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Abstract— Although the majority of speech augmentation algorithms increase voice quality, they may not augment speech
intelligibility in noisy environments.

This work examines the creation of an algorithm that may be tailored to a particular acoustic environment to enhance speech
intelligibility. The suggested technique disaggregates the input signal into time-frequency (T-F) units and employs a Bayesian
classifier to make binary determinations on whether each T-F unit is predominated by the target signal or the noise masker.
Target-dominated time-frequency units are preserved, but masker-dominated time-frequency units are eliminated. The
Bayesian classifier is trained for each acoustic environment using an incremental method that perpetually adjusts the model
parameters as further data is acquired.

Listening tests were performed to evaluate the intelligibility of speech synthesized using incrementally modified models based
on the quantity of training sentences. The results demonstrated significant improvements in intelligibility, exceeding 60% in
babbling at a 5 dB signal-to-noise ratio, with a minimum of 10 training phrases in babble and at least 80 words in other loud

environments.

Index Terms—Environment-optimized algorithms, speech enhancement, speech intelligibility.

INTRODUCTION

Significant progress has been achieved in the
creation of enhancement algorithms that may
mitigate background noise and increase voice
quality [1]. Significantly less advancement has been
achieved in the development of algorithms aimed at
enhancing voice intelligibility. As shown in [2],
algorithms that enhance voice quality do not
inherently enhance speech intelligibility. This is
probably attributable to the distortions imposed on
the voice stream. Unlike speech quality,
intelligibility pertains to the comprehension of the
fundamental meaning or substance of uttered words,
often assessed by tallying the number of words
accurately recognized by human listeners.
Intelligibility may be enhanced just by mitigating
background noise without altering the fundamental
target voice signal. Algorithms designed to enhance
voice intelligibility in loud circumstances would be
very beneficial not just for mobile phone apps but
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also for hearing aids and cochlear implants. The
creation of such algorithms has proven difficult for
several decades, likely owing to the pursuit of
algorithms capable of functioning across all forms of
maskers (noise) and varying signal-to-noise ratio
(SNR) levels, which is clearly an ambitious
objective.

In some speech recognition applications (e.g., voice
dictation) and hearing aid applications (e.g., [4]), the
algorithm may be contingent upon the speaker
and/or the surroundings.

Numerous environment-dependent methods have
been lately proposed in references [5]-[10]. The
originality of these algorithms is in the creation of
spectral weighting functions (gain functions) that
have been trained using a data-driven approach
based on diverse error criteria. In contrast to the gain
functions obtained for minimal mean square error
(MMSE) and maximum a posteriori (MAP)
estimators [11]-[13], the gain functions presented in
[7]-[10] do not presume any specific probability
density functions (pdf) for the complicated clean and
noise spectra.
Fingscheidt et al. [10] used an extensive corpus of
clean speech and noise data to develop frequency-
specific gain functions for a particular noise
environment. The gain functions were articulated as
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a function of the a posteriori and a priori signal-to-
noise ratios (SNRs), calculated using a modified
decision-directed methodology [11], and were
generated by minimizing several perceptually driven
distance metrics [14]. The data-derived gain
functions were cataloged in look-up tables indexed
by the a posteriori and a priori SNRs, used for
augmenting speech in the training acoustic
environments. In vehicle contexts, the data-driven
method [10] surpassed traditional algorithms (e.g.,

MMSE) for voice distortion and noise attenuation.
The data-driven approach presented in [8]
demonstrated superior performance compared to
existing state-of-the-art noise reduction algorithms.

The aforementioned data-driven and/or
environment-optimized algorithms shown efficacy
in enhancing voice quality; nevertheless, their
impact on speech intelligibility remains unassessed.

-

Moisy

*speech data

Clean
—|speech data| " >
— SNR
Icalculation

CED._ Noise data |—. —|

s
™ —
-.__../.-.__

Yes
. Subband Training || Training
Training filtering Ao y
stage 8
_____ Feature | 3 — B
Envelope extraction
extraction (AMS)
""""""" Classification models |
Enhancement
stage lL
. Bayesian
Noisy speech — " decision
Estimated binary mask
—> T-F unit Waveform synthesis

|

Enhanced speech

Fig. 1. Block diagram of the training and enhancement stages for the speech

enhancement based on the binary masking of T-F
units.

Based on our experience with MMSE-based speech
enhancement algorithms [2], we do not anticipate
substantial improvements in intelligibility with these
methods.

