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Abstract— Although the majority of speech augmentation algorithms increase voice quality, they may not augment speech 

intelligibility in noisy environments.   

This work examines the creation of an algorithm that may be tailored to a particular acoustic environment to enhance speech 

intelligibility. The suggested technique disaggregates the input signal into time-frequency (T-F) units and employs a Bayesian 

classifier to make binary determinations on whether each T-F unit is predominated by the target signal or the noise masker. 

Target-dominated time-frequency units are preserved, but masker-dominated time-frequency units are eliminated. The 

Bayesian classifier is trained for each acoustic environment using an incremental method that perpetually adjusts the model 

parameters as further data is acquired.  

Listening tests were performed to evaluate the intelligibility of speech synthesized using incrementally modified models based 

on the quantity of training sentences. The results demonstrated significant improvements in intelligibility, exceeding 60% in 

babbling at a 5 dB signal-to-noise ratio, with a minimum of 10 training phrases in babble and at least 80 words in other loud 

environments. 

Index Terms—Environment-optimized algorithms, speech enhancement, speech intelligibility. 

INTRODUCTION 

Significant progress has been achieved in the 

creation of enhancement algorithms that may 

mitigate background noise and increase voice 

quality [1]. Significantly less advancement has been 

achieved in the development of algorithms aimed at 

enhancing voice intelligibility. As shown in [2], 

algorithms that enhance voice quality do not 

inherently enhance speech intelligibility. This is 

probably attributable to the distortions imposed on 

the voice stream. Unlike speech quality, 

intelligibility pertains to the comprehension of the 

fundamental meaning or substance of uttered words, 

often assessed by tallying the number of words 

accurately recognized by human listeners. 

Intelligibility may be enhanced just by mitigating 

background noise without altering the fundamental 

target voice signal. Algorithms designed to enhance 

voice intelligibility in loud circumstances would be 

very beneficial not just for mobile phone apps but 

also for hearing aids and cochlear implants. The 

creation of such algorithms has proven difficult for 

several decades, likely owing to the pursuit of 

algorithms capable of functioning across all forms of 

maskers (noise) and varying signal-to-noise ratio 

(SNR) levels, which is clearly an ambitious 

objective.   

In some speech recognition applications (e.g., voice 

dictation) and hearing aid applications (e.g., [4]), the 

algorithm may be contingent upon the speaker 

and/or the surroundings.   

Numerous environment-dependent methods have 

been lately proposed in references [5]–[10]. The 

originality of these algorithms is in the creation of 

spectral weighting functions (gain functions) that 

have been trained using a data-driven approach 

based on diverse error criteria. In contrast to the gain 

functions obtained for minimal mean square error 

(MMSE) and maximum a posteriori (MAP) 

estimators [11]–[13], the gain functions presented in 

[7]–[10] do not presume any specific probability 

density functions (pdf) for the complicated clean and 

noise spectra.  

Fingscheidt et al. [10] used an extensive corpus of 

clean speech and noise data to develop frequency-

specific gain functions for a particular noise 

environment. The gain functions were articulated as 
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a function of the a posteriori and a priori signal-to-

noise ratios (SNRs), calculated using a modified 

decision-directed methodology [11], and were 

generated by minimizing several perceptually driven 

distance metrics [14]. The data-derived gain 

functions were cataloged in look-up tables indexed 

by the a posteriori and a priori SNRs, used for 

augmenting speech in the training acoustic 

environments. In vehicle contexts, the data-driven 

method [10] surpassed traditional algorithms (e.g., 

MMSE) for voice distortion and noise attenuation. 

The data-driven approach presented in [8] 

demonstrated superior performance compared to 

existing state-of-the-art noise reduction algorithms. 

  

The aforementioned data-driven and/or 

environment-optimized algorithms shown efficacy 

in enhancing voice quality; nevertheless, their 

impact on speech intelligibility remains unassessed.  

 
Fig. 1. Block diagram of the training and enhancement stages for the speech 

enhancement based on the binary masking of T-F 

units. 

Based on our experience with MMSE-based speech 

enhancement algorithms [2], we do not anticipate 

substantial improvements in intelligibility with these 

methods.   

This work adopts an alternative methodology that 

eschews the development of spectral weighting 

(gain) functions, instead concentrating on the 

accurate categorization of spectral SNR in two 

distinct areas. The adopted methodology is driven by 

intelligibility research on speech synthesized using 

the ideal binary mask (IdBM) [15]–[17], which 

requires access to the signal-to-noise ratio (SNR) at 

each frequency bin. The ideal binary mask, formerly 

referred to as the a priori mask, is a method 

investigated in computational auditory scene 

analysis (CASA) that preserves the time-frequency 

regions of the target signal that exhibit a higher 

signal-to-noise ratio (SNR dB) than the interfering 

noise, while eliminating the regions that 

demonstrate a lower SNR dB than the interfering 

noise. Prior research has shown that the 

multiplication of the ideal binary mask with the 

noise-masked signal may provide significant 

improvements in intelligibility, even at very low 

signal-to-noise ratio levels of 5 to 10 dB [15], [16]. 

