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Abstract: Autonomous driving (AD) is an innovative technology poised to transform the future of transportation. In addition 

to providing a chance for enhanced road safety by minimizing human mistakes, the implementation of autonomous driving 

will increase traffic efficiency by facilitating superior driving and stability in traffic flow, as powerful predictive analytics 

algorithms may be built. This research emphasizes that the dynamics of an autonomous vehicle (AV) interacting with human 

drivers is a weakly collective, open-system complex that is essentially temporal and representation-hierarchical. To address 

the problem of achieving AI-enabled autonomous driving, we created predictive planning that incorporates perceptual and 

learning modules for task-relevant scene comprehension in operational and tactical planning. The discussion regarding AI-

enabled transportation effectively distinguishes between functional and realization levels while integrating them within system 

engineering. The dynamics visualization framework for AI-enabled AD systems may be easily adapted to other analogous 

systems and processes inside vast complex systems. 
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Introduction 

Formulating planning and control algorithms for 

Autonomous Vehicles (AVs) in off-road settings is 

arduous owing to the unpredictable and unstructured 

nature of the environment, compounded with 

restricted sensor range capabilities resulting from 

occlusions. Unlike the controlled urban environment 

where autonomous cars adhere to traffic regulations, 

off-road scenarios include dynamic impediments 

such as adjacent vehicles that navigate erratically 

and without legal constraints, complicating safe AV 

navigation. Suboptimal performance and safety 

issues stem from the rigidity of conventional 

autonomous vehicle planning heuristic methods 

such as A*, Dijkstra, RRT, RRT*, and D* [3]-[5]. 

Advanced tactics are required to foresee and 

overcome these problems.  

AI models based on situational intelligence have 

tackled the issues of safe planning and control for 

autonomous vehicles. Research [6][7] indicated that 

advancements in Vehicle-to-Vehicle (V2V) 

communication and the sharing of trajectory 

prediction data among autonomous vehicles 

improved traffic flow and reduced accident rates in 

urban environments. Our study originates from the 

basic principles of vehicle-to-vehicle 

communication and situational awareness. 

Improving the situational awareness of autonomous 

vehicles is achievable with the integration of 

artificial intelligence (AI), particularly deep 

learning. The need of situational intelligence, 

capable of comprehending and reacting to intricate 

and dynamic circumstances, was unequivocally 

demonstrated for urban driving [6].   

Deep learning methods significantly enhance 

situational awareness in autonomous systems by 

discerning intricate patterns from data.   

Research studies [8], [9] used deep learning models, 

including LSTM, to forecast future states of 

autonomous vehicles as behavior prediction 

functions, therefore enhancing awareness of 

possible risks to mitigate. Furthermore, [10] used an 

LSTM-based AI model using spatial coordinates to 

forecast the future trajectories of Target Vehicles 

(TV), however it necessitates extensive simulation 

data for training the LSTM model. There is a need 

for customized strategies that use AI methods to 

tackle the distinct issues of off-road navigation.  

Management of autonomous vehicles in difficult 

off-road environments need sophisticated systems 

that can adjust to changing topography and dynamic 

impediments. route-tracking controllers, such as 

Pure Pursuit, modify the steering angle in 

accordance with route curvature. [11] The Stanley 

control path-tracking method identifies lateral and 

direction mistakes and has shown efficiency in off-
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road scenarios; nevertheless, it lacks resilience in the 

presence of adjacent vehicles. In this setting, the 

Model Predictive Controller (MPC) [14], a restricted 

dynamical optimum control issue, tackles the 

resilience, stability, and smoothness of the control 

strategy. The methodologies detailed in [15] and 

[16], including Model Predictive Control (MPC) 

supplemented by deep learning predictions, were 

used to improve collision avoidance in urban 

settings; however, they are constrained in difficult 

off-road conditions.  

Although Model Predictive Control (MPC) provides 

resilience and stability, its efficacy in managing 

multi-vehicle interactions, particularly in 

demanding off-road situations, is constrained. 

Furthermore, the integration of Model Predictive 

Control (MPC) with artificial intelligence 

methodologies in off-road settings is inadequately 

investigated, highlighting a substantial need in 

contemporary research efforts.   

This work presents a revolutionary architecture 

designed to improve the control of autonomous 

vehicles in off-road conditions via the use of AI- 

predicted trajectories. Off-road navigation has 

distinct obstacles because to always changing 

circumstances. Our methodology, the Potential-Rate 

Long Short-Term Memory (PR-LSTM) network, is 

engineered to accurately forecast vehicle trajectories 

in such contexts.  