This work adopts an alternative methodology that
eschews the development of spectral weighting
(gain) functions, instead concentrating on the
accurate categorization of spectral SNR in two
distinct areas. The adopted methodology is driven by
intelligibility research on speech synthesized using
the ideal binary mask (1dBM) [15]-[17], which
requires access to the signal-to-noise ratio (SNR) at
each frequency bin. The ideal binary mask, formerly

referred to as the a priori mask, is a method
investigated in computational auditory scene
analysis (CASA) that preserves the time-frequency
regions of the target signal that exhibit a higher
signal-to-noise ratio (SNR dB) than the interfering
noise, while eliminating the regions that
demonstrate a lower SNR dB than the interfering
noise. Prior research has shown that the
multiplication of the ideal binary mask with the
noise-masked signal may provide significant
improvements in intelligibility, even at very low
signal-to-noise ratio levels of 5 to 10 dB [15], [16].
These investigations required previous knowledge
of the actual spectral signal-to-noise ratio and,
therefore, the optimal binary mask. In reality, the
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binary mask must be derived from the corrupted
signal, necessitating a precise estimation and
classification of the spectral signal-to-noise ratio
(SNR). In our prior research [19], we introduced a
voice enhancement technique that calculates the
binary mask using a Bayesian classifier and
synthesizes the improved signal by binary masking
(i.e., multiplying the noisy spectra by a binary gain
function). This technique disaggregates the input
signal into time-frequency units with a rudimentary
auditory-like filter bank and employs a basic binary
Bayesian classifier to preserve target-dominant
time-frequency units while eliminating masker-
dominant units. Amplitude modulation
spectrograms (AMS) were used as features for
training Gaussian mixture models (GMMs) to
function as classifiers. In contrast to the majority of
speech enhancement methods, the suggested
technique does not need speech/noise identification
or the estimate of noise statistics. This approach was
assessed using listening tests and shown significant
improvements in speech intelligibility at very low
signal-to-noise ratio levels. The listening tests
concentrated on very low signal-to-noise ratio
(SNR) levels (e.g., 5 dB), akin to those seen in
military contexts, dining establishments, and
industrial environments, since speech intelligibility
for those with normal hearing is recognized to
deteriorate predominantly at these low SNR levels.

BINARY-MASK BASED
ENHANCEMENT ALGORITHM

SPEECH

Figure 1 illustrates the block structure of the
proposed algorithm [19], including a training phase
(upper section) and an intelligibility improvement
phase (lower section). During the training phase,
features are taken from a substantial speech corpus
and then used to train two Gaussian mixture models
(GMMs) that represent two feature classes: target
speech predominating over the masker and the
masker predominating over the target speech. In
[21], harmonicity-based characteristics were
directly retrieved from the voice stream and used in
a Bayesian classifier to predict the binary mask. The
reliability of harmonicity cues is mostly contingent
upon the pitch estimation technique, which often
exhibits inaccuracy in low signal-to-noise ratio
(SNR) situations.
This work utilizes AMS as characteristics due to
their  neurophysiological and psychoacoustic
foundations [20], [22]. During the enhancement
phase, a Bayesian classifier categorizes the time-

frequency units of the noise-masked signal into two
classifications: target-dominated and masker-
dominated.

Individual T-F units of the noise-masked signal are
preserved if deemed target-dominated and discarded
if categorized as masker-dominated, later used to
reconstruct the improved speech waveform. Feature
Extraction

The noisy speech signal is first subjected to
bandpass filtering into 25 channels based on mel-
frequency spacing, covering a bandwidth of 6 kHz
(68.5-6000 Hz). The sampling frequency was 12
kHz. The envelopes in each subband are calculated
by full-wave rectification and then decimated by a
factor of three. The fragmented envelopes are
divided into overlapping parts of 128 samples (32
ms) with a 50% overlap. Each segment is subjected
to a Hann window and then converted using a 256-
point fast Fourier transform (FFT) after zero-
padding. The FFT calculates the modulation
spectrum for each subband, achieving a frequency
resolution of 15.6 Hz.

ADAPTATION TO NEW NOISE
ENVIRONMENTS

In the preceding section, we detailed the
improvement of noise-masked speech by the
estimation of binary masks.
Despite the commendable performance achieved
with GMMs trained in various listening situations
[19], a user may face a novel sort of noise that is
absent from the multiple-noise training set. There
are several methods for managing a novel loud
environment.

