictions to help humans determine why a URL is 

unsafe. [8]. This inquiry pertains to the overarching domain of 

Explainable AI (XAI) within cybersecurity. A critical inquiry 

pertains to the selection of the most salient features for phishing 

detection models while maintaining their interpretability. [9]. This 

entails reconciling the necessity for precision with the demand for 

elucidation. 

 In summary, AI-driven phishing detection systems have 

demonstrated remarkable efficacy in combating phishing efforts, 

employing sophisticated methods to identify and anticipate 

vulnerabilities. Integrating explainability elements into these 

systems improves their effectiveness by giving clients a better 

understanding of why phishing warnings are sent. This 

transparency enhances user comprehension and fosters trust in the 

detection method. 

 Also, study shows how important it is to give users explanations 

that are clear and to the point so that they can make smart choices 

about possible threats. Using user-centered design principles and 
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making models that are strong and easy to understand is important 

for creating trustworthy anti-phishing solutions. This shows how 

important it is for phishing detection systems to not only be right, 

but also to give people a clear explanation of their choices. For 

users, this will help them understand, trust, and eventually stay safe 

online.  

 This study aims to investigate various machine learning models 

for phishing detection, which effectively address the essential 

requirements of explanation using explainability metrics. 

Attaining objectives. This study presents an approach that begins 

with the compilation of datasets comprising phishing and genuine 

URLs as sources for various attributes. The selected models are 

typically recognized for their efficacy in distinguishing between 

phishing and authentic labels. The modeling findings are further 

analyzed using an explanatory method to produce a thorough 

understanding of the feature behaviors influencing the predictions 

of the inference model. This study not only presents accuracy 

metric findings but also examines how the explainability metric 

illustrates the contribution of features to the model.  

 The remainder of this paper describes the results, providing 

further details about the methodology. It then goes on to describe 

and discuss the results, highlighting some findings and 

contributions. Lastly, the paper presents a conclusion about the 

achievement of the objectives and the contributions made. This 

part explains limitations and future work that may follow. 

 

2. Methodology 

The method that used in this research comprises of three parts, 

starting dataset collection and model preparation, followed out by 

machine learning modelling and the final step is explainability 

metric processing using explainer method. The result of explainer 

visualized and analyzed to answer the question and the objectives 

of this study. 

2.1. Data Collection and Model Preparation 

This study will use datasets from many sources, some of which 

have been used in related studies. The main source came from 

www.kaggle.com.  

These datasets distribution are tested first to ascertain their 

normality. To determine the normality of the row and column 

distributions, the Shapiro-Wilk test is used with the null hypothesis 

that the data is normally distributed. The calculation results for the 

normality of the rows and columns are as follows 

 

 

 Dataset 

Rows W-Statistic 0.6940035820007324 

Rows p-Value 0.0007381692412309349 

H0: Rows W-Statistic>Rows p-Value 

TRUE 

Rows is Normal 

Distributed 

 

Columns W-Statistic 0.8618614673614502 

Columns p-Value 0.05158619582653046 

H0: Columns W-Statistic> Columns p-

Value 

TRUE 

Column is Normal 

Distributed 

 

The dataset has undergone preprocessing and is prepared for 

modeling since it is determined that both rows and columns are 

statistically regularly distributed. Outliers, skewness, or excessive 

kurtosis may be present in non-normal datasets, which must be 

addressed during preprocessing.  

 The model preparation in short describes as follows:  

1. The first step is loading the dataset, which is the main 

source of data used in the research.  

2. To enable independent processing of inputs and outputs, 

the characteristics (independent variables) and target 

labels (dependent variable) are then separated. If the 

target label is categorical, it is modified to guarantee that 

it complies with the modeling specifications. To 

standardize the categorization process, the target labels 

are then transferred to binary values, usually 0 and 1. To 

guarantee that the model can be trained and assessed 

efficiently, the dataset is then divided into training and 

testing subsets.  

3. To avoid bias in the machine learning model and 

guarantee accurate and equitable predictions, any 

imbalance in the distribution of target labels is finally 

fixed.  

Table 1 Dataset for Modelling 

No

. 

Dataset Sumber (www.kaggle.com) Year  # Instance #Features Phis/Legit 

1 ds_235795_54 /datasets/joebeachcapital/phiusiil-phishing-url  2012    235.795  54 43/57 

2 ds_129K112 /datasets/michellevp/dataset-phishing-domain-detection-
cybersecurity  

2021    129.698  112 41/59 

3 ds_100K20 datasets/danielfernandon/web-page-phishing-dataset  2020    100.000  20 36/64 

4 ds_88K112 /datasets/ravirajkukade/phishingdomaindetection  2021      88.647  112 35/65 

5 ds_11K89 /datasets/manishkc06/web-page-phishing-detection/data  2020      11.481  89 20/80 

6 ds_11055 /datasets/akashkr/phishing-website-dataset 2017      11.055  32 44/56 

7 ds_90K32 /datasets/rashazieni/zieni-dataset  2024      96.018  32 50/50 

8 ds_10K50 /datasets/shashwatwork/phishing-dataset-for-machine-learning  2018      10.000  50 50/50 

9 ds_10K18 /datasets/hasibur013/url-data-for-phishing-website-detection  2024      10.000  18 50/50 

10 ds_600K11 /datasets/simaanjali/phising-detection-dataset/code  2024 662.591 11 15/85 

11 ds_249750 /datasets/6tm2d6sz7p/1  2021 249750 41 51/49 

 

https://www.kaggle.com/datasets/joebeachcapital/phiusiil-phishing-url
https://www.kaggle.com/datasets/michellevp/dataset-phishing-domain-detection-cybersecurit
https://www.kaggle.com/datasets/michellevp/dataset-phishing-domain-detection-cybersecurit
https://www.kaggle.com/datasets/danielfernandon/web-page-phishing-dataset
https://www.kaggle.com/datasets/ravirajkukade/phishingdomaindetection
https://www.kaggle.com/datasets/manishkc06/web-page-phishing-detection/data
https://www.kaggle.com/datasets/akashkr/phishing-website-dataset?resource=download
https://www.kaggle.com/datasets/rashazieni/zieni-dataset
https://www.kaggle.com/datasets/shashwatwork/phishing-dataset-for-machine-learning
https://www.kaggle.com/datasets/hasibur013/url-data-for-phishing-website-detection
https://www.kaggle.com/datasets/simaanjali/phising-detection-dataset/code
https://data.mendeley.com/datasets/6tm2d6sz7p/1


