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Abstract— This article reviews the latest advancements in deep learning approaches for audio signal processing. Speech, 

music, and ambient sound processing are examined concurrently to elucidate similarities and contrasts within these domains, 

emphasizing common methodologies, challenges, significant references, and opportunities for cross-fertilization between 

fields. This study covers the principal feature representations, including log-mel spectra and raw waveforms, with deep 

learning models, including convolutional neural networks, variations of the long short-term memory architecture, and 

specialized audio neural network models. Subsequently, significant domains of deep learning applications are addressed, 

including audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, 

localization, and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for 

speech, sound, and music synthesis). Ultimately, critical concerns and prospective inquiries about the use of deep learning in 

audio signal processing are delineated. 

Index Terms—. deep learning, connectionist temporal memory, automatic speech recognition, music information retrieval, 

source separation, audio enhancement, environmental sounds 

INTRODUCTION 

In recent years, deep learning methodologies have 

garnered significant attention as a means of 

constructing hierarchical representations from 

unlabeled data. However, to our knowledge, these 

deep learning methodologies have not been 

thoroughly examined for auditory data. In this study, 

we use convolutional deep credence networks on 

audio data and conduct empirical evaluations across 

several audio classification tasks. In the context of 

verbalization data, we demonstrate that the acquired 

characteristics align with phones/phonemes. 

Additionally, our feature representations trained on 

unlabeled audio data demonstrate exceptional 

performance across many audio classification tasks. 

We anticipate that this article will stimulate further 

research on deep learning methodologies applied to 

a vast array of audio perception challenges. 

Artificial neural networks have garnered significant 

interest in three distinct waves: 1) the introduction 

of the perception algorithm in 1957, 2) the 

development of the backpropagation algorithm in 

1986, and 3) the triumph of deep learning in voice 

recognition and picture classification in 2012. Deep 

learning encompasses deep feedforward neural 

networks, convolutional neural networks (CNNs), 

and long short-term memory (LSTM) networks.  

In recent days, deep learning has facilitated practical 

applications across several domains of signal 

processing. In this latest wave, deep learning first 

acquired prominence in image processing, 

subsequently being extensively used in voice 

processing, environmental sound processing, music, 

and several other domains like as genomics and 

quantum chemistry. Deep learning models 

surpassed traditional approaches in performance. 

Data plays a crucial part in deep learning 

applications. Numerous deep learning 

methodologies are formulated on the foundation of 

image processing techniques.   

Significant distinctions exist between the realms of 

picture and audio, particularly for the configuration 

of the vector. Audio samples in their raw form are 

one-dimensional time series signals, fundamentally 

distinct from two-dimensional visuals.   

Audio signals may be transformed into two-

dimensional time-frequency representations for 

processing. The two axes, frequency and time, differ 

from the vertical and horizontal axes. Advanced 

Deep Learning Methods for Audio Processing 

IMETHODS 

An overview of audio analysis challenges (II-A), the 

representation of input data and characteristics often 

used in audio applications (II-B), the various models 

utilized for distinct applications (II-C), the datasets 

1,2,3,4International School of Technology and Sciences for 

Women 



 

International Journal of Intelligent Systems and Applications in Engineering                         IJISAE, 2024, 12(4), 5626–5633  |  5627 

 

implemented for deep learning experiments (II-D), 

and the techniques for result assessment. The 

primary challenges or tasks associated with audio 

signals include Audio Classification, Audio 

Fingerprinting, Automatic Music Tagging, Audio 

Segmentation, Audio Source Separation, Onset 

Detection, Music Transcription, Music Retrieval, 

Music Recommendation, Beat Tracking, Audio 

Enhancement, and Voice Activity Detection. One 

significant difficulty in the domain of audio 

processing is audio categorization. Derive several 

characteristics from audio and categorize the audio 

according to these characteristics. Numerous 

beneficial applications related to audio 

categorization, including speaker identification, 

instrument recognition, and speech recognition, are 

accessible. Diverse deep learning frameworks, such 

as TensorFlow and Keras, are used for audio 

classification. Real-time voice recognition is 

achievable with deep learning methodologies. The 

objective of audio fingerprinting is to determine the 

digital "summary" of the audio. This may be 

executed to identify the audio from an audio sample. 

