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Abstract— The emergence of artificial intelligence (AI) has accelerated the design of microwave devices, including antennas, 

enhancing throughput and reducing time-to-market. This is mostly due to the fact that design automation via optimization has 

replaced labor-intensive manual design methods that rely on trial and error without assurance of effective results. Surrogate 

model-based optimization (SMBO) approaches are leading the way in the quick design of antennas via optimization, mostly 

owing to their enhancement of efficiency regarding computing costs.   

The Surrogate Model Assisted Differential Evolution for Antenna Synthesis (SADEA) algorithm family is a category of 

cutting-edge Sequential Model-Based Optimization (SMBO) techniques. This study illustrates the use and benefits of the 

SADEA algorithm family via two case studies of actual antenna design challenges. The antenna design challenges include 

optimizing a multi-layered small multiple-input multiple-output (MIMO) antenna array for wireless communications and a 

microwave imaging antenna for ultra-wideband (UWB) body-centric applications. In both instances, the SADEA algorithm 

family achieved excellent design solutions in a reasonable timeframe, and the quality of these solutions is corroborated by the 

close alignment between the simulated and measured results of the fabricated, operational prototypes of the antennas. In both 

instances, the efficacy of the SADEA algorithm family is juxtaposed with the 2019 Computer Simulation Technology - 

Microwave Studio (CSTMWS) optimizers, namely the trust region framework (TRF) and particle swarm optimization (PSO). 

Comparative results indicate that the SADEA algorithm family consistently achieves highly satisfactory design solutions 

across all iterations, utilizing a reasonable optimization duration, whereas the alternative optimizers consistently fail to meet 

design specifications and/or produce designs with geometric inconsistencies. 

Index Terms—Antenna optimization; Artificial intelligence; Evolutionary methods; PSADEA; SADEA; SADEA-II; Surrogate 

model-based optimization. 

INTRODUCTION 

Artificial intelligence (AI) increasingly assumes a 

pivotal role in microwave engineering. on recent 

decades, the design and development of microwave 

devices, including antennas, have been significantly 

accelerated by advanced machine learning and 

computational approaches grounded on AI 

paradigms [1]–[4]. Traditionally, microwave 

devices, particularly antennas, may be developed by 

adhering to established heuristics that are often 

corroborated by design experience. Although these 

criteria effectively function as practical guidelines 

for antenna designers and engineers, their careful 

implementation often results in suboptimal antenna 

designs [4], [5]. This situation usually arises when 

the design requirements and performance 

parameters are very rigorous and heavily dependent 

on the geometric profiles and/or material 

composition of the antennas [4]. Consequently, 

antenna designers and engineers often adjust the 

parameters of sub-optimal antenna designs produced 

by manual methods to enhance performance. This 

method is very arduous, and effective solutions are 

not certain, since it often relies on trial and error. To 

overcome the aforementioned obstacles, antenna 

design automation via optimization is essential for 

producing near-optimal antenna designs and 

configurations.   

Local optimization and global optimization are the 

two primary methods for conducting antenna 

optimization. Local optimization approaches need 

an exceptional starting design, which is seldom 

attainable in reality, to get satisfactory or acceptable 

design solutions. since a result, global optimization 

techniques are preferable because of their resilience 

and optimization capabilities, since they do not need 

a starting design.   

AI methodologies, particularly evolutionary 

computing, have primarily influenced the 

development of global optimization strategies, 

especially evolutionary algorithms (EAs). 

Evolutionary algorithms, including differential 

evolution (DE) [6] and particle swarm optimization 
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(PSO) [7], are prominent global optimization 

techniques used in antenna synthesis. Nonetheless, 

global optimization techniques like evolutionary 

algorithms sometimes need several full-wave 

electromagnetic (EM) simulations to get satisfactory 

or acceptable design solutions [8].   

Accurate characterization of antennas for 

performance estimate and assessment necessitates 

computationally intensive numerical method-based 

electromagnetic simulations, such as time domain 

analysis using the finite integration technique (FIT) 

[5], [9]. Consequently, the optimization duration 

becomes unnecessarily prolonged (or even 

prohibitive in some instances) when evolutionary 

algorithms are used for antenna synthesis [4]. To 

tackle the issue of prolonged optimization duration, 

it is essential to use efficiency enhancement 

techniques that significantly reduce the total 

computational expense of the optimization while 

minimally compromising the quality of the design 

solutions produced by the optimization process. 

Surrogate model-based optimization (SMBO) is a 

very promising strategy for enhancing optimization 

efficiency.   

Artificial intelligence methodologies, including 

machine learning and statistical modeling, are the 

fundamental attributes of SMBO.   