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 94–105  |  96 

 

2.2. Machine Learning Modeling Process 

 As far as Affenzeller et al.[10], in the field of machine learning, 

black-box models are complex systems that have internal workings 

that are either obscured or difficult to comprehend or challenging-

to-understand. According to Rudin [5], these models are frequently 

employed in high-risk decision-making across a range of 

industries, including criminal justice and healthcare. With 

ramifications for numerous domains and high-risk choices, the 

argument over the use of Black-box models with explanations 

versus models that are intrinsically interpretable is still ongoing. 

 Transparency and interpretability are hallmarks of the White-

box paradigm in general. This model generates a model that can be 

thoroughly examined and whose structure is not concealed [10].  

It is crucial to remember, though, that in some situations, White-

box models can be less accurate at making predictions than Black-

box models [11]. The particular problem, the requirement for 

interpretability, and the significance of prediction accuracy are 

generally the deciding factors when choosing between White-box 

and Black-box models. 

 Based on rational explanations above, this study employs 

several popular algorithms such as: 

1. Random Forest: Random Forest is an ensemble learning 

method that builds multiple decision trees and combines 

their outputs for prediction. They are known for their 

high predictive accuracy and their ability to handle 

complex relationships in the data. [10] explain that 

Random Forest is often used in various applications and 

has shown good performance in benchmark problems. 

2. XGBoost is a scalable ensemble technique that has been 

shown to be a dependable and effective machine learning 

algorithm [12]. XGBoost is a member of the Gradient 

Boosted Decision Trees (GBDT) family and has been 

extensively utilized in numerous machine learning 

research projects and real-world applications[12], [13]. 

3. CatBoost is a newer addition to the Gradient boosting 

technique family, similar to XGBoost, introduced in 

2017 by Ostroumova et al., [14]. This algorithm for 

processing categorical features, as concluded by 

Hancock & Khoshgoftaar [15], allows CatBoost to 

handle categorical features more effectively. 

4. EBM, Explainable Boosting Machine, is an interpretable 

Machine Learning method that is an improvement over 

Table 3 Explainable Boosting Machine Model Result 

Dataset Name Accuracy Precision Recall False Positive Rate ROC AUC Runtime (seconds) 

ds_100K20_.csv 88,97% 87,60% 90,69% 12,75% 95,99% 256,98 

ds_10K18.csv 99,95% 100,00% 99,90% 0,00% 100,00% 4,58 

ds_10K50_rev.csv 98,30% 97,85% 98,81% 2,23% 99,81% 12,14 

ds_11055.csv 95,78% 95,44% 96,35% 4,82% 99,40% 9,89 

ds_11055_rev.csv 94,76% 94,14% 95,71% 6,23% 99,11% 12,01 

ds_11K89.csv 98,00% 97,87% 98,04% 2,04% 99,55% 26,58 

ds_129K112.csv 97,65% 97,73% 97,58% 2,28% 99,67% 3.581,70 

ds_235795_54_rev.csv 99,99% 99,99% 99,99% 7,40% 100,00% 314,90 

ds_247950_rev.csv 89,22% 91,35% 86,62% 8,18% 95,81% 2.342,93 

ds_600K11_rev.csv 79,68% 77,44% 83,82% 24,48% 87,60% 10.804,34 

ds_88K112.csv 97,20% 97,08% 97,27% 2,87% 99,56% 453,78 

ds_90K32.csv 99,99% 100,00% 99,99% 0,00% 100,00% 44,08 

 

Table 2 XGBoost Model Result 

Dataset Name Accuracy Precision Recall False Positive Rate ROC AUC Runtime (seconds) 

ds_100K20_.csv 89,68% 88,15% 91,60% 12,23% 96,32% 296,88 

ds_10K18.csv 99,85% 100,00% 99,70% 0,00% 100,00% 94,15 

ds_10K50_rev.csv 98,95% 98,63% 99,31% 1,42% 99,91% 78,46 

ds_11055.csv 97,16% 96,85% 97,62% 3,32% 99,68% 1,94 

ds_11055_rev.csv 97,44% 97,24% 97,78% 2,91% 99,67% 1,63 

ds_11K89.csv 98,65% 98,66% 98,58% 1,28% 99,71% 2,50 

ds_129K112.csv 97,45% 97,26% 97,65% 2,76% 99,68% 21,93 

ds_235795_54_rev.csv 99,99% 99,99% 100,00% 0,01% 100,00% 28,83 

ds_247950_rev.csv 90,99% 93,23% 88,37% 6,39% 96,91% 23,32 

ds_600K11_rev.csv 82,55% 80,63% 85,73% 20,65% 90,80% 9,16 

ds_88K112.csv 97,59% 97,36% 97,79% 2,59% 99,67% 4,23 

ds_90K32.csv 99,99% 100,00% 99,99% 0,00% 100,00% 0,78 
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the Generalized Additive Model [16]. What 

distinguishes EBM is its focus on interpretability. The 

algorithm provides visualizations of these functions, 

allowing users to understand how each variable affects 

the predictions. Additionally, EBM can capture 

interactions between variables and offer tools such as 

variable importance estimates and local explanations to 

further clarify the decision-making process. This makes 

EBM a valuable algorithm in situations where accuracy 

and understanding of the model's reasoning are 

paramount. 

 

In short, the machine learning algorithm above employed in this 

process as follows: 

1. Beginning with the loading of the dataset, which 

supplies the raw data for analysis, is the first step in the 

procedure.  

2. The subsequent stage is known as data preparation, and 

it entails cleaning and preparing the dataset in order to 

guarantee that it is suitable for modeling processes.  