Shazam exemplifies the implementation of audio 

fingerprinting well.   

It acknowledges the musical concept of the first two 

to five seconds of a composition. Nonetheless, there 

are instances in which the system malfunctions, 

particularly in environments with significant ground 

noise. Music tagging might be considered a more 

intricate kind of audio categorization. This scenario 

allows for numerous classes to which each audio 

may belong, known as a multi-label classification 

issue. An application of this activity is to generate 

metadata for the audio to facilitate future searches. 

Deep learning has addressed this challenge to a 

certain degree.   

Segmentation refers to the division of a designated 

item into segments according to a specified set of 

attributes. Segmentation is an essential pre-

processing technique for audio data analysis. This 

occurs because we may divide a prolonged and 

intense audio input into brief, uniform parts (concise 

audio sequences) that are used for further 

processing. The work involves cardiac sound 

segmentation, specifically identifying sounds 

unique to the heart.  

Audio Source Separation entails the extraction of 

one or several source signals from a composite of 

signals. A prevalent use of this technology is the 

identification of lyrics from audio for simultaneous 

translation, such as in karaoke. The objective is to 

monitor the status of each drill inside a collection of 

audio samples.  

Beat tracking may be used to automate laborious 

procedures necessary for synchronizing events with 

music. It is beneficial in several applications, 

including as video editing, audio editing, and 

human-computer improvisation. Music 

recommendation systems assist in managing 

information overload by autonomously suggesting 

new music to listeners. Content providers such as 

Ganna and Spotify have created very advanced 

music recommendation algorithms. These models 

use the user's historical listening data, among several 

other attributes, to generate personalized suggestion 

lists. Music Retrieval, one of the most challenging 

challenges in audio processing, fundamentally seeks 

to create a search engine based on audio content. 

While we can do this by addressing sub-tasks such 

as audio fingerprinting, this task involves far more 

than that. For example, we must address many minor 

issues related to different kinds of music retrieval, 

and timbre recognition would be advantageous for 

gender identification. At yet, no alternative solution 

has been designed to meet the anticipated industry 

requirements. Music transcription is a formidable 

audio processing endeavor. It involves annotating 

audio and producing a "sheet" for further music 

generation. The physical labor required for 

transcribing music from recordings will be 

substantial. The variability is substantial, contingent 

upon the intricacy of the music, the proficiency of 

our auditory talents, and the level of detail desired in 

our transcription.   

Onset detection is the first step in analyzing an audio 

or music sequence. For several activities outlined 

above, it is essential to execute onset detection, 

namely identifying the commencement of an audio 

event. Onset detection was fundamentally the 

primary objective that researchers aimed to address 

in audio processing.  

A Voice Activity Detector (VAD) is used to identify 

the presence or absence of speech in audio signals. 

This article will provide a tutorial on constructing a 

simple Voice Activity Detector (VAD) that outputs 

1 when speech is detected and 0 when it is not. The 

function of a Voice Activity Detector (VAD) is to 

accurately ascertain the presence of speech, even 

amongst background noise. Under optimal 

circumstances, even a basic energy detector may 

accurately identify speech; nevertheless, the Voice 

Activity Detection (VAD) may falter in the presence 

of noise. Deep learning-based Voice Activity 
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Detection (VAD) provides almost accurate 

predictions about the presence of noise in the signal. 

Speech denoising has been a persistent issue. We 

want to isolate the unwanted noise from an input 

noisy signal without compromising the desired 

signal. Envision an individual conversing during a 

video conference as music plays in the background. 

In this context, a voice denoising system is 

responsible for eliminating background noise to 

improve the clarity of the spoken signal. This 

application is crucial for video and audio 

conferencing, since noise may substantially impair 

intelligibility. 

Figure 1. Different ways of processing temporal context. 