One method involves using a multi-style noise
model trained on various noise kinds. We attempted
this strategy, but the performance was inadequate.
An alternate method involves adjusting the model
parameters to suit the new environment.
To swiftly adapt to a new noisy environment, we
propose progressively modifying the GMM
parameters to integrate the new data, beginning with
an initial model trained on limited data. Five
Subsequently, we delineate the incremental GMM
adaption methodology used. In contrast to the batch-
training method, which requires access to the whole
dataset, the incremental training strategy perpetually
adjusts the model parameters as fresh data becomes
available. Thus, the computational burden of the
incremental method is less than that of the batch-
training method.
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A. Preliminary Model

It is assumed that a limited quantity of speech data
captured in a calm environment is available for the
training of the preliminary model. This data may be
retained in memory. In a novel auditory setting,
noise-only data are gathered and combined with 10
phrases of clear speech (retained in memory) at
signal-to-noise ratio levels of 5, 0, and -5 dB. The
distribution of each class may be represented using
a limited number of mixture components (e.g., 8),
considering the modest quantity of training phrases
(e.g., 10 sentences). While the technique of
partitioning or augmenting Gaussian mixtures may
be used to enhance the number of mixture
components as more data is acquired, we opted for a
more straightforward approach by training the
GMMs with 256 mixture components from the
outset.

In the selected incremental training strategy, we just
update the parameters of each Gaussian while
maintaining a fixed number of mixes. The
preliminary model was constructed over the
following two phases. Initially, 32 distinct eight-
mixture models were generated using the same
training data by redoing the original training process
32 times. During each training cycle, the starting
centroids for the k-means clustering are selected
randomly, resulting in 32 distinct models. In the
second stage, the preliminary model with 256 mixes
is established by consolidating the 32 models trained
with eight mixtures each. The same training data
used for all eight-mixture models indicates that the
first 256-mixture model has considerable
redundancy, implying that several Gaussian
components are similar. The redundancy of the
models is examined and elaborated upon in Section
IV-A.

RESULTS

We credit the considerable increases in intelligibility
achieved with the proposed approach (Section 1) to
the correct categorization of T-F units into target-
dominant and masker dominant T-F units.
To assess the precision of the GMM-based SNR
classifier, we calculated the hit rate (HIT) and false
alarm rate (FA) using the same test sets used in the
listening trials. The classification accuracy,
represented by HIT and FA, of the trained GMM
classifiers is shown in Table | as a function of the
number of accumulated phrases used in the training.
We also computed the error rates evaluating the
classifier's performance without differentiating

between miss and false alarm errors. A significant
decrease in error rates, calculated relative to ten-
sentence models, was observed across all three
tested maskers, ranging from a 34% reduction
(achieved with train noise using 200-sentence
models) to a 38% reduction (achieved with babble
using 200-sentence models).
The detection rates increased with the inclusion of
more training data, resulting in an enhanced hit rate
and, in most instances, a reduction in the false alarm
rate. Perceptually, the two forms of mistakes that
may arise, namely miss (-HIT) and false alarm, are
not equal [16]. This occurs because false alarm
mistakes may create additional noise distortion,
since time-frequency units that would typically be
nullified (probably associated with the masker)
would now be preserved. The omission errors will
likely result in voice distortion, since these mistakes
cause the elimination of time-frequency units
dominated by the target signal, which should be
preserved. To address the cumulative impact of both
errors (misses and false alarms), we recommend
employing the difference metric, HIT-FA. Table |
presents the difference measure as a function of the
amount of aggregated phrases used in the training.
The difference measure value grows with the
inclusion of more training data, indicating a
potential association with speech intelligibility
ratings. We calculated the connection between the
difference metric and speech intelligibility scores.

CONCLUSION

Significant improvements in intelligibility were
attained using the suggested approach utilizing a
restricted amount of training data. Under typical
circumstances, a minimum of 80 sentences was
shown to be enough for achieving significant
improvements in intelligibility. The clarity of voice
processed by the suggested algorithm was much
greater than that attained by human listeners
perceiving raw (corrupted) speech. This is due to the
precise categorization of T-F units into target-
dominated and masker-dominated categories,
followed by a dependable estimate of the binary
mask. The precise categorization of time-frequency
(T-F) units into target and masker-dominated units
was achieved by the use of neurophysiologically
inspired features (AMS) and meticulously crafted
Bayesian classifiers (GMMs). In contrast to the mel-
frequency cepstrum coefficients (MFCCs) [35]
often used in speech recognition, the amplitude
modulation spectrum (AMS) characteristics include
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data about amplitude and frequency modulations,
which are recognized as essential for speech
intelligibility [36]. A quantifiable metric derived
from classification accuracy (HIT-FA)
Intelligibility of speech generated by algorithms that
compute the binary mask. This metric was
determined to consistently predict speech
intelligibility. The study's results indicate that
algorithms capable of consistently estimating or
classifying the SNR in each time-frequency unit
may enhance speech intelligibility.
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