Through machine learning and statistical modeling, 

SMBO approaches construct and use surrogate 

models that serve as cost-effective approximations 

of precise evaluations, substituting for 

computationally intensive exact function 

evaluations (e.g., EM simulations). Surrogate 

model-assisted evolutionary algorithms (SAEAs) 

are developed when evolutionary algorithms serve 

as the search mechanism in surrogate model-based 

optimization approaches [10], [11]. A crucial trade-

off arises between the quality of the surrogate model 

and the efficiency, based on the required number of 

precise assessments, in SAEAs. Consequently, a 

surrogate model management approach is necessary 

to identify an optimal trade-off in SAEAs. Owing to 

a plethora of surrogate model management 

methodologies, there exists a variety of SAEAs. The 

surrogate model-aware evolutionary search (SMAS) 

framework is a cutting-edge SAEA framework, with 

its efficiency and optimization quality well proven 

and validated. 

AI-DRIVEN ANTENNA DESIGN 

OPTIMIZATION 

Recently, AI approaches have been used to improve 

the efficiency and reliability of simulation-driven 

antenna design and optimization methods, making 

them more applicable to a wider range of modern 

antenna structures. The following is a quick 

discussion of some of the most current techniques, 

emphasizing their operational mechanisms and 

applications: 

Metamaterials 

The characteristics of metamaterials depend on their 

architectural design, and hence, their qualities are 

not only determined by the attributes of the 

component materials. characteristics may be 

regulated and altered by modifying the topology of 

metamaterial 'unit cells.' Although the bulk 

characteristics of the component materials exert 

effect, they are often not the primary variable 

considered in metamaterial design. In topology 

design, the characteristics of metamaterials may be 

tailored within an extensive design space, 

contributing to the exponential expansion of 

metamaterials research and development across 

contemporary engineering disciplines. 

Metamaterials may be classified into four primary 

objective-based categories: mechanical, acoustic, 

optical, and electromagnetic [1].  

The mechanical characteristics of metamaterials are 

noteworthy, since the alteration of designs has been 

shown to provide a broad spectrum of features and 

behaviors. Computational design can enhance the 

consistency of metamaterial functionality, enabling 

fundamentally desirable attributes such as increased 

material durability, superior mechanical energy 

absorption, and distinctive modes of load-controlled 

deformation, achieved by initially calculating the 

results of architectural iterations on the metamaterial 

structure. The technique is dual in nature, since both 

structure and composition are most effectively 

optimized together, usually with a defined design 

purpose. This bilateral technique facilitates the 

production of deliberately different mechanical 

characteristics and behaviors, which are significant 

in several general and specialized applications [2–

5]. 
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Figure 1. Examples of mechanical metamaterials based on geometry type. 

 

 

Figure 2. Examples of mechanical metamaterials defined by geometrical behaviour 
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A. Evolutionary Algorithms 

Evolutionary algorithms (EAs), including genetic 

algorithms (GAs), differential evolution (DE), and 

particle swarm optimization (PSO), together with 

their advanced variations, have been widely used in 

the automated design of antennas. They primarily 

operate by conducting a nature-inspired global 

search inside the specified antenna's design space to 

identify near-optimal antenna configurations. The 

principal benefits of utilizing evolutionary 

algorithms (EAs) in antenna design encompass their 

independence from preliminary designs and the 

avoidance of the time-consuming and labor-

intensive manual tuning of antenna structures 

typically necessary to achieve specified criteria and 

requirements [12], [6], [11].   

Recent applications of evolutionary algorithms 

(EAs) in the automated design of antennas 

encompass, but are not limited to, the utilization of 

invasive weed optimization (IWO) for aperiodic 

subarrayed phased arrays and ant colony 

optimization (ACO) for millimeter wave (mmWave) 

microstrip antennas, respectively [13], [14]. Both 

IWO and ACO produced satisfactory design 

solutions that outperformed the reference designs. 

Nonetheless, the computational expenditure for 

evolutionary algorithms may become burdensome 

or prohibitively expensive owing to the extensive 

amount of full-wave electromagnetic simulations 

necessary to identify near-optimal solutions for 

various antenna design challenges [15], [6]. 

Evolutionary algorithms sometimes exhibit sluggish 

convergence rates for certain antenna design 

challenges [6]. 