 

ARCHITECTURES 

As models improve, they increasingly use many 

architectures simultaneously, rendering efficient 

categorization unfeasible. Consequently, each 

subsection will have models applicable to many 

subsections, however they have been categorized 

according to the author's rationale for optimal 

clarity. In contrast to the acoustic characteristics, 

several distinct designs exist. This section will 

outline the architectures most often used in audio 

generation. 
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Generative adversarial networks 

Another notable generative architecture is 

generative adversarial networks (GAN). It consists 

of two models that fulfill distinct functions: the 

generator and the discriminator.   

The generator's purpose is to transform a random 

input vector into a data sample. The random vector 

is often smaller since the generator emulates the 

decoder component of the auto-encoder [1].   

In contrast to VAE, which enforces a distribution for 

realistic data generation, GAN employs an 

additional network known as the discriminator [1]. 

The system evaluates the generator's output or a 

dataset sample, aiming to categorize it as authentic 

or counterfeit. The generator is fined according to 

the discriminator's capacity to distinguish between 

authentic and counterfeit. Conversely, if the 

discriminator fails to differentiate between the 

generator and the genuine data points, it is likewise 

punished. The two neural networks compete in a 

two-player minimax game. As per [123], the optimal 

result for network training is for the discriminator to 

possess 50% confidence in determining whether the 

input is authentic or fraudulent. In reality, we train 

the generator via the discriminator by minimizing 

the likelihood that the sample is counterfeit, while 

the discriminator conversely increases this 

likelihood for counterfeit data and maintains it for 

authentic data.   

Figure 2b depicts the generator receiving a random 

vector input as the discriminator tries to differentiate 

between authentic and counterfeit samples.   

This fundamental configuration enables the 

synthesis of samples that mimic those in the dataset; 

however, it does not permit conditional generation. 

The random vector used in the generator fails to 

align with the semantic characteristics of the input 

[5]. Numerous datasets contain further information 

about each sample, such as the item type shown in a 

picture. Utilizing the supplementary information to 

condition the generator and produce outputs from a 

subset of the learnt results would be advantageous. 

Conditional GAN (cGAN) adds supplementary 

structure by including extra information into the 

inputs of both the generator and discriminator. The 

generator incorporates further information into the 

random vector, whereas the discriminator integrates 

it into the data for differentiation purposes. Notable 

studies using cGAN include MidiNet [124], 

Michelsanti and Tan [125], Chen et al. [126], 

Neekhara et al. [127], and V2RA-GAN [128].  

               

 

 

Figure 2. Two deep learning architectures that 

appear to have little in common until we look 

closer. The generator mimics the auto-encoder’s 

decoder, whereas the discriminator resembles 

the encoder. 

 

Prevalent challenges associated with GANs include 

mode collapse, unstable training, and the absence of 

a definitive assessment measure [2]. Mode collapse 

transpires when the generator concentrates only on a 

limited number of outputs that deceive the 

discriminator into seeing them as authentic.  

Although the generator satisfies the discriminator's 

criteria, it cannot be used to generate more than a 

limited number of samples. This may occur due to 

the discriminator's inability to compel the generator 

to exhibit diversity [123]. The Wasserstein 

Generative Adversarial Network (WGAN) is a 

prominent alternative for tackling this issue. WGAN 

reassigns the discriminator's role from 

differentiating between authentic and counterfeit 

data to calculating the Wasserstein distance, 

sometimes referred to as the Earth Mover's distance. 

A variation to facilitate WGAN convergence has 

been suggested; it employs a gradient penalty 

instead of weight clipping and is referred to as 

WGAN-GP. MuseGAN [129], WaveGAN [130], 

TiFGAN [131], and Catch-A-Waveform [132] 

employed WGAN. 
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APPLICATIONS 

Deep learning-based audio processing may be used 

in several domains. Initially for the analysis of 

speech (Sec. III-A1), music (Sec. III-A2), and 

ambient sounds (Sec. III-A3), followed by the 

synthesis and transformation of audio source 

separation (Sec. III-B1), speech augmentation (Sec. 

III-B2), and audio creation (Sec. III-B3). 

A. Analysis 

1) Speech 

Utilizing vocalization to get information and engage 

with the surroundings may represent a fundamental 

and instinctual mode of communication for humans. 