3. Immediately after the data has been prepared, it is 

divided into training and testing sets in order to make the 

process of training and evaluating the model more 

manageable. A technique known as the Synthetic 

Minority Over-sampling Technique (SMOTE) is utilized 

to rectify any imbalances that may exist within the 

dataset.  

4. After that, the model is trained, and then it is applied to 

prediction and assessment to evaluate its performance. 

The results of the evaluation are shown with the use of a 

confusion matrix, which offers insights into the accuracy 

of the model as well as the faults that it contains.  

 

2.3. Analysis of the Explainability Metric Utilizing SHAP 

In the final stage of the workflow, a SHAP analysis, which is an 

abbreviation for SHapley Additive exPlanations, is carried out. 

This stage is essential for evaluating the model and acquiring a 

comprehensive understanding of the contribution and impact that 

each individual characteristic has on the predictions that the model 

Table 5 . CatBoost Model Result 

Dataset Name Accuracy Precision Recall False Positive Rate ROC AUC Runtime (seconds) 

ds_100K20_.csv 89,74% 88,52% 91,24% 11,76% 96,40% 86,60 

ds_10K50_rev.csv 98,50% 98,14% 98,91% 1,92% 99,87% 6,37 

ds_11055.csv 97,28% 97,00% 97,70% 3,16% 99,71% 6,09 

ds_11055_rev.csv 97,48% 97,09% 98,01% 3,07% 99,67% 5,67 

ds_129K112.csv 97,73% 97,58% 97,90% 2,44% 99,70% 36,89 

ds_247950_rev.csv 91,96% 94,00% 89,61% 5,70% 97,37% 46,88 

ds_600K11_rev.csv 83,31% 80,99% 87,12% 20,50% 91,51% 100,12 

ds_88K112.csv 97,64% 97,47% 97,78% 2,49% 99,67% 23,49 

ds_10K18.csv 99,35% 99,19% 99,49% 0,79% 99,92% 27,10 

ds_11K89.csv 98,56% 98,57% 98,49% 1,36% 99,78% 38,07 

ds_235795_54_rev.csv 99,99% 99,99% 99,99% 0,01% 100,00% 246,70 

ds_90K32.csv 99,99% 100,00% 99,98% 0,00% 100,00% 60,22 

 

Table 4 Random Forest Model Result 

Dataset Name Accuracy Precision Recall False Positive Rate ROC AUC Runtime 

(Second) 

ds_100K20_.csv 89,71% 89,00% 90,54% 11,11% 96,11% 30 

ds_10K18.csv 100,00% 100,00% 100,00% 0,00% 100,00% 0,3 

ds_10K50_rev.csv 98,20% 98,22% 98,22% 1,82% 99,87% 0,684 

ds_11055.csv 97,16% 96,70% 97,78% 3,49% 99,49% 1,2 

ds_11055_rev.csv 97,52% 97,24% 97,93% 2,91% 99,47% 1,08 

ds_11K89.csv 97,95% 97,86% 97,95% 2,04% 99,67% 1,5 

ds_129K112.csv 99,16% 99,06% 99,25% 0,94% 99,89% 29 

ds_235795_54_rev.csv 99,99% 99,99% 99,99% 0,01% 100,00% 67,62 

ds_247950_rev.csv 96,73% 97,32% 96,10% 2,64% 99,28% 55,29 

ds_600K11_rev.csv 85,75% 83,10% 89,79% 18,31% 93,56% 185,747 

ds_88K112.csv 97,67% 97,22% 98,10% 2,75% 99,67% 15,83 

ds_90K32.csv 99,98% 99,98% 99,98% 0,02% 100,00% 2,99 
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generates. The study provides a clear and interpretable explanation 

of how different qualities influence the anticipated outcome, both 

positively and negatively, by giving a Shapley value to each 

feature. This allows for a better understanding of how the features 

influence the outcome. This guarantees that the judgments made 

by the model are open and easy to comprehend, which in turn helps 

to cultivate trust in the results it generates. This is especially 

important in applications where explainability is of utmost 

importance, such as the healthcare, financial, or legal domains. 

When this interpretability analysis is finished, the process is 

finished, and all of the necessary procedures, ranging from the 

compilation of the data to the evaluation of the model, have been 

carried out in a thorough manner. 

 This process outlines the sequential procedure for employing 

SHAP (SHapley Additive exPlanations) to analyze and interpret 

predictions made by a machine learning model. Here as the 

process: 

1. A SHAP explainer is utilized to calculate Shapley 

values. The explainer serves as an intermediary between 

the trained model and the SHAP framework, facilitating 

the decomposition of predictions into feature-level 

contributions.  

2. SHAP values are calculated for every feature within the 

dataset. The values quantify each feature's contribution 

to the model's predictions for specific data points. 

Φi = ∑
|𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|!
[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]𝑆⊆𝑁{𝑖}  (1) 

  Φi= The SHAP value 

  N = The Set of all features in the model 

  S = A subset of features excluding i i.e S⊆ 𝑁{𝑖} 

  |S| =  The Number of features 

  |N| = The total number of features in dataset. 

  f(S) = the model’s prediction when only the features in subset S  

   are considered 

  𝑓(𝑆 ∪ {𝑖}) = the model’s prediction when feature I added to 

   Subset S 

  
|𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|!
 = The Shapley weight, which ensures  

   fair distribution of credit across all subset. 

SHAP values calculate the marginal contribution of a 

feature i by comparing the model's output with and 

without i, across all possible subsets of features S. 

3. Computed SHAP values are examined to understand the 

relationships between features and the model's output. 

This aids in identifying the features that significantly 

impact predictions.  

4. Mean Absolute SHAP Value: Mean absolute SHAP 

values are computed to assess feature importance. This 

offers a quantitative assessment of the average 

contribution of each feature to the model's predictions. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 =
1

𝑛
∑ ⌊𝑆𝐻𝐴𝑃_𝑉𝑎𝑙𝑢𝑒𝑖𝑗⌋
𝑁
𝑖=1  (2) 

5. A visualization is generated, typically as a bar chart or 

summary plot, to illustrate feature importance according 

to the mean absolute SHAP values. This visualization 

aids in the interpretation of results and enhances 

effective communication. 