These investigations required previous knowledge 

of the actual spectral signal-to-noise ratio and, 

therefore, the optimal binary mask. In reality, the 
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binary mask must be derived from the corrupted 

signal, necessitating a precise estimation and 

classification of the spectral signal-to-noise ratio 

(SNR). In our prior research [19], we introduced a 

voice enhancement technique that calculates the 

binary mask using a Bayesian classifier and 

synthesizes the improved signal by binary masking 

(i.e., multiplying the noisy spectra by a binary gain 

function). This technique disaggregates the input 

signal into time-frequency units with a rudimentary 

auditory-like filter bank and employs a basic binary 

Bayesian classifier to preserve target-dominant 

time-frequency units while eliminating masker-

dominant units. Amplitude modulation 

spectrograms (AMS) were used as features for 

training Gaussian mixture models (GMMs) to 

function as classifiers. In contrast to the majority of 

speech enhancement methods, the suggested 

technique does not need speech/noise identification 

or the estimate of noise statistics. This approach was 

assessed using listening tests and shown significant 

improvements in speech intelligibility at very low 

signal-to-noise ratio levels. The listening tests 

concentrated on very low signal-to-noise ratio 

(SNR) levels (e.g., 5 dB), akin to those seen in 

military contexts, dining establishments, and 

industrial environments, since speech intelligibility 

for those with normal hearing is recognized to 

deteriorate predominantly at these low SNR levels. 

BINARY-MASK BASED SPEECH 

ENHANCEMENT ALGORITHM 

Figure 1 illustrates the block structure of the 

proposed algorithm [19], including a training phase 

(upper section) and an intelligibility improvement 

phase (lower section). During the training phase, 

features are taken from a substantial speech corpus 

and then used to train two Gaussian mixture models 

(GMMs) that represent two feature classes: target 

speech predominating over the masker and the 

masker predominating over the target speech. In 

[21], harmonicity-based characteristics were 

directly retrieved from the voice stream and used in 

a Bayesian classifier to predict the binary mask. The 

reliability of harmonicity cues is mostly contingent 

upon the pitch estimation technique, which often 

exhibits inaccuracy in low signal-to-noise ratio 

(SNR) situations.  

This work utilizes AMS as characteristics due to 

their neurophysiological and psychoacoustic 

foundations [20], [22]. During the enhancement 

phase, a Bayesian classifier categorizes the time-

frequency units of the noise-masked signal into two 

classifications: target-dominated and masker-

dominated.   

Individual T-F units of the noise-masked signal are 

preserved if deemed target-dominated and discarded 

if categorized as masker-dominated, later used to 

reconstruct the improved speech waveform. Feature 

Extraction  

The noisy speech signal is first subjected to 

bandpass filtering into 25 channels based on mel-

frequency spacing, covering a bandwidth of 6 kHz 

(68.5–6000 Hz). The sampling frequency was 12 

kHz. The envelopes in each subband are calculated 

by full-wave rectification and then decimated by a 

factor of three. The fragmented envelopes are 

divided into overlapping parts of 128 samples (32 

ms) with a 50% overlap. Each segment is subjected 

to a Hann window and then converted using a 256-

point fast Fourier transform (FFT) after zero-

padding. The FFT calculates the modulation 

spectrum for each subband, achieving a frequency 

resolution of 15.6 Hz. 

ADAPTATION TO NEW NOISE 

ENVIRONMENTS 

In the preceding section, we detailed the 

improvement of noise-masked speech by the 

estimation of binary masks.  

Despite the commendable performance achieved 

with GMMs trained in various listening situations 

[19], a user may face a novel sort of noise that is 

absent from the multiple-noise training set. There 

are several methods for managing a novel loud 

environment.   

One method involves using a multi-style noise 

model trained on various noise kinds. We attempted 

this strategy, but the performance was inadequate. 

An alternate method involves adjusting the model 

parameters to suit the new environment.  