Speech recognition, which transforms auditory 

speech into word sequences, may be essential for 

any speech-based interaction. Initiatives to develop 

automated speech recognition systems have been on 

for more than fifty years. Nonetheless, the 

widespread implementation of such systems in 

practical applications has transpired only in recent 

years. For several years, the triphone-state Gaussian 

mixture model (GMM) / hidden Markov model 

(HMM) was the preeminent selection for speech 

modeling. These models provide several benefits, 

including their mathematical beauty, which results 

in various principled solutions to practical issues 

such as speaker or task adaptability. Circa 1990, 

discriminative training was shown to provide 

superior performance compared to models trained 

by maximum likelihood.   

Hybrid models based on neural networks were 

suggested to replace Gaussian Mixture Models 

(GMMs). In 2012, deep neural networks (DNNs) 

with several parameters, trained on hundreds of 

hours of data, significantly reduced the word error 

rate (WER) across multiple voice recognition tasks. 

Moreover, in addition to the successful performance 

of deep feedforward and convolutional networks, 

LSTMs and GRUs have shown superior efficacy 

compared to feedforward deep neural networks. 

Subsequently, a sequence of convolutional, LSTM, 

and feedforward layers, known as the convolutional 

long short-term memory deep neural network 

(CLDNN) model, demonstrated superior 

performance compared to models using solely 

LSTM. In CLDNNs, an input frame window is 

initially processed by two convolutional layers with 

max pooling layers to reduce frequency variance in 

the signal, subsequently projected into a lower-

dimensional feature space for the LSTM layers to 

model temporal correlations, and finally refined 

through additional feedforward layers and an output 

softmax layer. 

2) Music 

In contrast to speech, music recordings often include 

a broader array of sound sources of interest. In many 

musical genres, their occurrence adheres to 

prevalent limits of time and frequency, establishing 

intricate relationships both within and across 

sources. This presents a favorable array of options 

for the automated description of music recordings.  

Tasks include low-level analysis (onset and offset 

detection, first harmonic estimation), rhythm 

analysis (beat tracking, meter identification, 

downbeat tracking, tempo estimation), Fourier 

analysis (key detection, melody extraction, chord 

estimation), high-level analysis (instrument 

detection, instrument separation, transcription, 

structural segmentation, artist recognition, genre 

classification, mood classification), and high-level 

comparison (discovery of repeated themes, cover 

identification, music similarity estimation, score 

alignment). Initially, each of these was addressed 

using hand-crafted algorithms or features in 

conjunction with shallow classifiers; however, they 

are currently being attacked using deep learning 

techniques. This document highlights selected 

instances that include diverse activities and 

methodologies. Kindly confer with me for a more 

comprehensive list. An example of a multi-class 

labeling challenge is chord recognition. The 

objective is to assign root notes and chord classes to 

any given steps in a Western music recording. 

Conventional hand-crafted techniques rely on 

folding several octaves of a spectral representation 

into a 12-semitone chromagram, temporal 

smoothing, and alignment with established chord 

templates. Linear-magnitude spectrograms, 

subjected to contrast normalization and amplified 

using pitch shifting techniques, are often used. 

Contemporary systems use temporal modeling and 

are transformed into a collection of identifiable 

chords. McFee and Bello recently used a CRNN, 

which consists of a 2D convolution for learning 

spectro-temporal characteristics, succeeded by a 1D 

convolution that integrates information across 

frequencies, and culminates in a bidirectional GRU. 

They utilized side targets to include relationships 

across a specific set of 170 chord classes. 

Korzeniowski et al. use an unconventional approach 

by training CNNs using log-frequency 

spectrograms, which are employed not only for 
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chord prediction but also for enhancing chromagram 

representation, beneficial for tasks extending 

beyond chord estimation.  