This process is essential for enhancing model transparency and 

fostering trust in its predictions, especially in contexts where 

comprehending feature contributions is crucial. 

A visalization that results in SHAP explainer are two types that 

will be used to analyzed, there are: 

1. Feature Importance Plot 

 

The figure above depicts the feature importance 

calculated from SHAP values. Each bar represents a 

feature, and its length indicates its average absolute 

SHAP value. This value measures the average 

magnitude of each feature's contribution to the model's 

predictions. The features are arranged in descending 

order of importance, with "Feature B" being the most 

influential and "Feature E" the least. This graphic helps 

comprehend which features significantly impact the 

model's predictions, aiding in interpretability and 

decision-making. 

2. Causal Effect Plot using Swarm bee Plot  

A swarm bee plot is a summary visualization used to 

interpret the impact of individual features on the model's 

predictions. Each dot in the plot represents a single data 

point for a given feature. 

• Spread of Dots: The spread of dots along the 

x-axis for a feature indicates the range of its 

impact. A wider spread implies the feature has 

a larger effect on the predictions for different 

data points. 

• Position of Dots: The position of dots on the 

x-axis shows the direction of the impact: 

o Positive SHAP values indicate an 

increase in the prediction. 

o Negative SHAP values indicate a 

decrease in the prediction. 

• Color Patterns: The color gradient of the dots 

shows how feature values correlate with the 

impact. For example, if red dots (high values) 

are mostly on the right (positive SHAP 

values), it suggests high feature values 

increase the prediction. 

3. Results of Performance Metrics 

These parts present the results of model and derivate from the 

Fig  2 Swarm Bee Plot 

Fig  1 Feature Importance Plot 
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confusion matrix to explain each parameter as follow: 

1. Precision: Precision measures how many of the 

predictions identified as phishing are phishing. It is 

essential in scenarios where reducing false alarms (false 

positives) is important.  

2. Accuracy: Accuracy can be misleading in imbalanced 

datasets, where the majority class dominates. It should 

only be considered when the class distribution is 

balanced. 

3. Recall: Recall measures how many actual phishing 

emails or websites are correctly detected. It ensures the 

model catches as many phishing attempts as possible, 

which is critical for security systems. 

4. ROC-AUC: ROC-AUC evaluates the model’s ability to 

distinguish between classes (phishing vs. non-phishing) 

across all thresholds. It is especially useful for 

comparing models. 

5. False Positive Rate (FPR): The proportion of legitimate 

items that are incorrectly flagged as phishing. A low FPR 

is essential to avoid overwhelming users or systems with 

false alarms. 

 

In general, the resume of each parameter result describes as follow: 

1. Accuracy: Overall, all the models used generate average 

accuracy that is not statistically significant. Comparing 

the proportion of valid predictions.  

2. Recall that Random Forest and XGBoost outperform 

EBM, but there is no meaningful difference between 

them and CatBoost. 

3. Runtime: Random Forest outperformed EBM in terms of 

processing time. However, all models have different 

runtime variances, while the differences are not 

statistically significant.  

4. Precision: Random Forest and XGBoost outperform the 

other algorithms in terms of precision. 

5. False Positive: This measure should be considered in the 

context of phishing detection because it can have serious 

effects if it occurs. Between Random Forest and EBM, 

there is a considerable difference, with EBM having a 

greater false positive rate. 

6. AUC_ROC: The goal of this statistic is to graphically 

represent classification performance. Overall, Random 

Forest performs better than the others.  

 

According to the overall result, interesting finding identified as 

follow: 

1. Large dataset has a negative influence on accuracy, 

precision, recall, and ROC AUC in all models, 

particularly XGBoost. This statement offers an initial 

conclusion to the research statement about the model's 

reliability against changes in huge datasets.  

2. Feature Addition: Has a somewhat beneficial influence 

on accuracy, precision, and ROC AUC, with Random 

Forest and Explainable Boosting Machine benefiting the 

most.  

3. Model Selection: XGBoost is suitable for quick runtime 

on large datasets but has worse precision and recall. 

Random Forest and Explainable Boosting Machine 

perform more consistently as the number of features 

changes. This statement can be used as a preliminary 

conclusion to address the model's quality in feature 

selection, which influences it.  

4. Result of Explainability Metric 

In this section, the explanation of the explanatory metric analysis 

consists of 2 parameters, namely the feature importance value and 

the causal effect, which explain the role of the feature in the 

model's class prediction, thus obtaining features that are 

consistently important in the model. 

4.1. Feature Importance Measurement 

In this section, the features that were utilized to model each dataset. 

The analysis focused on each model's primary feature features, 

including generalization capability and interpretability. The 

interpretation of each aspect is as follows: 

1. The Main Feature Aspect illustrates the main 

characteristics in model prediction, as indicated by the 

distribution of differences with other features. 

2. The Generalization Capability Aspect describes the 

model's ability to forecast new data patterns; the better 

the generalization capability, the more adaptable the 

model is to new information. This may be seen in the 

distribution of SHAP values for a model[17]. 

3. The Interpretability Aspect is defined as the ratio of 

features having SHAP values greater than zero to the 

total number of features in the dataset. The smaller the 

ratio, the greater the interpretability, because the model 

can be explained with fewer features, whereas the more 

features that explain it, the lower the interpretability[18].  

The feature importance measurement result explains at Table 6 

Model’s Feature Importance Explanation (see the appendix for plot 

location url) 

4.2. Causal Effects Measurement  

When analysing a SHAP swarm bee plot, several characteristics 

such as consistency, stability, actionability, and accuracy are 

essential for obtaining accurate and actionable insights from the 

model's predictions. Here's an overview of these characteristics 

and why they're important: 

1. Consistency: Consistency ensures that the SHAP values 

align with the model’s logic, meaning that when the 

importance of a feature increases in the model, the 

corresponding SHAP values also reflect that increase. 