B. ML-Assisted Evolutionary Algorithms 

To reduce the computing expense of evolutionary 

algorithms and improve their efficiency, surrogate 

models developed using machine learning methods 

are often used to substitute comprehensive 

electromagnetic simulations in their optimization 

processes. This category of evolutionary algorithms, 

referred to as surrogate model-assisted evolutionary 

algorithms (SAEAs), often exhibits more efficiency, 

particularly regarding optimization time, and 

provides superior design solutions compared to 

traditional evolutionary algorithms. The SADEA 

(surrogate model-assisted differential evolution for 

antenna synthesis) methods belong to this group. 

Their primary emphasis is on the synergistic 

integration of evolutionary computing and 

supervised learning approaches, taking into account 

the features of the antenna design landscape [18], 

[19], [20], [21], [22], [23]. SADEA approaches do 

not depend on initial designs and ad-hoc procedures 

inside their optimization frameworks, making them 

more resilient and more appropriate for optimizing a 

wide range of antenna design issues [24], [25]. 

SADEA approaches provide speed enhancements 

ranging from several times to 20 times compared to 

conventional numerical optimization techniques 

when used for the design automation of identical 

antenna structures, while achieving superior quality 

design solutions [18], [6], [21].   

In SAEAs, the curse of dimensionality has been a 

significant impediment [18], [22]. This is often 

associated with an exponential escalation in the 

training or learning duration of machine learning 

approaches as the dimensionality of their training 

data points increases. Consequently, the efficacy of 

conventional SAEAs is often diminished when 

optimizing antenna configurations with a somewhat 

expansive dimensional space [22]. Recently, 

SADEA approaches have shown effective for 

optimizing complicated and high-dimensional 

antenna systems, exceeding 100 dimensions. In [22], 

radial basis function (RBF)-assisted local 

optimization and self-adaptive Gaussian process 

(GP) surrogate modeling are used to decrease the 

training costs associated with the surrogate 

modeling phase of the optimization process, while 

preserving the efficacy of the SAEA-based 

optimization. To reduce the computational expense 

of the surrogate modeling phase in the ML-assisted 

optimization of high-dimensional antenna structures 

while maintaining efficiency, the integration of 

Bayesian neural network (BNN)-based surrogate 

modeling with self-adaptive lower confidence 

bound (LCB) prescreening of predictions is utilized 

in [23], the most recent iteration of the SADEA 

algorithm series.   

A recent advancement is the enhanced PSO that 

utilizes a combined global radial RBF model and a 

kriging model to substitute resource-intensive full-

wave EM simulations and to direct the PSO 

updating process [9]. This methodology facilitated 

the implementation of mixed prescreening in a 

collaborative way, whereby swarm particles 

exhibiting the smallest anticipated objective 

function and highest expected enhancements are co-

selected in the enhanced ML-guided PSO. The 

enhanced PSO has been validated via antenna 

challenges, including a substrate-integrated 

waveguide (SIW) cavity-backed slot antenna, a 
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linear array, and a sequential-rotation feeding 

network for wireless communication applications 

[9]. In every instance, effective design solutions 

were achieved. 

 

C. Multifidelity Optimization 

The fundamental concept of multifidelity 

optimization for antennas involves eliminating 

unpromising design solutions through the use of 

low-fidelity models, which are cost-effective to 

simulate but less precise, and subsequently 

exploring "promising" solutions identified by these 

low-fidelity models with more accurate and costly 

high-fidelity models. The models may be surrogate 

and/or EM models [26], [27], [28]. Multifidelity 

optimization techniques have been used in several 

antenna design challenges.   

For instance, in [28], an ultrawideband monopole 

antenna, a dual-band monopole antenna, a triband 

patch antenna, and a series-fed microstrip array 

antenna have been developed with this 

methodology. The technique in [28] enhances 

traditional Gaussian process regression (GPR)-

based machine learning optimization of antennas 

through a multi-branch strategy that employs 

various fidelity models to create multifidelity GPR 

models and multiple constants or thresholds for 

lower LCB prescreening. During the optimization 

process, the accuracy of the low-fidelity antenna 

models is established and validated through 

corresponding high-fidelity simulations, while the 

search space for the LCB constant, which primarily 

balances exploration and exploitation, is restricted to 

predefined discrete values (i.e., {0, 1, 2}).   

A novel ML-assisted antenna optimization 

technique using multifidelity or variable-fidelity 

models of the antenna structure has been developed 

to enhance the effectiveness of surrogate modeling 

and the entire optimization process [29]. In [29], 

variable fidelity EM models are used for both the 

definition of the surrogate domain and the final 

rendering of the surrogate model employed in the 

optimization phase. Co-kriging is used to integrate 

low-fidelity and high-fidelity simulation data to 

enhance the management of model inconsistencies. 

This method obviates the need of rectifying the low-

fidelity model, a common practice in multifidelity-

based optimization strategies that require 

dependable management of model inconsistencies. 