In the context of sequence categorization, a 

fundamental job is to assess the global pace of a 

piece. A logical option is to ground it in beat and 

downbeat tracking. Downbeat tracking may use 

tempo estimate as the primary constraint for 

determining downbeat placements. Nonetheless, 

despite the frequent avoidance of onset detection in 

beat tracking, Schreiber and Müller demonstrated 

that convolutional neural networks (CNNs) may be 

trained to directly estimate tempo from 12-second 

spectrogram extracts, yielding superior results and 

accommodating tempo variations or drift within a 

recording. Tag prediction, as an overarching 

sequence classification challenge, seeks to 

determine which labels from a limited vocabulary a 

user would assign to a certain music composition. 

Tags may relate to instrumentation, tempo, genre, 

and other elements, but they consistently pertain to 

a whole recording, devoid of time information. The 

transition from an input sequence to global labels 

has been addressed using many methods, which are 

valuable for comparison. Dieleman et al. train a 

CNN using brief 1D convolutions (i.e., temporal 

convolution) on 3-second log-mel spectrograms and 

average predictions over successive extracts to get a 

global label. In contrast, they train a CNN on 

unprocessed data, selecting the first layer filter size 

to correspond with standard spectrogram frames, 

however get worse results. Choi et al. use a fully 

convolutional network (FCN) consisting of 

interspersed 3×3 convolutions. 

DISCUSSION AND CONCLUSION 

In contrast to speech, music recordings often include 

a broader array of sound sources of interest. In many 

musical genres, their occurrence adheres to 

prevalent limits of time and frequency, establishing 

intricate relationships both within and across 

sources. This presents a favorable array of options 

for the automated description of music recordings.  

Tasks include low-level analysis (onset and offset 

detection, first harmonic estimation), rhythm 

analysis (beat tracking, meter identification, 

downbeat tracking, tempo estimation), Fourier 

analysis (key detection, melody extraction, chord 

estimation), high-level analysis (instrument 

detection, instrument separation, transcription, 

structural segmentation, artist recognition, genre 

classification, mood classification), and high-level 

comparison (discovery of repeated themes, cover 

identification, music similarity estimation, score 

alignment). Initially, each of these was addressed 

using hand-crafted algorithms or features in 

conjunction with shallow classifiers; however, they 

are currently being attacked using deep learning 

techniques. This document highlights selected 

instances that include diverse activities and 

methodologies. Kindly confer with me for a more 

comprehensive list. An example of a multi-class 

labeling challenge is chord recognition. The 

objective is to assign root notes and chord classes to 

any given steps in a Western music recording. 

Conventional hand-crafted techniques rely on 

folding several octaves of a spectral representation 

into a 12-semitone chromagram, temporal 

smoothing, and alignment with established chord 

templates. Linear-magnitude spectrograms, 

subjected to contrast normalization and amplified 

using pitch shifting techniques, are often used. 

Contemporary systems use temporal modeling and 

are transformed into a collection of identifiable 

chords. McFee and Bello recently used a CRNN, 

which consists of a 2D convolution for learning 

spectro-temporal characteristics, succeeded by a 1D 

convolution that integrates information across 

frequencies, and culminates in a bidirectional GRU. 

They utilized side targets to include relationships 

across a specific set of 170 chord classes. 

Korzeniowski et al. use an unconventional approach 

by training CNNs using log-frequency 

spectrograms, which are employed not only for 

chord prediction but also for enhancing chromagram 

representation, beneficial for tasks extending 

beyond chord estimation.  

In the context of sequence categorization, a 

fundamental job is to assess the global pace of a 

piece. A logical option is to ground it in beat and 

downbeat tracking. Downbeat tracking may use 

tempo estimate as the primary constraint for 

determining downbeat placements. Nonetheless, 

despite the frequent avoidance of onset detection in 

beat tracking, Schreiber and Müller demonstrated 

that convolutional neural networks (CNNs) may be 

trained to directly estimate tempo from 12-second 

spectrogram extracts, yielding superior results and 

accommodating tempo variations or drift within a 

recording. Tag prediction, as an overarching 

sequence classification challenge, seeks to 

determine which labels from a limited vocabulary a 

user would assign to a certain music composition. 