Ensure that features with larger SHAP value 

distributions (longer x-axis ranges) correspond to their 

overall relevance in the model[19]. 

2. Stability: Stability ensures that the SHAP values remain 

consistent across different model runs or similar 

datasets, especially when data is resampled or slightly 

altered. Ensure that identical SHAP plots are achieved 

when testing with different data subsets or model 

versions[20]. 
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consistently identified as significant contributors. The discussion  

Table 6 Model’s Feature Importance Explanation (see the appendix for plot location url) 

Dataset Name Explanation 

ds_100K20_.csv 

The Explainable Boosting Machine (EBM) model highlights key findings, with URL, LineOfCode, and FILENAME identified as 

the top features influencing predictions. These features are easily interpretable and critical to the model’s outcomes. The model 

demonstrates strong generalizability with universally applicable features, though low-contributing ones should be reviewed to avoid 
overfitting to specific datasets. EBM’s findings are intuitive, with plots ranking features by importance, measuring their 

contributions, and presenting the results clearly. This simplicity enhances transparency and builds confidence in the model. 

ds_10K50_rev.csv 

Among critical characteristics, ̀ PctExtNullSelfRedirectHyperlinksRT`, ̀ PctExtHyperlinks`, and ̀ FrequentDomainNameMismatch` 
have the highest SHAP values, suggesting their considerable contributions to model predictions. Low contributions to generalization 

capabilities have little effect on predictions and may increase model complexity. Keeping such traits may hinder the model's 

generalization to fresh data. Features such as `PctExtHyperlinks` (percentage of external hyperlinks) and 
`FrequentDomainNameMismatch` (frequent domain name mismatches) are easily interpretable as phishing indications. User trust 

in the model and its predictions increases due to their logical relationship to phishing dangers.  

ds_11055.csv 

The dominant features across models are URL_of_anchor, SSLfinal_State, and web_traffic, with additional contributions from 
Prefix_suffix and Having_subdomain. High-impact features like URL_of_anchor, SSLfinal_State, and web_traffic effectively 

identify phishing attempts, while low-contribution features such as poUpWindow and HTTPS_token reflect less common behaviors. 

Models clearly explain phishing mechanisms using these high-contribution features, though context-specific traits introduce 
variability, making interpretability more complex. 

ds_11055_rev.csv 

Key features like URL_of_Anchor and SSLfinal_State significantly enhance phishing detection, while low-contribution features 

such as age_of_domain and Google_Index risk increasing complexity without value, potentially reducing generalization as phishing 

tactics evolve. Intuitive features like SSLfinal_State and URL_of_Anchor are easily understood by non-technical users, improving 
trust and usability. 

ds_129K112.csv 

Except for XGBoost, `time_domain_activation` dominates important attributes across multiple models. In terms of generalization, 

`time_domain_activation` can detect phishing by recognizing new domains. However, characteristics like `qty_space_file` only 
impact certain phishing instances and have little impact on the model. The interpretability of phishing models is enhanced by high-

contribution characteristics including `time_domain_activation`, `directory_length`, `URL_length`, and `qty_dot_domain`. 

Although XGBoost differs, its main feature is `qty_dot_directory`. Variable feature relevance across models represents varied 
phishing activity patterns, increasing interpretability difficulty. 

ds_247950_rev.csv 

Url_length dominates critical features across models, with average_subdomain_length and domain_length being important, except 

for the Random Forest model. Url_length is a key phishing signal, displaying excellent generalizability. XGBoost contributes to 

less features than EBM, which contributes evenly. Finally, url_length and number_of_subdomain help most models describe 
phishing. In certain cases, other, less consistent indicators suggest unique phishing tendencies, complicating interpretabili ty. 

 

ds_600K11_rev.csv 

The SHAP summary plots highlight NumDots, URLLength, and PathLength as the most dominant features across models, 
demonstrating strong contributions to phishing detection and excellent generalization capability. These features capture universal 

phishing patterns, while lower-impact features like HttpsInHostname or AtSymbol are context-specific and may add unnecessary 

complexity. The high-impact features are intuitive and easily interpretable, providing clear insights into phishing mechanisms. 
Simplifying the models by focusing on these dominant features can enhance both performance and usability.  

ds_88K112.csv 

High SHAP values for crucial features like `time_domain_activation`, `qty_dot_domain`, and `directory_length` greatly impact 

model predictions, highlighting their significance in detecting phishing efforts. The model's capacity to generalize to new datasets 
is shown by features such as `time_domain_activation`, which often indicates domain reliability. Although `directory_length` and 

`length_url` are linked to URL length, they may create dependencies that hinder the model's performance on datasets with different 

distributions. Features such as `time_domain_activation` and `qty_dot_domain` are easily interpreted by non-technical users, 
indicating phishing or unusual activity. However, features such as `qty_hyphen_file` and `qty_slash_url` may need further 

explanation to determine their significance in the model. These factors emphasize balanced feature selection and model insight 

communication. 

ds_10K18.csv 

High-SHAP-value features like ̀ URL_Length`, ̀ URL_Depth`, and ̀ Prefix/Suffix` dominate model predictions, except in the EBM 
model, where `domain` is most influential. All models have high generalization potential and can be simplified by deleting low-

contribution characteristics to enhance efficiency without compromising accuracy. Phishing mechanisms are clearly explained by 

models utilizing high-contribution characteristics such as `URL_Length`, `URL_Depth`, and `Prefix/Suffix`, except for EBM, 
where ̀ domain` is the dominant explanatory feature. These findings show the models' phishing detection and transparency/usability 

strengths. 

 

ds_11K89.csv 

For key features, google_index, page_rank, and nb_www have the highest SHAP values, making them significant contributors to 

predictions. Regarding generalization, these features reflect common phishing patterns, such as Google indexing and page ranking, 

enhancing model applicability to new datasets. In terms of interpretability, features like google_index and page_rank are intuitive 
and easily explainable, while features like phish_hints and nb_www may require additional clarification to ensure user 

understanding. 

ds_235795_54_rev.c

sv 

The Explainable Boosting Machine (EBM) model shows substantial feature dominance, generalization, and interpretability findings. 