We evaluate the effectiveness of our strategy by 

integration with Model Predictive Control (MPC)-

enabled autonomous vehicles. Furthermore, our 

study presupposes the implementation of Vehicle-

to-Vehicle (V2V) communication to enable the 

transmission of prospective trajectory data between 

Autonomous Vehicles (AVs) and Traditional 

Vehicles (TVs).   

This paper will be structured as follows. We will 

examine the off-road simulation platform, the PR-

LSTM-based trajectory prediction system, and the 

vehicle control framework. Section 3 examines the 

outcomes of the AI-prediction PR-LSTM model as 

applied to three distinct autonomous vehicle 

management strategies: the gradient-based steering 

(GBS) method, conventional model predictive 

control (MPC), and MPC with AI-predicted 

trajectories.  Ultimately, the conclusions will be 

presented in the Section 

 

Methodology 

Figure 1: MPC with AI-based Prediction 

AI-generated trajectory-based vehicle control in off-

road environments presents significant challenges 

yet holds substantial implications for autonomous 

vehicle navigation. This research examines the 

evaluation of an AI-generated trajectory prediction 

intended for an off-road setting. The capability of 

autonomous vehicles to successfully traverse off-

road settings relies on the integration of 

sophisticated algorithms that provide accurate 

trajectory data and implement effective control 

strategies.   

Section 2.1 delineates the creation of an off-road 

platform used for the generation of AI-predicted 

trajectories and the implementation of control 
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algorithms. The structural components of the 

environment are meticulously analyzed, 

highlighting the features that emulate the intricacy 

of off-road landscapes. Section 2.2 provides a 

detailed exposition of the fundamental approach for 

AI-driven trajectory prediction and its incorporation 

with Zero-Order Hold (ZOH) trajectory [17]. 

  

Section 2.3 subsequently examines the assessment 

of diverse control systems used in this investigation, 

encompassing Gradient-Based Steering (GBS), 

Model Predictive Control (MPC), and MPC coupled 

with an AI-model framework. These control 

methodologies are examined, focusing specifically 

on their robustness and adaptability to off-road 

conditions. Section 3 ultimately presents the results 

derived from the comparison of the previously 

mentioned control algorithms. 

 

Figure 2: Birds Eye View of simulation environment 

 

Proactive Model Predictive Control with AI-

Predicted Trajectory (MPC-AI) Employing the 

Model Predictive Control (MPC) paradigm, control 

inputs are optimized over a predictive time horizon, 

allowing the vehicle to make intelligent choices 

based on current and projected future circumstances. 

This optimization approach considers the system 

model, constraints, environmental factors, and 

safety standards to provide optimum trajectories and 

control inputs for autonomous vehicles (AVs). This 

work enhances traditional MPC by AI-based PR-

LSTM predictions of surrounding vehicle 

trajectories. The MPC is designed using a non-linear 

two-dimensional kinematic system model, as 

delineated in equation 9, which fails to include 

rollover concerns during acute turns. The cost 

function specified in equation 8 imposes penalties 

for departures from the objective and for possible 

accidents with adjacent cars. The collision cost 

includes forecasts from adjacent cars, concentrating 

only on those inside the forward trajectory of the ego 

vehicle at each time step k. Poses of adjacent cars, 

sNV,k = [xNV,k; yNV,k], and their velocities 

derived from PR-LSTM projections. 

Experimental Setup 

Training datasets including temporal positional data 

were collected from a fleet of 60 cars outfitted with 

LiDAR sensors functioning in an off-road 

simulation environment inside Unreal Engine [10]. 

The computing machinery used for this assignment 

has a formidable setup, including a Threadripper Pro 

3995WX CPU with 64 cores, in conjunction with 

RTX A6000 GPUs.   

MATLAB 2023a functioned as the main software 

platform for executing simulations and training time 

series forecasting, specifically using the LSTM 

Deep Learning model.   

The training dataset for the PR-LSTM model 

consisted of data from 460 cars, whilst a separate 

testing dataset including information from 60 

vehicles was used to assess trajectory predictions. 
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Table 1 presents a summary of the hyperparameters 

and architecture of the PR-LSTM model, while 

Figure 5 illustrates the model's training loss.  