Tags may relate to instrumentation, tempo, genre, 
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and other elements, but they consistently pertain to 

a whole recording, devoid of time information. The 

transition from an input sequence to global labels 

has been addressed using many methods, which are 

valuable for comparison. Dieleman et al. train a 

CNN using brief 1D convolutions (i.e., temporal 

convolution) on 3-second log-mel spectrograms and 

average predictions over successive extracts to get a 

global label. In contrast, they train a CNN on 

unprocessed data, selecting the first layer filter size 

to correspond with standard spectrogram frames, 

however get worse results. Choi et al. use a fully 

convolutional network (FCN) consisting of 

interspersed 3×3 convolutions. 

B) Pre-process the signal and Features 

While MFCCs are the predominant representation in 

conventional audio signal processing, log-mel 

spectrograms are the preeminent feature in deep 

learning, followed by raw waveforms or 

complicated spectrograms. Raw waveforms 

eliminate the need for manually crafted features, 

hence enhancing the potential to use the advanced 

modeling capabilities of deep learning models, 

which learn representations tailored for specific 

tasks. Nevertheless, this entails increased 

computational expenses and data requirements, and 

the advantages may also be difficult to comprehend 

in reality. In analytical tasks such as Automatic 

Speech Recognition (ASR), Music Information 

Retrieval (MIR), or environmental sound 

recognition, log mel spectrograms offer a more 

concise representation. Approaches utilizing these 

features typically require less data and training, 

achieving classification performance that is, at the 

current state of the art, comparable to setups 

employing raw audio. In tasks aimed at synthesizing 

high-quality audio, such as source separation, audio 

improvement, text-to-speech, or sound morphing, 

using (log-mel) magnitude spectrograms presents 

the issue of reconstructing the phase. In this context, 

raw waveforms or intricate spectrograms are often 

favored as the input format.  

Algorithms for the calculation of various frame-

level and clip-level feature extraction methods have 

been developed. The efficacy of the clip level 

characteristics for multiclass audio classification is 

evaluated via the use of several classifiers inside the 

audio classification chapter. The multidimensional 

frame-level characteristics, such as MFCC and LPC, 

will be used to represent the tools in Table and to 

characterize a speech signal, as elaborated in 

chapters 5 and 6, respectively. The characteristics 

such as K-L divergence distance using Line Spectral 

Frequencies will be used for audio segmentation. A 

distinctive characteristic, 'harmonicity,' 

distinguishes the harmonic essence of music from 

the antithetical nature of speech. A sub-band energy 

ratio characteristic for voiced/unvoiced 

categorization is often advised. 

C) Models 

Convolutional Neural Networks (CNNs), Recurrent 

Neural Networks (RNNs), and Convolutional 

Recurrent Neural Networks (CRNNs) are used well 

across several disciplines, without a distinct 

preference for any one kind. All three can represent 

temporal sequences and address sequence 

categorization, sequence labeling, and sequence 

transduction problems.   

Convolutional Neural Networks (CNNs) possess a 

fixed receptive field, limiting the temporal context 

considered for predictions; yet, this characteristic 

simultaneously facilitates the adjustment of the 

context's breadth. RNNs may potentially use 

extensive temporal context for predictions; 

however, they must first train to do so, which may 

need model changes (such as LSTM) and limits 

direct control over context size. Moreover, they need 

sequential input processing, rendering them less 

efficient for training and evaluation on 

contemporary hardware compared to CNNs. 

CRNNs provide a balance, including the benefits 

and drawbacks of both CNNs and RNNs. 

D) Computational Complexity, Interpretability 

and Adaptability 

Computational Complexity The efficacy of deep 

neural networks relies on advancements in rapid and 

extensive computational capabilities. In comparison 

to conventional methods, cutting-edge deep neural 

networks often need more computational power and 

an increased volume of training data. CPUs are not 

well equipped for training and assessing extensive 

deep models.   

Instead, processors designed for matrix operations 

are often used, namely general-purpose graphics 

processing units (GPGPUs) and application-specific 

integrated circuits such as proprietary tensor 

processing units (TPUs). The model parameters are 

acquired using gradient descent applied to the loss 

associated with pairs of inputs and targets, or only 

through inputs for unsupervised training. The 

relationship between the layer parameters and the 

actual job is challenging to comprehend. 
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