For key characteristics, the model highlights `URL`, `LineOfCode`, and `FILENAME` as the top contributors, making them easy 
to comprehend as primary predictors. The EBM model has great generalizability, with important traits that are relevant across 

datasets. Features with smaller contributions should be carefully reviewed to ensure they are not too dataset-specific. Finally, EBM 

plots are easy to understand and use because to their obvious feature ranks, measurable contributions, and straightforward 
representations. 

 

ds_90K32.csv 

For key features, DNSRecordType, Domain, and NumericSequence have the highest average SHAP values, making them the most 
influential in model predictions. Regarding generalization, these features effectively capture common phishing patterns, enhancing 

the model’s ability to perform well across datasets. In terms of interpretability, features like DNSRecordType and Domain are 

intuitive and easy to explain to non-technical users, such as unusual DNS types or suspicious domains serving as clear phishing 
indicators. 
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Table 7 Feature ’s Causal Effect from All Models (see the appendix for plot location url) 

Dataset Name Explanation 

ds_100K20_.csv 

Features like url_length, n_slash, and n_dots consistently show high SHAP values, aligning with domain intuition that phishing 

URLs often have complex structures. While features like n_hyphens and n_redirection exhibit variability, they still provide 

actionable insights, such as identifying excessive redirections or suspicious patterns. These features offer clear rules for detecting 
phishing attempts, enhancing both model consistency and practical application. 

ds_10K50_rev.csv 

FrequentDomainNameMismatch, PctExtNullSelfRedirectHyperlinksRT, and InsecureForms display similar SHAP patterns, 

enabling reliable predictions across the dataset. These traits have stable SHAP distributions, while others with symmetrical 

distributions around zero indicate lesser, sample-dependent contributions. Key features like `PctExtHyperlinks` and 
`InsecureForms` help detect phishing, as phishing URLs commonly contain suspicious external hyperlinks and unsecured forms. 

Take advantage of `InsecureForms` to identify URLs with high external hyperlinks or unsafe forms, and `NumDash` to prioritize 

URLs with many dashes for examination. 

ds_11055.csv 

Features like `SSLfinal_State`, `URL_of_Anchor`, and `web_traffic` show consistent SHAP patterns, with high values predicting 

phishing danger and low ones reducing it. Features with broad but targeted SHAP value distributions contribute steadily, while 

`popUpWindow` and ̀ Statistical_report` have lesser, sample-dependent impacts. SSL final state is important for indicating validity, 
while URL_of_Anchor and web_traffic reveal user interactions with dubious URLs. URLs lacking SSL certificates and minimal 

web traffic, which are often linked to phishing, should be investigated. 

ds_11055_rev.csv 

Features such as ̀ URL_of_Anchor`, ̀ SSLfinal_State`, and ̀ Prefix_Suffix` consistently contribute to phishing detection using SHAP 

patterns. The characteristics ̀ URL_of_Anchor` and ̀ SSLfinal_State` exhibit steady SHAP distributions, indicating sustained impact 
on predictions, while `Shortining_Service` and `Redirect` have lesser, sample-dependent impacts. Key aspects like 

`URL_of_Anchor` and ̀ SSLfinal_State` are indicative of phishing, as suspicious anchors and incorrect SSL certificates are common 

signs. Use `SSLfinal_State` to identify URLs without valid SSL certificates, and `web_traffic` and `age_of_domain` to prioritize 
examination of low-traffic or new domains. 

ds_129K112.csv 

Features like `time_domain_activation`, `directory_length`, and `length_url` follow typical SHAP patterns, with high values 

boosting phishing risk estimates and low values decreasing them. `Time_domain_activation` shows stable SHAP value 
distributions, whereas `directory_length` and `qty_dot_domain` contribute consistently across datasets. Key characteristics l ike 

`time_domain_activation` are important, as newly formed domains are typically linked to phishing. Similarly, `length_url` and 

`directory_length` support the idea that complicated and lengthy URLs are more likely to be phishing. Actionable insights include 
prioritizing new domains using ̀ time_domain_activation` and establishing URL length and directory structure thresholds to detect 

suspicious patterns. 

ds_247950_rev.csv 

Key features such as `url_length`, `domain_length`, and `number_of_dots_in_url` exhibit consistent trends, with high values 
increasing phishing risk predictions and low values decreasing them. Features like `url_length`, `average_subdomain_length`, and 

`domain_length` are stable across SHAP value distributions, whereas `entropy_of_url` and 

`number_of_special_characters_in_domain` have tiny, context-specific contributions. Longer URLs or those with numerous dots 
are suspicious, therefore these aspects improve phishing detection. Features such as `number_of_subdomains`, `url_length`, and 

`entropy_of_domain` can help mitigate risk by limiting URL length or subdomain counts, and identifying patterns with special 

characters in domains. 

ds_600K11_rev.csv 

SHAP distributions are evident in features such as `NumDots`, `UrlLength`, and `PathLength`, with high values indicating higher 
phishing risk estimates and low. These features are reliable in model predictions, with steady contributions across datasets, but 

`HttpsInHostname` and ̀ IpAddress` have inconsistent influences based on sample. Phishing is commonly associated with excessive 

dots or long URLs, therefore key features like `NumDots` and `UrlLength` correspond with domain understanding. Actionable 
insights from ̀ NumDots`, `PathLength`, and `UrlLength` can aid in phishing mitigation by identifying suspicious patterns through 

URL complexity and path depth thresholds. 

ds_88K112.csv 

Features such as ̀ time_domain_activation`, ̀ length_url`, and ̀ directory_length` have consistent SHAP distributions, indicating their 
dependable phishing detection contributions. These broad but concentrated SHAP value distributions indicate strong stability and 

significant impact across phishing scenarios. Features with near-symmetrical zero distributions are less stable and influential. 