The surrogate model-assisted integrated global and 

local search phase for effective high-fidelity 

simulation model-based optimization is an 

additional approach for the multifidelity 

optimization of antennas, adeptly addressing model 

discrepancies. This is the second episode in the 

SADEA algorithm series [19]. It functions as a 

multi-stage optimization framework that 

incorporates data mining and local search to 

effectively and reliably address model differences 

while maintaining high efficiency and rapid 

convergence speed [19]. 

D. Domain Knowledge- Facilitated Antenna 

Optimization   

A methodology is proposed in [30] to diminish the 

computational expense of antenna array design by 

utilizing knowledge of the active base elements 

(ABEs) and their patterns, alongside the application 

of GPR to predict and model ABE geometries and 

the corresponding excitations of sub-arrays, 

particularly in cases where analytical methods fail to 

produce accurate models. This method is more 

efficient than comparable techniques (such as [31]) 

since it reduces both the dimensional space and the 

computational cost of design and surrogate 

modeling using virtual subarray approximation. 

Domain expertise involves partitioning the spatial 

region surrounding the area of biological interest 

(ABE) into multiple sections utilizing a constant 

coupling area radius, followed by further 

segmentation of the coupling area into a 

predetermined number of sections based on the 

azimuth angle, to ensure the optimization process's 

efficiency [30].   

To achieve a cost-effective and resilient design of 

antennas and arrays, machine learning-assisted 

optimization techniques have been integrated into a 

traditional design framework to significantly 

diminish the computing expenses associated with 

simulation-driven global optimization and tolerance 

analysis in [32]. Worst-case analysis (WCA), 

maximum input tolerance hypervolume (MITH) 

search mechanism, and robust optimization are used 

to accelerate the robust design process. The 

approach suggested in [32] was effectively used for 

the multi-objective optimization of both an antenna 

array and a microstrip patch antenna. To facilitate 

the successful execution of the procedure, a 

surrogate model correlating design parameters with 

performance using a GA-based WCA is first 

established, succeeded by an MITH-based search to 

determine the MITH of the design point of interest. 

These techniques depend on domain expertise on the 

design space for the design point, the output 
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tolerance area, and the model [32].   

Correlations between the design parameters and the 

MITH are created utilizing the training set derived 

from the MITH-based search prior to the 

implementation of the principal online GPR-based 

surrogate modeling. 

E. Other Recent ML- Facilitated Antenna 

Optimization Techniques   

A novel generative algorithm, influenced by 

generative adversarial networks (GANs), has been 

integrated with a support vector classifier (SVC) 

within a cohesive evolutionary approach 

framework, as proposed in [33], for the automation 

of antenna design, exemplified by dual resonance 

and broadband antennas.   

The proposed technique largely involves training the 

discriminator, generator, and SVC to forecast 

antenna model performances, generate new 

candidate designs, and categorize these designs prior 

to simulation, respectively. This method 

demonstrates significant improvement in 

optimization time relative to conventional antenna 

optimization techniques and enables the creation of 

various geometric designs that satisfy identical 

performance criteria for reflection coefficient 

specifications.   

A recent proposal outlines an expedited technique 

for improving antenna structural parameters using 

accelerated gradient-based optimization utilizing 

numerical derivatives and response feature methods 

as detailed in [4]. The methodology proposed in [4] 

improved the predictive capability of surrogate 

models that substitute computationally intensive 

electromagnetic simulations during optimization. A 

sparse Jacobian matrix update for the trust region-

based search is implemented by confining finite 

differentiation-based sensitivity updates to 

subspaces where most response variability is 

concentrated. The approach provided in [4] has been 

used to optimize dual-band and tri-band microstrip 

patch antennas with less than 12 design parameters, 

yielding effective design solutions. 

CONCLUSION 

This study succinctly examines contemporary AI-

driven antenna design optimization techniques, 

emphasizing their principal characteristics and 

applications. The below points may be concisely 

highlighted about contemporary ML-assisted 

antenna optimization techniques: They are often 

more efficient than their conventional equivalents 

while delivering superior quality designs. Some 

methods are better appropriate for particular antenna 

issues (e.g., scenarios where reasonably effective 

early designs exist as beginning or anchor points), 

yielding outstanding outcomes. In some 

methodologies, domain expertise in executing ad-

hoc procedures significantly influences the 

optimization process, leading to superior outcomes. 

The SADEA series, independent of preliminary 

designs and ad-hoc methodologies, is more 

universal and adaptable to a wider range of antenna 

design challenges, including those with many design 

variables. 
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