To swiftly adapt to a new noisy environment, we 

propose progressively modifying the GMM 

parameters to integrate the new data, beginning with 

an initial model trained on limited data. Five 

Subsequently, we delineate the incremental GMM 

adaption methodology used. In contrast to the batch-

training method, which requires access to the whole 

dataset, the incremental training strategy perpetually 

adjusts the model parameters as fresh data becomes 

available. Thus, the computational burden of the 

incremental method is less than that of the batch-

training method.  
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A. Preliminary Model 

It is assumed that a limited quantity of speech data 

captured in a calm environment is available for the 

training of the preliminary model. This data may be 

retained in memory. In a novel auditory setting, 

noise-only data are gathered and combined with 10 

phrases of clear speech (retained in memory) at 

signal-to-noise ratio levels of 5, 0, and -5 dB. The 

distribution of each class may be represented using 

a limited number of mixture components (e.g., 8), 

considering the modest quantity of training phrases 

(e.g., 10 sentences). While the technique of 

partitioning or augmenting Gaussian mixtures may 

be used to enhance the number of mixture 

components as more data is acquired, we opted for a 

more straightforward approach by training the 

GMMs with 256 mixture components from the 

outset.   

In the selected incremental training strategy, we just 

update the parameters of each Gaussian while 

maintaining a fixed number of mixes. The 

preliminary model was constructed over the 

following two phases. Initially, 32 distinct eight-

mixture models were generated using the same 

training data by redoing the original training process 

32 times. During each training cycle, the starting 

centroids for the k-means clustering are selected 

randomly, resulting in 32 distinct models. In the 

second stage, the preliminary model with 256 mixes 

is established by consolidating the 32 models trained 

with eight mixtures each. The same training data 

used for all eight-mixture models indicates that the 

first 256-mixture model has considerable 

redundancy, implying that several Gaussian 

components are similar. The redundancy of the 

models is examined and elaborated upon in Section 

IV-A. 

RESULTS 

We credit the considerable increases in intelligibility 

achieved with the proposed approach (Section II) to 

the correct categorization of T-F units into target-

dominant and masker dominant T-F units.  

To assess the precision of the GMM-based SNR 

classifier, we calculated the hit rate (HIT) and false 

alarm rate (FA) using the same test sets used in the 

listening trials. The classification accuracy, 

represented by HIT and FA, of the trained GMM 

classifiers is shown in Table I as a function of the 

number of accumulated phrases used in the training. 

We also computed the error rates evaluating the 

classifier's performance without differentiating 

between miss and false alarm errors. A significant 

decrease in error rates, calculated relative to ten-

sentence models, was observed across all three 

tested maskers, ranging from a 34% reduction 

(achieved with train noise using 200-sentence 

models) to a 38% reduction (achieved with babble 

using 200-sentence models).  

The detection rates increased with the inclusion of 

more training data, resulting in an enhanced hit rate 

and, in most instances, a reduction in the false alarm 

rate. Perceptually, the two forms of mistakes that 

may arise, namely miss (-HIT) and false alarm, are 

not equal [16]. This occurs because false alarm 

mistakes may create additional noise distortion, 

since time-frequency units that would typically be 

nullified (probably associated with the masker) 

would now be preserved. The omission errors will 

likely result in voice distortion, since these mistakes 

cause the elimination of time-frequency units 

dominated by the target signal, which should be 

preserved. To address the cumulative impact of both 

errors (misses and false alarms), we recommend 

employing the difference metric, HIT-FA. Table I 

presents the difference measure as a function of the 

amount of aggregated phrases used in the training. 

The difference measure value grows with the 

inclusion of more training data, indicating a 

potential association with speech intelligibility 

ratings. We calculated the connection between the 

difference metric and speech intelligibility scores. 

CONCLUSION 

Significant improvements in intelligibility were 

attained using the suggested approach utilizing a 

restricted amount of training data. Under typical 

circumstances, a minimum of 80 sentences was 

shown to be enough for achieving significant 

improvements in intelligibility. The clarity of voice 

processed by the suggested algorithm was much 

greater than that attained by human listeners 

perceiving raw (corrupted) speech. This is due to the 

precise categorization of T-F units into target-

dominated and masker-dominated categories, 

followed by a dependable estimate of the binary 

mask. The precise categorization of time-frequency 

(T-F) units into target and masker-dominated units 

was achieved by the use of neurophysiologically 

inspired features (AMS) and meticulously crafted 

Bayesian classifiers (GMMs). In contrast to the mel-

frequency cepstrum coefficients (MFCCs) [35] 

often used in speech recognition, the amplitude 

modulation spectrum (AMS) characteristics include 
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data about amplitude and frequency modulations, 

which are recognized as essential for speech 

intelligibility [36]. A quantifiable metric derived 

from classification accuracy (HIT-FA)   

Intelligibility of speech generated by algorithms that 

compute the binary mask. This metric was 

determined to consistently predict speech 

intelligibility. The study's results indicate that 

algorithms capable of consistently estimating or 

classifying the SNR in each time-frequency unit 

may enhance speech intelligibility. 
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