Features such as `time_domain_activation` and `length_url` are crucial, as newly created domains or lengthy URLs are typically 
suspect. To gain actionable information, use `time_domain_activation` to prioritize new domains and `length_url` to set suspicious 

URL length thresholds. 

ds_10K18.csv 

Features such as `URL_Length`, `iFrame`, and `Web_Traffic` follow consistent SHAP patterns, whereas `Domain_Age` and 

`Domain_End` support the idea that older domains are more reliable. `URL_Length`, `URL_Depth`, and `Web_Traffic` exhibit 
consistent SHAP distributions, contributing to model predictions, while `Have_At` and `Right_Click` have lower, sample-

dependent impacts. Key features such as `URL_Length` and ̀ Web_Traffic` are crucial for phishing detection, as long URLs or low 
web traffic frequently indicate suspicious behavior. Actionable insights include URL length thresholds and phishing risk analysis 

of low-traffic URLs. 

ds_11K89.csv 

Features such as `page_rank`, `google_index`, and `nb_www` have consistent SHAP patterns, indicating phishing detection 

reliability. Page_rank, google_index, and web_traffic exhibit steady and significant SHAP distributions, suggesting their importance 
in phishing scenarios. Domain_in_brand and longest_word_path have more scattered contributions, indicating sample-specific 

relevance. Relevant attributes include `page_rank` and `google_index`, as phishing URLs sometimes have low rankings or are not 

indexed by Google. Features such as `nb_hyperlinks` and ̀ web_traffic` support the idea that URLs with high external links and low 
traffic are suspect. Using `google_index` to prioritize non-indexed URLs, `page_rank` to identify low-ranking sites, and 

`nb_hyperlinks` to define danger indicators for external link counts are actionable insights. 

ds_235795_54_rev.c

sv 

The constant SHAP distributions of LineOfCode and HasCopyrightInfo indicate their significant and dependable contributions to 
model predictions. URL, NoOfExternalRef, and FILENAME also show trends, with high values affecting predictions. URL and 

NoOfExternalRef have stable SHAP value distributions, but NoOfCSS and IsHTTPS have less consistent contributions across 

samples. URL and URLLength are linked to phishing since longer URLs indicate harmful action. URL and NoOfExternalRef 
insights can help set detection criteria like limiting URL or web document external references. 

ds_90K32.csv 

Features such as `DNSRecordType`, `Domain`, and `NumericSequence` consistently contribute to phishing detection through 

SHAP patterns. Features with large but focused SHAP value distributions are stable and significant, while features like 

`ConsonantSequence` and ̀ VowelRatio` have scattered contributions, indicating lower and sample-specific relevance. Key elements 
like `DNSRecordType` and `DomainLength` can help identify phishing, as uncommon DNS types or lengthy domain names 

generally indicate phishing tendencies. Using `DNSRecordType` to identify suspicious DNS types and `DomainLength` and 

`SubdomainNumber` to create thresholds for domain length and subdomains might help identify phishing risks.  
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3. Actionability: Actionability ensures that the SHAP 

values provide insights that can be translated into 

meaningful actions or decisions. Concentrate on the 

most important attributes (those at the top of the y-axis) 

and examine how the insights can help drive practical 

decisions[21]. 

4. Accuracy Explanation: Accuracy means that the SHAP 

values correctly capture the contribution of each feature 

to the prediction, without over- or under-representing 

their impact. Cross-validate to ensure that the 

distribution and positioning of SHAP values accurately 

reflect the model's logic and feature relationships[22]. 

The result of Causal effect measurement explains at Table 7 

Feature ’s Causal Effect from All Models (see the appendix for plot 

location url) 

5. Discussion 

Phishing detection relies on identifying key features that 

consistently contribute to accurate classification of phishing 

attempts. Understanding the significance and behavior of these 

features is essential for building effective, interpretable, and 

generalizable models. Analyzing the dominant features, their 

ability to generalize, and their impact on model interpretability 

provides actionable insights for model optimization. To enhance 

he interpretability, reliability, and operational value of such odels, 

it is critical to analyze key aspects of feature behavior and their 

contributions. This analysis, often supported by SHAP (SHapley 

Additive exPlanations), provides insights into the significance, 

stability, and actionability of individual features. 

5.1. Feature Importance Analysis 

 The following sections detail the key aspects and findings of 

phishing detection models. Specifically, it highlights the 

importance of features such as url_length, n_slash, n_dots, 

SSLfinal_State, and URL_of_anchor, which have been also 

addresses the generalization capability of dominant features, 

contrasting them with minor, context-dependent features that show 

limited applicability across datasets[23].  

 Finally, the interpretability of models relying on these major 

traits is explored, emphasizing the importance of simplifying the 

model by removing low-contribution features without 

compromising its performance[24]. This analysis aims to provide 

a foundation for refining phishing detection models and ensuring 

their adaptability and reliability in diverse scenarios. 

Key Aspects and Findings Dominant Features: 

1. Various models consistently show that url_length, 

n_slash, n_dots, SSLfinal_State, and URL_of_anchor 

are the most important features. 

These variables have a significant and consistent impact 

on phishing detection, making them essential to the 

model's decision-making process. 

2. Generalization Capability: 

Because of their universal relevance in phishing 

identification, dominant features such as url_length and 

SSLfinal_State have significant cross-dataset 

generalization. Minor characteristics, on the other hand, 

are more context-dependent and have less influence 

when applied to new or previously unexplored data sets. 

3. Interpretability: 

Models based on these major traits have excellent 

interpretability since their impact on predictions is 

evident and consistent. Features with low contribution 

values should be considered for removal to simplify the 

model without compromising performance. 

 

 Phishing detection model optimization and deployment affect 

performance, usability, and adaptability[25]. Keeping only the 

most important features streamlines the model, lowering 

computational complexity and keeping accuracy[26]. For 

implementation in dynamic situations, the model must generalize 

well on varied datasets and unknown scenarios. Data on regional 

and contextual phishing tendencies must be validated. 

 The model's predictions must be trusted by stakeholders like 

security teams and end-users; therefore interpretability is 

crucial[27]. Transparent models that highlight feature 

contributions, like SHAP explanations, build confidence and 

deliver actionable insights. For real-time phishing detection, a 

model tuned for low latency and scalability must analyze huge 

amounts of data efficiently[4]. Combining machine learning 

predictions with rule-based systems enhances robustness by using 

insights like url_length criteria and SSL certificate legitimacy to 

enforce security standards. 