The PR-LSTM model's test outcomes indicated a 

mean root mean squared error (RMSE) of 0.07 for 

the prediction of the upcoming time step, evaluated 

using data from five cars. Moreover, Figure 6 

depicts the efficacy of the PR-LSTM model in 

monitoring the potential of an individual vehicle. 

The network utilizes four channels to represent 

attractive and repulsive potential rates, successfully 

predicting trajectory information for the subsequent 

step.  

Figure 3: PR-LSTM Training Loss 

 

Figure 4: GBS, MPC, MPC-AI trajectories with AI-predicted trajectories  

 

shown by the tight correspondence of the anticipated 

trajectory (seen by the red dashed line) with the 

original trajectory potential rate.  AI trajectories 

in relation to the AI-predicted future trajectories 

derived from data collected from 15 vehicles. AI 

trajectories consistently surpass ZOH trajectories 

across essential metrics. The AI trajectories have a 

variation of 0.35, which is lower than the variance 

of 0.51 seen in the ZOH trajectories. Furthermore, 

the highest error linked to AI trajectories is 
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significantly reduced at 16.97, in contrast to the 

maximum error of 17.30 for ZOH trajectories. The 

average error for AI trajectories is 4.41, far 

surpassing the ZOH trajectories, which have an 

average error of 5.86. These findings emphasize AI's 

exceptional accuracy and efficacy in trajectory 

planning, highlighting its potential to improve 

performance in autonomous vehicle planning and 

control systems. 

Results and Analysis 

The PR-LSTM model visualizes the AI-predicted 

trajectories for 15 adjacent cars used in the control 

simulations, as seen in figure 5. The prediction 

trajectories, used only for the MPC-AI model, are 

shown in blue at each time step for a horizon length 

of N=10. The original route trajectories of 

underlying barriers are shown in red, while shaded 

polygons of diverse hues delineate off-road borders. 

GBS, MPC, and MPC-AI separately govern the 

trajectories of the ego vehicle, with 15 nearby cars 

shown in green, dotted red, and dark yellow, 

respectively. Each ego vehicle, regulated by its 

designated control scheme, utilizes algorithms 

specified in sections 2.3.1 and 2.3.2 for GBS, MPC, 

and MPC-AI. The restrictions for angular velocity 

and linear velocity remain aligned with those 

described in section 2.3.2. Figures 5 and 6 depict the 

distance to collision for vehicles 3 and 15, 

respectively, over the designated time period.  

 

Figure 5: Sample result 1: Collision response of control algorithms 

 

Figure 6: Sample result 2: Collision response of control algorithms 
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Both GBS and MPC paths encounter encounters 

with impediments, with MPC demonstrating 

marginally superior performance relative to GBS 

while pursuing the same aim. In contrast, the MPC 

integrated with the AI model effectively prevents 

collisions with obstructions by a considerable 

margin.  ` 

The simulation results of the comparative study of 

AV control systems are , focusing on essential 

metrics pertaining to collision avoidance and 

proximity management. GBS has a negative closest 

distance of -4.2 meters, indicating potential 

collisions with objects. This is substantiated by the 

documented occurrence of two crashes. Likewise, 

MPC has an enhanced minimum distance of -1.6 

meters, accompanied by two collision occurrences. 

Conclusion 

This research presents an innovative method for 

autonomous vehicles (AVs) to traverse off-road 

terrains by using AI-predicted paths while adeptly 

circumventing obstacles. The proposed 

methodology markedly improves vehicle autonomy, 

facilitating agile and responsive navigation during 

interactions with other vehicles. The results of this 

research highlight the effectiveness and advantages 

of the suggested method.   

Integrating predictive control methods, the 

amalgamation of classical Model Predictive Control 

(MPC) with artificial intelligence allows effective 

obstacle avoidance grounded in established models 

and restrictions. Although traditional Model 

Predictive Control (MPC) offers a solid basis for 

regulation, the incorporation of artificial intelligence 

into MPC has the potential for more adaptable and 

dynamic responses, hence improving performance, 

especially in difficult off-road environments. 

  

Future research will involve validating the 

developed algorithm through a high-fidelity 

simulation model and real-world experiments using 

an actual off-road autonomous vehicle. The high-

fidelity simulation model will be tested for rollover, 

which is essential for real-world safety, particularly 

for vehicles operating at elevated speeds, to 

guarantee enhanced generalizability. The shift from 

simulation to real-world testing is a vital step in 

confirming the effectiveness and practical relevance 

of the suggested method in actual circumstances. 
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