 Phishing methods change quickly, thus continuous development 

is essential. Retraining the model with new data guarantees it can 

handle new threats[28]. Monitoring precision, recall, and false 

positive rates helps maintain operating standards and identify 

improvements. User and administrator feedback can help reduce 

false positives and improve the model. Regulatory norms include 

data privacy regulations and ethical principles ensure the 

implementation meets legal and organizational requirements[29]. 

Customizing deployment tactics for use cases like high recall in 

high-risk industries improves the model's impact and applicability. 

These factors ensure the phishing detection model is effective, 

dependable, and adaptive to real-world situations[30]. 

 

5.2. Causal Effect Analysis 

The following sections outline the primary findings from the 

evaluation of key features in phishing detection models. These 

findings cover aspects such as feature consistency, stability, 

explanation accuracy, and actionability, as well as the potential 

negative effects of less significant features[31]. Additionally, the 

role of high-impact features in enhancing detection is highlighted, 

offering actionable insights for optimizing and deploying phishing 

detection systems[32]. The goal is to refine the model's design 

while ensuring it remains effective, interpretable, and scalable 

across diverse scenarios. 

1. Consistency: The model depends on reliable and 

predictable features like url_length, n_slash, and 

SSLfinal_State to detect phishing. Consistency 

emphasizes their model strength and importance. 

2. Stability, Variability: URL_length and SSLfinal_State 

are reliable phishing indicators since they are stable 

across datasets and contexts. Contextual factors like 

poUpWindow vary more, suggesting they may be less 

generalizable across datasets. Features like 

HTTPS_token and Google_Index, which contribute little 

to the model's predictions, may reduce its ability to 

generalize effectively. Their inclusion could introduce 

noise, potentially leading to overfitting or less reliable 

predictions. 

3. Accuracy of explanation: The model is more credible 

when features like url_length and 

number_of_dots_in_url match domain intuition. 

Phishing URLs are long and have many dots, which have 
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high SHAP values. 

4. Actionability: Rule-based interventions like limiting 

maximum URL lengths or identifying URLs with 

strange slash patterns can use url_length and n_slash. 

SSLfinal_State validates SSL certificates in URLs, a 

frequent phishing signal, to deliver actionable insights.. 

 

 Several realistic implementation options can be used to turn the 

findings into phishing detection system stages.  

Leveraging Feature For accurate predictions, consistency is 

essential. Since they consistently help detect phishing, url_length, 

n_slash, and SSLfinal_State should be prioritized during model 

training and evaluation. Adding feature-specific limits like a 

maximum URL length can improve detection. These features 

should also govern ensemble model feature selection, and weight 

them uniformly.  

 Validating stable features like url_length and SSLfinal_State 

across varied datasets helps maintain stability and manage 

variability. To promote generalization, model training should omit 

or downweight context-dependent variables like poUpWindow, 

which contribute variablely. New datasets can be checked before 

deployment to detect features with inconsistent affects and alter 

criteria dynamically. Filter away low-impact features like 

HTTPS_token and Google_Index to avoid overfitting and enhance 

model performance.  

 Another important stage is improving explanation accuracy. 

Show that features match domain intuition using explainability 

methods like SHAP values. URL_length and 

number_of_dots_in_url should show phishing trends. Model 

predictions can be explained clearly with SHAP-based visuals in 

monitoring dashboards. Security teams should also learn to 

interpret these justifications to make educated flagged case 

choices.  

 Actionability can be achieved with rule-based and machine 

learning hybrid systems. The model detects more nuanced than 

rule-based limits like url_length and n_slash. SSLfinal_State 

automates SSL validation, distinguishing real from phishing 

URLs. Security operations centers (SOCs) can use these hybrid 

systems for real-time alerts, and actionable insights can help design 

browser extensions that block suspicious URLs.  

 

6. Conclusion 

Phishing detection models rely heavily on identifying and 

prioritizing key features that consistently contribute to accurate 

predictions. Features like url_length, n_slash, and SSLfinal_State 

have been shown to provide significant and stable contributions, 

making them essential components in detecting phishing attempts 

across various contexts. These features not only enhance the 

model's interpretability but also offer actionable insights for rule-

based interventions, such as setting thresholds for URL length or 

validating SSL certificates. By leveraging explainability tools like 

SHAP, the models ensure alignment with domain intuition, 

reinforcing trust in their predictions and enabling stakeholders to 

make informed decisions. 

 To optimize and deploy phishing detection systems effectively, 

it is crucial to focus on maintaining generalizability across diverse 

datasets while managing the variability of context-dependent 

features[33]. Continuous monitoring and retraining help adapt to 

evolving phishing strategies, ensuring the model remains relevant 

and effective. Combining machine learning predictions with rule-

based systems enhances robustness, allowing for real-time 

detection and operational scalability. These measures collectively 

ensure that phishing detection models are accurate, interpretable, 

and adaptable, meeting the demands of real-world applications. 

 To advance phishing detection systems, several future 

directions and improvements should be considered. Enhancing 

feature engineering by identifying new features derived from 

evolving phishing tactics, such as advanced domain reputation 

metrics or contextual signals like time-based activities, can 

significantly improve adaptability. Additionally, integrating multi-

modal data sources, including email content, URL structures, and 

network logs, can create a more comprehensive detection system. 

Multi-modal models capable of analyzing structured and 

unstructured data simultaneously will enhance accuracy in 

complex scenarios. 

 Expanding the use of advanced explainability tools, such as 

real-time visualization enhancements to frameworks like SHAP, 

will provide immediate and actionable insights. Efforts to reduce 

false positives and negatives should include cost-sensitive learning 

techniques and adaptive thresholding tailored to specific 

operational contexts, balancing precision and recall effectively.. 

 

 Appendix 

All dataset and plots files located at github repository, the url is  

https://github.com/abdfajar/Hasil-Pemodelan    
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